RESUMEN
Neuroblasts have a clustered phenotype critical for their unidirectional migration, which in part is dependent on signaling from microvascular endothelial cells (EC) and pericytes (PC). Diffusible signals secreted by vascular cells have been demonstrated to increase survival, proliferation, and differentiation of subventricular zone resident neural stem cells (NSC); however, the signals that promote the necessary initiating step of NSC clustering are undefined. To investigate the role of vascular cells in promoting NSC clustering and directing migration, we created a 3-D hydrogel that mimics the biomechanics, biochemistry, and architectural complexity of brain tissue. We demonstrate that EC, and not PC, have a crucial role in NSC clustering and migration, further verified through microfluidic chamber systems and traction force microscopy. Ablation of the extended NSC aggregate arm halts aggregate movement, suggesting that clustering is a prerequisite for migration. When cultured with EC, NSC clustering occurs and NSC coincidentally increase their expression of N-cadherin, as compared to NSC cultured alone. NSC-presented N-cadherin expression was increased following exposure to EC secreted metalloproteinase-2 (MMP2). We demonstrate that inhibition of MMP2 prevented NSC N-cadherin surface expression and subsequent NSC clustering, even when NSC were in direct contact with EC. Furthermore, with exogenous activation of EGFR, which serves as a downstream activator of N-cadherin cleavage, NSC form clusters. Our results suggest that EC secretion of MMP2 promotes NSC clustering through N-cadherin expression. The insight gained about the mechanisms by which EC promote NSC migration may enhance NSC therapeutic response to sites of injury.
Asunto(s)
Cadherinas/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Células-Madre Neurales/metabolismo , Animales , Cadherinas/genética , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Línea Celular , Movimiento Celular/genética , Movimiento Celular/fisiología , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Hidrogeles/química , Metaloproteinasa 2 de la Matriz/genética , RatonesRESUMEN
Printable electronics for neurotechnology is a rapidly emerging field that leverages various printing techniques to fabricate electronic devices, offering advantages in rapid prototyping, scalability, and cost-effectiveness. These devices have promising applications in neurobiology, enabling the recording of neuronal signals and controlled drug delivery. This review provides an overview of printing techniques, materials used in neural device fabrication, and their applications. The printing techniques discussed include inkjet, screen printing, flexographic printing, 3D printing, and more. Each method has its unique advantages and challenges, ranging from precise printing and high resolution to material compatibility and scalability. Selecting the right materials for printable devices is crucial, considering factors like biocompatibility, flexibility, electrical properties, and durability. Conductive materials such as metallic nanoparticles and conducting polymers are commonly used in neurotechnology. Dielectric materials, like polyimide and polycaprolactone, play a vital role in device fabrication. Applications of printable devices in neurotechnology encompass various neuroprobes, electrocorticography arrays, and microelectrode arrays. These devices offer flexibility, biocompatibility, and scalability, making them cost-effective and suitable for preclinical research. However, several challenges need to be addressed, including biocompatibility, precision, electrical performance, long-term stability, and regulatory hurdles. This review highlights the potential of printable electronics in advancing our understanding of the brain and treating neurological disorders while emphasizing the importance of overcoming these challenges.
RESUMEN
Tissue-resident macrophages play important roles in tissue homeostasis and repair. However, how macrophages monitor and maintain tissue integrity is not well understood. The extracellular matrix (ECM) is a key structural and organizational component of all tissues. Here, we find that macrophages sense the mechanical properties of the ECM to regulate a specific tissue repair program. We show that macrophage mechanosensing is mediated by cytoskeletal remodeling and can be performed in three-dimensional environments through a noncanonical, integrin-independent mechanism analogous to amoeboid migration. We find that these cytoskeletal dynamics also integrate biochemical signaling by colony-stimulating factor 1 and ultimately regulate chromatin accessibility to control the mechanosensitive gene expression program. This study identifies an "amoeboid" mode of ECM mechanosensing through which macrophages may regulate tissue repair and fibrosis.
