Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 212(11): 1807-1818, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38639584

RESUMEN

Drug-induced acute renal failure (ARF) is a public health concern that hinders optimal drug therapy. However, pathological mechanisms of drug-induced ARF remain to be elucidated. Here, we show that a pathological process of drug-induced ARF is mediated by proinflammatory cross-talk between kidney tubular cells and macrophages. Both polymyxin B and colistin, polypeptide antibiotics, frequently cause ARF, stimulated the ERK and NF-κB pathways in kidney tubular cells, and thereby upregulated M-CSF and MCP-1, leading to infiltration of macrophages into the kidneys. Thereafter, the kidney-infiltrated macrophages were exposed to polypeptide antibiotics, which initiated activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome. Interestingly, blockade of the NLRP3 activation clearly ameliorated the pathology of ARF induced by polypeptide antibiotics, suggesting that a combination of the distinct cellular responses to polypeptide antibiotics in kidney tubular cells and macrophages plays a key role in the pathogenesis of colistin-induced ARF. Thus, our results provide a concrete example of how drugs initiate ARF, which may give insight into the underlying pathological process of drug-induced ARF.


Asunto(s)
Lesión Renal Aguda , Antibacterianos , Inflamasomas , Macrófagos , Proteína con Dominio Pirina 3 de la Familia NLR , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/patología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Ratones , Inflamasomas/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Antibacterianos/efectos adversos , Antibacterianos/farmacología , Polimixina B/farmacología , Ratones Endogámicos C57BL , Colistina/efectos adversos , Colistina/farmacología , Péptidos/farmacología , Túbulos Renales/patología , Túbulos Renales/metabolismo , Túbulos Renales/efectos de los fármacos , Masculino , FN-kappa B/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(43): e2311282120, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37847732

RESUMEN

Liquid droplet has emerged as a flexible intracellular compartment that modulates various cellular processes. Here, we uncover an antimetastatic mechanism governed by the liquid droplets formed through liquid-liquid phase separation (LLPS) of SQSTM1/p62 and neighbor of BRCA1 gene 1 (NBR1). Some of the tyrosine kinase inhibitors (TKIs) initiated lysosomal stress response that promotes the LLPS of p62 and NBR1, resulting in the spreading of p62/NBR1 liquid droplets. Interestingly, in the p62/NBR1 liquid droplet, degradation of RAS-related C3 botulinum toxin substrate 1 was accelerated by cellular inhibitor of apoptosis protein 1, which limits cancer cell motility. Moreover, the antimetastatic activity of the TKIs was completely overridden in p62/NBR1 double knockout cells both in vitro and in vivo. Thus, our results demonstrate a function of the p62/NBR1 liquid droplet as a critical determinant of cancer cell behavior, which may provide insight into both the clinical and biological significance of LLPS.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Neoplasias , Proteína Sequestosoma-1/genética , Lisosomas , Autofagia , Neoplasias/tratamiento farmacológico , Neoplasias/genética
3.
J Immunol ; 210(6): 795-806, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36744909

RESUMEN

Gefitinib (GF), the tyrosine kinase inhibitor (TKI) targeting epidermal growth factor receptor, initiates lung inflammation through the NLR family pyrin domain containing 3 (NLRP3) inflammasome. However, the molecular targets and mechanisms underlying the inflammatory action of GF remain unknown. In this study, we identified mitochondrial Src family kinases (mSFKs) as key determinants of GF-induced NLRP3 inflammasome activation. Comprehensive analysis of the TKIs revealed that all TKIs we tested act as potent agonists for the NLRP3 inflammasome in human monocytic THP-1 cells and bone marrow-derived macrophages. Moreover, these TKIs share a common off-target activity against the mSFKs, such as c-Src, Fgr, and Fyn. Interestingly, loss of each kinase spontaneously stimulated the NLRP3 inflammasome activation in THP-1 cells. These results together suggest that NLRP3 senses hypoactivity of the mSFKs that is responsible for mitochondrial dysfunction. Thus, our findings demonstrate a mechanistic link between the NLRP3 inflammasome and mSFKs, which, to our knowledge, provides insights into a novel molecular basis and cellular function of the NLRP3 inflammasome.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Familia-src Quinasas , Células Cultivadas , Mitocondrias/metabolismo
4.
J Biol Chem ; 299(6): 104710, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37060999

RESUMEN

Reactive sulfur species (RSS) have emerged as key regulators of protein quality control. However, the mechanisms by which RSS contribute to cellular processes are not fully understood. In this study, we identified a novel function of RSS in preventing parthanatos, a nonapoptotic form of cell death that is induced by poly (ADP-ribose) polymerase-1 and mediated by the aggresome-like induced structures (ALIS) composed of SQSTM1/p62. We found that sodium tetrasulfide (Na2S4), a donor of RSS, strongly suppressed oxidative stress-dependent ALIS formation and subsequent parthanatos. On the other hand, the inhibitors of the RSS-producing enzymes, such as 3-mercaptopyruvate sulfurtransferase and cystathionine γ-lyase, clearly enhanced ALIS formation and parthanatos. Interestingly, we found that Na2S4 activated heat shock factor 1 by promoting its dissociation from heat shock protein 90, leading to accelerated transcription of HSP70. Considering that the genetic deletion of HSP70 allowed the enhanced ALIS formation, these findings suggest that RSS prevent parthanatos by specifically suppressing ALIS formation through induction of HSP70. Taken together, our results demonstrate a novel mechanism by which RSS prevent cell death, as well as a novel physiological role of RSS in contributing to protein quality control through HSP70 induction, which may lead to better understanding of the bioactivity of RSS.


Asunto(s)
Parthanatos , Proteína Sequestosoma-1/metabolismo , Estrés Oxidativo , Muerte Celular , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Azufre/metabolismo
5.
Int J Mol Sci ; 25(2)2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38255846

RESUMEN

PC12 cells, which are derived from rat adrenal pheochromocytoma cells, are widely used for the study of neuronal differentiation. NGF induces neuronal differentiation in PC12 cells by activating intracellular pathways via the TrkA receptor, which results in elongated neurites and neuron-like characteristics. Moreover, the differentiation requires both the ERK1/2 and p38 MAPK pathways. In addition to NGF, BMPs can also induce neuronal differentiation in PC12 cells. BMPs are part of the TGF-ß cytokine superfamily and activate signaling pathways such as p38 MAPK and Smad. However, the brief lifespan of NGF and BMPs may limit their effectiveness in living organisms. Although PC12 cells are used to study the effects of various physical stimuli on neuronal differentiation, the development of new methods and an understanding of the molecular mechanisms are ongoing. In this comprehensive review, we discuss the induction of neuronal differentiation in PC12 cells without relying on NGF, which is already established for electrical, electromagnetic, and thermal stimulation but poses a challenge for mechanical, ultrasound, and light stimulation. Furthermore, the mechanisms underlying neuronal differentiation induced by physical stimuli remain largely unknown. Elucidating these mechanisms holds promise for developing new methods for neural regeneration and advancing neuroregenerative medical technologies using neural stem cells.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Animales , Ratas , Células PC12 , Diferenciación Celular , Estimulación Física , Proteínas Quinasas p38 Activadas por Mitógenos
6.
Arch Toxicol ; 97(7): 1887-1897, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37193757

RESUMEN

We previously found that methylmercury induces expression of oncostatin M (OSM), which is released extracellularly and binds to tumor necrosis factor receptor 3 (TNFR3), possibly enhancing its own toxicity. However, the mechanism by which methylmercury causes OSM to bind to TNFR3 rather than to its known receptors, OSM receptor and LIFR, is unknown. In this study, we aimed to elucidate the effect of methylmercury modification of cysteine residues in OSM on binding to TNFR3. Immunostaining of TNFR3-V5-expressing cells suggested that methylmercury promoted binding of OSM to TNFR3 on the cell membrane. In an in vitro binding assay, OSM directly bound to the extracellular domain of TNFR3, and this binding was promoted by methylmercury. Additionally, the formation of a disulfide bond in the OSM molecule was essential for the binding of both proteins, and LC/MS analysis revealed that methylmercury directly modified the 105th cysteine residue (Cys105) in OSM. Next, mutant OSM, in which Cys105 was replaced by serine or methionine, increased the binding to TNFR3, and a similar effect was observed in immunoprecipitation using cultured cells. Furthermore, cell proliferation was inhibited by treatment with Cys105 mutant OSMs compared with wildtype OSM, and this effect was cancelled by TNFR3 knockdown. In conclusion, we revealed a novel mechanism of methylmercury toxicity, in which methylmercury directly modifies Cys105 in OSM, thereby inhibiting cell proliferation via promoting binding to TNFR3. This indicates a chemical disruption in the interaction between the ligand and the receptor is a part of methylmercury toxicity.