Asunto(s)
Matriz Extracelular , Macrófagos , Matriz Extracelular/metabolismo , Macrófagos/metabolismo , Citoesqueleto , Integrinas/metabolismo , Transducción de SeñalRESUMEN
Although delivery of neural stem cell (NSC) as a therapeutic treatment for intracerebral hemorrhage (ICH) provides promise, NSC delivery typically has extremely low survival rates. Here, we investigate endothelial cell (EC) and pericyte (PC) interactions with NSC, where our results demonstrate that EC, and not PC, promote NSC cell proliferation and reduce cytotoxicity under glucose deprivation (GD). Additionally, NSC proliferation was increased upon treatment with EC conditioned media, inhibited with antagonism of VEGFR3. In an NSC + EC co-culture we detected elevated levels of VEGF-C, not seen for NSC cultured alone. Exogenous VEGF-C induced NSC upregulation of VEGFR3, promoted proliferation, and reduced cytotoxicity. Finally, we delivered microbeads containing NSC + EC into a murine ICH cavity, where VEGF-C was increasingly present in the injury site, not seen upon delivery NSC encapsulated alone. These studies demonstrate that EC-secreted VEGF-C may promote NSC survival during injury, enhancing the potential for cell delivery therapies for stroke.
Asunto(s)
Células-Madre Neurales , Factor C de Crecimiento Endotelial Vascular , Animales , Diferenciación Celular , Medios de Cultivo Condicionados , Células Endoteliales , RatonesRESUMEN
Intracerebral implantation of neural stem cells (NSCs) to treat stroke remains an inefficient process with <5% of injected cells being retained. To improve the retention and distribution of NSCs after a stroke, we investigated the utility of NSCs' encapsulation in polyethylene glycol (PEG) microspheres. We first characterized the impact of the physical properties of different syringes and needles, as well as ejection speed, upon delivery of microspheres to the stroke injured rat brain. A 20 G needle size at a 10 µL/min flow rate achieved the most efficient microsphere ejection. Secondly, we optimized the delivery vehicles for in vivo implantation of PEG microspheres. The suspension of microspheres in extracellular matrix (ECM) hydrogel showed superior retention and distribution in a cortical stroke caused by photothrombosis, as well as in a striatal and cortical cavity ensuing middle cerebral artery occlusion (MCAo). Thirdly, NSCs or NSCs + endothelial cells (ECs) encapsulated into biodegradable microspheres were implanted into a large stroke cavity. Cells in microspheres exhibited a high viability, survived freezing and transport. Implantation of 110 cells/microsphere suspended in ECM hydrogel produced a highly efficient delivery that resulted in the widespread distribution of NSCs in the tissue cavity and damaged peri-infarct tissues. Co-delivery of ECs enhanced the in vivo survival and distribution of â¼1.1 million NSCs. The delivery of NSCs and ECs can be dramatically improved using microsphere encapsulation combined with suspension in ECM hydrogel. These biomaterial innovations are essential to advance clinical efforts to improve the treatment of stroke using intracerebral cell therapy.
Asunto(s)
Células Endoteliales/efectos de los fármacos , Hidrogeles/farmacología , Microesferas , Células-Madre Neurales/efectos de los fármacos , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Matriz Extracelular/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Polietilenglicoles/farmacología , Accidente Cerebrovascular/metabolismoRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
PURPOSE OF REVIEW: Neural stem cells (NSCs) have the potential to proliferate and differentiate into functional neurons, heightening their potential use for therapeutic applications. This review explores bioengineered systems which recapitulate NSC niche cell-cell and cell-matrix interactions. RECENT FINDINGS: Delivery of NSCs to the cytotoxic injured brain is limited by low cell survival rates post-transplantation and poor maintenance of native niche bioactive components. The use of biomaterial platforms can mimic in vivo the environment of the two germinal areas of the adult brain in which NSCs thrive. An environmental mimic that includes extracellular proteins and moieties, along with appropriate biomechanical cues has recently demonstrated promising results in enhancing neurogenesis, aiding the production of a bioengineered niche. SUMMARY: Biocomposition, biomechanics, and biostructure can be manipulated through engineered platforms to re-create the biofunctionality of an NSC niche. Upon transplantation and delivery with biomimetic scaffolds, NSCs show potential to promote functional recovery and rebuild neural circuitry post neurological trauma.