Asunto(s)
Cisteína , Compuestos de Metilmercurio , Oncostatina M/química , Oncostatina M/metabolismo , Compuestos de Metilmercurio/toxicidad , Receptores del Factor de Necrosis Tumoral , Proliferación Celular
7.
Nat Immunol ; 11(1): 70-5, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19898473

RESUMEN

Balanced production of type I interferons and proinflammatory cytokines after engagement of Toll-like receptors (TLRs), which signal through adaptors containing a Toll-interleukin 1 receptor (TIR) domain, such as MyD88 and TRIF, has been proposed to control the pathogenesis of autoimmune disease and tumor responses to inflammation. Here we show that TRAF3, a ubiquitin ligase that interacts with both MyD88 and TRIF, regulated the production of interferon and proinflammatory cytokines in different ways. Degradative ubiquitination of TRAF3 during MyD88-dependent TLR signaling was essential for the activation of mitogen-activated protein kinases (MAPKs) and production of inflammatory cytokines. In contrast, TRIF-dependent signaling triggered noncanonical TRAF3 self-ubiquitination that activated the interferon response. Inhibition of degradative ubiquitination of TRAF3 prevented the expression of all proinflammatory cytokines without affecting the interferon response.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Citocinas/metabolismo , Interferón Tipo I/metabolismo , Factor 3 Asociado a Receptor de TNF/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Línea Celular , Citocinas/genética , Regulación de la Expresión Génica/efectos de los fármacos , Immunoblotting , Mediadores de Inflamación/metabolismo , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Fosforilación , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factor 3 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Receptor Toll-Like 4/metabolismo , Ubiquitinación
8.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36077459

RESUMEN

Liver kinase B1 (LKB1) is a serine/threonine protein kinase that acts as a key tumor suppressor protein by activating its downstream kinases, such as AMP-activated protein kinase (AMPK). However, the regulatory actions of LKB1 and AMPK on DNA damage response (DDR) remain to be explored. In this study, we investigated the function of LKB1 in DDR induced by cisplatin, a representative DNA-damaging agent, and found that LKB1 stabilizes and activates p53 through the c-Jun N-terminal kinase (JNK) pathway, which promotes cisplatin-induced apoptosis in human fibrosarcoma cell line HT1080. On the other hand, we found that AMPKα1 and α2 double knockout (DKO) cells showed enhanced stabilization of p53 and increased susceptibility to apoptosis induced by cisplatin, suggesting that AMPK negatively regulates cisplatin-induced apoptosis. Moreover, the additional stabilization of p53 and subsequent apoptosis in AMPK DKO cells were clearly canceled by the treatment with the antioxidants, raising the possibility that AMPK suppresses the p53 activation mediated by oxidative stress. Thus, our findings unexpectedly demonstrate the reciprocal regulation of p53 by LKB1 and AMPK in DDR, which provides insights into the molecular mechanisms of DDR.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP , Cisplatino , Daño del ADN , Quinasas de la Proteína-Quinasa Activada por el AMP/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis , Línea Celular Tumoral , Cisplatino/metabolismo , Cisplatino/farmacología , Humanos , Fosforilación , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
9.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36555248

RESUMEN

This study evaluated the mechanism of temperature-controlled repeated thermal stimulation (TRTS)-mediated neuronal differentiation. We assessed the effect of SP600125, a c-Jun N-terminal kinase (JNK) inhibitor, on neuronal differentiation of rat PC12-P1F1 cells, which can differentiate into neuron-like cells by exposure to TRTS or neurotrophic factors, including bone morphogenetic protein (BMP) 4. We evaluated neuritogenesis by incubating the cells under conditions of TRTS and/or SP600125. Cotreatment with SP600125 significantly enhanced TRTS-mediated neuritogenesis, whereas that with other selective mitogen-activated protein kinase (MAPK) inhibitors did not-e.g., extracellular signal-regulated kinase (ERK)1/2 inhibitor U0126, and p38 MAPK inhibitor SB203580. We tried to clarify the mechanism of SP600125 action by testing the effect of U0126 and the BMP receptor inhibitor LDN193189 on the SP600125-mediated enhancement of intracellular signaling. SP600125-enhanced TRTS-induced neuritogenesis was significantly inhibited by U0126 or LDN193189. Gene expression analysis revealed that TRTS significantly increased ß3-Tubulin, MKK3, and Smad7 gene expressions. Additionally, Smad6 and Smad7 gene expressions were substantially attenuated through SP600125 co-treatment during TRTS. Therefore, SP600125 may partly enhance TRTS-induced neuritogenesis by attenuating the negative feedback loop of BMP signaling. Further investigation of the mechanisms underlying the effect of SP600125 during TRTS-mediated neuritogenesis may contribute to the future development of regenerative neuromedicine.


Asunto(s)
Butadienos , Proyección Neuronal , Animales , Ratas , Butadienos/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Células PC12 , Temperatura
10.
Mol Cell ; 52(1): 75-86, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24076220

RESUMEN

Zinc is an essential trace element, and impaired zinc homeostasis is implicated in the pathogenesis of various human diseases. However, the mechanisms cells use to respond to zinc deficiency are poorly understood. We previously reported that amyotrophic lateral sclerosis (ALS)-linked pathogenic mutants of SOD1 cause chronic endoplasmic reticulum (ER) stress through specific interactions with Derlin-1, which is a component of the ER-associated degradation machinery. Moreover, we recently demonstrated that this interaction is common to ALS-linked SOD1 mutants, and wild-type SOD1 (SOD1(WT)) comprises a masked Derlin-1 binding region (DBR). Here, we found that, under zinc-deficient conditions, SOD1(WT) adopts a mutant-like conformation that exposes the DBR and induces the homeostatic ER stress response, including the inhibition of protein synthesis and induction of a zinc transporter. We conclude that SOD1 has a function as a molecular switch that activates the ER stress response, which plays an important role in cellular homeostasis under zinc-deficient conditions.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico/enzimología , Superóxido Dismutasa/metabolismo , Zinc/deficiencia , Sitios de Unión , Proteínas de Transporte de Catión/metabolismo , Células HEK293 , Células HeLa , Células Hep G2 , Homeostasis , Humanos , Proteínas de la Membrana/metabolismo , Unión Proteica , Conformación Proteica , Interferencia de ARN , Transducción de Señal , Relación Estructura-Actividad , Superóxido Dismutasa/química , Superóxido Dismutasa/genética , Superóxido Dismutasa-1 , Factores de Tiempo , Transfección , Regulación hacia Arriba
11.
Int J Mol Sci ; 22(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071450

RESUMEN

Receptor-interacting protein kinase 1 (RIPK1) is a key component of the tumor necrosis factor (TNF) receptor signaling complex that regulates both pro- and anti-apoptotic signaling. The reciprocal functions of RIPK1 in TNF signaling are determined by the state of the posttranslational modifications (PTMs) of RIPK1. However, the underlying mechanisms associated with the PTMs of RIPK1 are unclear. In this study, we found that RING finger protein 4 (RNF4), a RING finger E3 ubiquitin ligase, is required for the RIPK1 autophosphorylation and subsequent cell death. It has been reported that RNF4 negatively regulates TNF-α-induced activation of the nuclear factor-κB (NF-κB) through downregulation of transforming growth factor ß-activated kinase 1 (TAK1) activity, indicating the possibility that RNF4-mediated TAK1 suppression results in enhanced sensitivity to cell death. However, interestingly, RNF4 was needed to induce RIPK1-mediated cell death even in the absence of TAK1, suggesting that RNF4 can promote RIPK1-mediated cell death without suppressing the TAK1 activity. Thus, these observations reveal the existence of a novel mechanism whereby RNF4 promotes the autophosphorylation of RIPK1, which provides a novel insight into the molecular basis for the PTMs of RIPK1.