RESUMEN
Stem cell therapies demonstrate promising results as treatment for neurological disease and injury, owing to their innate ability to enhance endogenous neural tissue repair and promote functional recovery. However, delivery of undifferentiated and viable neuronal stem cells requires an engineered delivery system that promotes integration of transplanted cells into the inflamed and cytotoxic region of damaged tissue. Within the brain, endothelial cells (EC) of the subventricular zone play a critical role in neural stem cell (NSC) maintenance, quiescence and survival. Therefore, here, we describe the use of polyethylene glycol microbeads for the coincident delivery of EC and NSC as a means of enhancing appropriate NSC quiescence and survival during transplantation into the mouse brain. We demonstrate that EC and NSC co-encapsulation maintained NSC quiescence, enhanced NSC viability, and facilitated NSC extravasation in vitro, as compared to NSC encapsulated alone. In addition, co-encapsulated cells delivered to an in vivo non-injury model reduced inflammatory response compared to freely injected NSC. These results suggest the strong potential of a biomimetic engineered niche for NSC delivery into the brain following neurological injury.
Asunto(s)
Encapsulación Celular/métodos , Ventrículos Laterales/cirugía , Microesferas , Células-Madre Neurales/trasplante , Trasplante de Células Madre/métodos , Animales , Diferenciación Celular , Línea Celular , Proliferación Celular , Supervivencia Celular , Células Endoteliales/metabolismo , Ventrículos Laterales/metabolismo , Masculino , Metaloproteinasas de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/fisiología , Neuronas , Polietilenglicoles/química , Recuperación de la Función , Nicho de Células MadreRESUMEN
The basement membrane is a critical component of cellular bilayers that can vary in stiffness, composition, architecture, and porosity. In vitro studies of endothelial-epithelial bilayers have traditionally relied on permeable support models that enable bilayer culture, but permeable supports are limited in their ability to replicate the diversity of human basement membranes. In contrast, hydrogel models that require chemical synthesis are highly tunable and allow for modifications of both the material stiffness and the biochemical composition via incorporation of biomimetic peptides or proteins. However, traditional hydrogel models are limited in functionality because they lack pores for cell-cell contacts and functional in vitro migration studies. Additionally, due to the thickness of traditional hydrogels, incorporation of pores that span the entire thickness of hydrogels has been challenging. In the present study, we use poly-(ethylene-glycol) (PEG) hydrogels and a novel zinc oxide templating method to address the previous shortcomings of biomimetic hydrogels. As a result, we present an ultrathin, basement membrane-like hydrogel that permits the culture of confluent cellular bilayers on a customizable scaffold with variable pore architectures, mechanical properties, and biochemical composition.
Asunto(s)
Membrana Basal/metabolismo , Materiales Biomiméticos/química , Biomimética/métodos , Técnicas de Cultivo de Célula/métodos , Hidrogeles/química , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Polietilenglicoles/químicaRESUMEN
Electrospinning has emerged as a simple, elegant, and scalable technique that can be used to fabricate polymeric nanofibers. Pure polymers as well as blends and composites of both natural and synthetic ones have been successfully electrospun into nanofiber matrices for many biomedical applications. Tissue-engineered medical implants, such as polymeric nanofiber scaffolds, are potential alternatives to autografts and allografts, which are short in supply and carry risks of disease transmission. These scaffolds have been used to engineer various soft tissues, including connective tissues, such as skin, ligament, and tendon, as well as nonconnective ones, such as vascular, muscle, and neural tissue. Electrospun nanofiber matrices show morphological similarities to the natural extracellular matrix (ECM), characterized by ultrafine continuous fibers, high surface-to-volume ratios, high porosities, and variable pore-size distributions. The physiochemical properties of nanofiber matrices can be controlled by manipulating electrospinning parameters so that they meet the requirements of a specific application.Nanostructured implants show improved biological performance over bulk materials in aspects of cellular infiltration and in vivo integration, taking advantage of unique quantum, physical, and atomic properties. Furthermore, the topographies of such scaffolds has been shown to dictate cellular attachment, migration, proliferation, and differentiation, which are critical in engineering complex functional tissues with improved biocompatibility and functional performance. This chapter discusses the use of the electrospinning technique in the fabrication of polymer nanofiber scaffolds utilized for the regeneration of soft tissues. Selected scaffolds will be seeded with human mesenchymal stem cells (hMSCs), imaged using scanning electron and confocal microscopy, and then evaluated for their mechanical properties as