Asunto(s)
Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Factores de Transcripción/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Adolescente , Animales , Apoptosis/efectos de los fármacos , Caspasa 8/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Células Cultivadas , Embrión de Mamíferos/citología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Immunoblotting , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones Noqueados , Fosforilación , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética
12.
Nat Immunol ; 9(12): 1364-70, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18997792

RESUMEN

The adaptor and signaling proteins TRAF2, TRAF3, cIAP1 and cIAP2 may inhibit alternative nuclear factor-kappaB (NF-kappaB) signaling in resting cells by targeting NF-kappaB-inducing kinase (NIK) for ubiquitin-dependent degradation, thus preventing processing of the NF-kappaB2 precursor protein p100 to release p52. However, the respective functions of TRAF2 and TRAF3 in NIK degradation and activation of alternative NF-kappaB signaling have remained elusive. We now show that CD40 or BAFF receptor activation result in TRAF3 degradation in a cIAP1-cIAP2- and TRAF2-dependent way owing to enhanced cIAP1, cIAP2 TRAF3-directed ubiquitin ligase activity. Receptor-induced activation of cIAP1 and cIAP2 correlated with their K63-linked ubiquitination by TRAF2. Degradation of TRAF3 prevented association of NIK with the cIAP1-cIAP2-TRAF2 ubiquitin ligase complex, which resulted in NIK stabilization and NF-kappaB2-p100 processing. Constitutive activation of this pathway causes perinatal lethality and lymphoid defects.


Asunto(s)
Proteínas Serina-Treonina Quinasas/inmunología , Transducción de Señal/inmunología , Factor 2 Asociado a Receptor de TNF/inmunología , Factor 3 Asociado a Receptor de TNF/inmunología , Ubiquitinación/inmunología , Animales , Linfocitos B/inmunología , Citometría de Flujo , Humanos , Immunoblotting , Inmunohistoquímica , Proteínas Inhibidoras de la Apoptosis/inmunología , Proteínas Inhibidoras de la Apoptosis/metabolismo , Secuencias Invertidas Repetidas , Ratones , Ratones Mutantes , Proteínas Serina-Treonina Quinasas/metabolismo , Linfocitos T/inmunología , Factor 2 Asociado a Receptor de TNF/genética , Factor 2 Asociado a Receptor de TNF/metabolismo , Factor 3 Asociado a Receptor de TNF/genética , Factor 3 Asociado a Receptor de TNF/metabolismo , Quinasa de Factor Nuclear kappa B
13.
Biol Pharm Bull ; 43(10): 1562-1569, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32999166

RESUMEN

trans-Fatty acids (TFAs) are unsaturated fatty acids with at least one carbon-carbon double bond in trans configuration. TFA consumption has been epidemiologically associated with neurodegenerative diseases (NDs) including Alzheimer's disease. However, the underlying mechanisms of TFA-related NDs remain unknown. Here, we show a novel microglial signaling pathway that induces inflammation and cell death, which is dramatically enhanced by elaidic acid (EA), the most abundant TFA derived from food. We found that extracellular ATP, one of the damage-associated molecular patterns (DAMPs) leaked from injured cells, induced activation of the apoptosis signal-regulating kinase 1 (ASK1)-p38 pathway, which is one of the major stress-responsive mitogen-activated protein (MAP) kinase signaling pathways, and subsequent caspase-3 cleavage and DNA ladder formation (hallmarks of apoptosis) in mouse microglial cell lines including BV2 and MG6 cells. Furthermore, we found that in these microglial cell lines, EA, but not its cis isomer oleic acid, facilitated extracellular ATP-induced ASK1/p38 activation and apoptosis, which was suppressed by pharmacological inhibition of either p38, reactive oxygen species (ROS) generation, P2X purinoceptor 7 (P2X7), or Ca2+/calmodulin-dependent kinase II (CaMKII). These results demonstrate that in microglial cells, extracellular ATP induces activation of the ASK1-p38 MAP kinase pathway and ultimately apoptosis downstream of P2X7 receptor and ROS generation, and that EA promotes ATP-induced apoptosis through CaMKII-dependent hyperactivation of the ASK1-p38 pathway, in the same manner as in macrophages. Our study may provide an insight into the pathogenesis of NDs associated with TFAs.


Asunto(s)
Adenosina Trifosfato/administración & dosificación , MAP Quinasa Quinasa Quinasa 5/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Microglía/efectos de los fármacos , Ácidos Oléicos/administración & dosificación , Especies Reactivas de Oxígeno/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Línea Celular , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Líquido Extracelular/efectos de los fármacos , Líquido Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Microglía/metabolismo
14.
J Obstet Gynaecol Res ; 46(2): 302-309, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31922309

RESUMEN

AIM: The cryopreservation of embryos is essential for assisted reproductive technology field. The aim of the present study is to examine the efficacy and ease of use of a new vitrification device, Kitasato Vitrification System (KVS), in cryopreservation of human embryos. METHODS: Human embryos at the cleavage or blastocyst stage were vitrified and warmed by KVS or Cryotop (control device). The survival of cleavage- and blastocyst-stage embryos and the developmental competence of cleavage-stage embryos were evaluated. Four individuals inexperienced in vitrification and warming embryos tested both KVS and Cryotop. The vitrification time and the detachment time of the embryos were evaluated. RESULTS: At the cleavage stage, there were no significant differences in the survival rate and the development rate to the blastocyst stage between KVS and Cryotop (100 vs 96.8% and 63.3 vs 61.3%, respectively). At the blastocyst stage, there was no significant difference in the re-expansion rate between KVS and Cryotop (100 vs 88.9%). The vitrification time was shorter for KVS than Cryotop. There was no significant difference in the detachment time between KVS and Cryotop. CONCLUSION: Kitasato Vitrification System is easy to operate, even for inexperienced users, and the viability of human embryos vitrified by KVS is comparable to that of Cryotop, a widely used vitrification device.


Asunto(s)
Criopreservación/instrumentación , Embrión de Mamíferos , Vitrificación , Adulto , Desarrollo Embrionario , Femenino , Humanos
15.
Int J Mol Sci ; 21(24)2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33327477

RESUMEN

It is known that a wide variety of antibacterial agents stimulate generation of reactive oxygen species (ROS) in mammalian cells. However, its mechanisms are largely unknown. In this study, we unexpectedly found that transforming growth factor-ß (TGF-ß)-activated kinase 1 (TAK1) is involved in the generation of mitochondrial ROS (mtROS) initiated by cefotaxime (CTX), one of specific antibacterial cephalosporins that can trigger oxidative stress-induced cell death. TAK1-deficient macrophages were found to be sensitive to oxidative stress-induced cell death stimulated by H2O2. Curiously, however, TAK1-deficient macrophages exhibited strong resistance to oxidative stress-induced cell death stimulated by CTX. Microscopic analysis revealed that CTX-induced ROS generation was overridden by knockout or inhibition of TAK1, suggesting that the kinase activity of TAK1 is required for CTX-induced ROS generation. Interestingly, pharmacological blockade of the TAK1 downstream pathways, such as nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, did not affect the CTX-induced ROS generation. In addition, we observed that CTX promotes translocation of TAK1 to mitochondria. Together, these observations suggest that mitochondrial TAK1 mediates the CTX-induced mtROS generation through noncanonical mechanisms. Thus, our data demonstrate a novel and atypical function of TAK1 that mediates mtROS generation triggered by the specific cephalosporins.


Asunto(s)
Cefalosporinas/farmacología , Quinasas Quinasa Quinasa PAM/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Antibacterianos/farmacología , Western Blotting , Cefotaxima/farmacología , Supervivencia Celular/efectos de los fármacos , MAP Quinasa Quinasa Quinasa 5/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos
16.
Int J Mol Sci ; 21(21)2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33171774

RESUMEN

Neuritogenesis is the process underling nervous system regeneration; however, optimal extracellular signals that can promote neuronal regenerative activities require further investigation. Previously, we developed a novel method for inducing neuronal differentiation in rat PC12 cells using temperature-controlled repeated thermal stimulation (TRTS) with a heating plate. Based on neurogenic sensitivity to TRTS, PC12 cells were classified as either hyper- or hyposensitive. In this study, we aimed to investigate the mechanism of hyposensitivity by establishing two PC12-derived subclones according to TRTS sensitivity during differentiation: PC12-P1F1, a hypersensitive subclone, and PC12-P1D10, a hyposensitive subclone. To characterize these subclones, cell size and neuritogenesis were evaluated in subclones treated with nerve growth factor (NGF), bone morphogenetic protein (BMP), or various TRTS. No significant differences in cell size were observed among the parental cells and subclones. BMP4- or TRTS-induced neuritogenesis was increased in PC12-P1F1 cells compared to that in the parental cells, while no neuritogenesis was observed in PC12-P1D10 cells. In contrast, NGF-induced neuritogenesis was observed in all three cell lines. Furthermore, a BMP inhibitor, LDN-193189, considerably inhibited TRTS-induced neuritogenesis. These results suggest that the BMP pathway might be required for TRTS-induced neuritogenesis, demonstrating the useful aspects of these novel subclones for TRTS research.


Asunto(s)
Regeneración Nerviosa/fisiología , Células PC12/metabolismo , Sensación Térmica/fisiología , Animales , Diferenciación Celular/fisiología , Neuritas/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Células PC12/fisiología , Ratas , Temperatura
17.
J Pharmacol Exp Ther ; 371(3): 590-601, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31533970

RESUMEN

Pregnane X receptor (PXR), a xenobiotic-responsive nuclear receptor, plays key roles in drug disposition. PXR activation induces liver hypertrophy in rodents, but the molecular mechanism of this effect remains unclear, although the PXR-mediated induction of cytochrome P450s (P450s) is proposed to be involved. Since yes-associated protein (YAP), an effector protein of the Hippo pathway, functions as a transcriptional cofactor that controls organ size via TEA domain family members (TEADs) or other transcription factors, we investigated the functional interaction of PXR with YAP in liver hypertrophy and drug metabolism in this study. The treatment of mice with a PXR activator induced liver hypertrophy, promoted nuclear YAP accumulation, and increased the expression of YAP/TEAD target genes in the liver, suggesting the coactivation of PXR and YAP. Through chronological analyses of this in vivo model, no clear association between PXR-dependent liver hypertrophy and P450 induction was observed. In reporter assays, ligand-activated PXR enhanced YAP-mediated gene transcription, whereas YAP overexpression inhibited PXR-dependent gene transcription. No clear species differences in these transcriptional interactions between humans and mice were observed. Furthermore, in human hepatocarcinoma and primary hepatocyte-like cells, YAP suppressed the expression of liver-enriched transcription factors, including hepatocyte nuclear factor 4α, PXR, the constitutive androstane receptor, and their target genes. These results suggest that YAP is involved in PXR-induced liver hypertrophy and that YAP activation interferes with gene expression associated with various liver functions. SIGNIFICANCE STATEMENT: We have investigated the functional interaction between PXR and YAP, an effector protein of the Hippo pathway. PXR plays central roles in various liver functions including drug metabolism, and the Hippo pathway and YAP regulate organ size through interacting with several transcription factors, including TEADs. Our results suggest that YAP is involved in PXR-mediated liver hypertrophy and that YAP activation interferes with the expression of liver-enriched transcription factors and thus drug-metabolizing enzymes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Hepatomegalia/metabolismo , Hígado/metabolismo , Receptor X de Pregnano/metabolismo , Xenobióticos/farmacología , Animales , Células Cultivadas , Sistema Enzimático del Citocromo P-450/metabolismo , Células Hep G2 , Humanos , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor X de Pregnano/efectos de los fármacos , Proteínas Señalizadoras YAP
18.
Cryobiology ; 88: 9-14, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31034811

RESUMEN

Several closed vitrification devices that avoid contact with liquid nitrogen have been reported. Recently, based on the Kitasato Vitrification System (KVS), we developed the Closed-KVS, which is a closed vitrification device. The KVS is an open vitrification device that can absorb excess vitrification solution. In this study, we performed two experiments to evaluate the efficacy of the Closed-KVS as a vitrification device for the cryopreservation of mouse embryos at the blastocyst and two-cell stage. In the first experiment, the blastocysts were vitrified using either the Closed-KVS or the KVS (control device). The survival, re-expansion, and hatching rates were not significantly different between embryos vitrified using the Closed-KVS and those vitrified using the KVS. In the second experiment, we evaluated the embryonic development of the two-cell stage embryos vitrified using the Closed-KVS. There were no significant differences in the survival, blastocyst formation, or hatching rates between vitrified or non-vitrified embryos. Additionally, we evaluated the cooling and warming rates of these devices using a numerical simulation method. The cooling rates of the Closed-KVS were similar regardless of whether the outer cap was pre-cooled and were lower than those of the KVS. However, the warming rates of the Closed-KVS (irrespective of cap pre-cooling) were the same as those of the KVS (612,000 °C/min). In summary, the Closed-KVS is a novel closed vitrification device for the cryopreservation of mouse embryos at the blastocyst and two-cell stage.


Asunto(s)
Blastocisto/fisiología , Criopreservación/métodos , Crioprotectores/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Vitrificación , Animales , Frío , Femenino , Ratones , Transición de Fase , Embarazo
19.
J Biol Chem ; 292(20): 8174-8185, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28360100

RESUMEN

Food-borne trans-fatty acids (TFAs) are mainly produced as byproducts during food manufacture. Recent epidemiological studies have revealed that TFA consumption is a major risk factor for various disorders, including atherosclerosis. However, the underlying mechanisms in this disease etiology are largely unknown. Here we have shown that TFAs potentiate activation of apoptosis signal-regulating kinase 1 (ASK1) induced by extracellular ATP, a damage-associated molecular pattern leaked from injured cells. Major food-associated TFAs such as elaidic acid (EA), linoelaidic acid, and trans-vaccenic acid, but not their corresponding cis isomers, dramatically enhanced extracellular ATP-induced apoptosis, accompanied by elevated activation of the ASK1-p38 pathway in a macrophage-like cell line, RAW264.7. Moreover, knocking out the ASK1-encoding gene abolished EA-mediated enhancement of apoptosis. We have reported previously that extracellular ATP induces apoptosis through the ASK1-p38 pathway activated by reactive oxygen species generated downstream of the P2X purinoceptor 7 (P2X7). However, here we show that EA did not increase ATP-induced reactive oxygen species generation but, rather, augmented the effects of calcium/calmodulin-dependent kinase II-dependent ASK1 activation. These results demonstrate that TFAs promote extracellular ATP-induced apoptosis by targeting ASK1 and indicate novel TFA-associated pathways leading to inflammatory signal transduction and cell death that underlie the pathogenesis and progression of TFA-induced atherosclerosis. Our study thus provides insight into the pathogenic mechanisms of and proposes potential therapeutic targets for these TFA-related disorders.


Asunto(s)
Apoptosis/efectos de los fármacos , Aterosclerosis/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ácidos Grasos trans/efectos adversos , Adenosina Trifosfato/metabolismo , Animales , Aterosclerosis/inducido químicamente , Aterosclerosis/genética , Aterosclerosis/patología , Humanos , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , MAP Quinasa Quinasa Quinasa 5/genética , Sistema de Señalización de MAP Quinasas/genética , Ratones , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Ácidos Grasos trans/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
Arch Biochem Biophys ; 617: 101-105, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27665998

RESUMEN

Reactive oxygen species (ROS) are not only cytotoxic products from external and internal environment, but also important mediators of redox signaling. Therefore, thioredoxin (Trx) as an antioxidant maintains the balance of the thiol-related redox status, and also plays pivotal roles in the regulation of redox signaling. Trx senses and responds to environmental oxidative stress and ROS generated by cellular respiration, metabolism, and immune response, and then modulates the redox status, function, and activity of its target signaling proteins. Dysregulation of such the Trx system affects various cellular functions and cell fate such as survival and cell death, leading to human diseases including cancer and inflammation. This review focuses on Trx and its target proteins involved in redox signaling, which are critical for the control of cell fate such as cell survival and apoptosis, and addresses how Trx regulates those effector proteins and redox signaling.


Asunto(s)
Linaje de la Célula , Transducción de Señal , Tiorredoxinas/metabolismo , Animales , Antioxidantes/química , Apoptosis , Proliferación Celular , Supervivencia Celular , Humanos , Inflamación , MAP Quinasa Quinasa Quinasa 5/metabolismo , Ratones , Oxidación-Reducción , Estrés Oxidativo , Oxígeno/química , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA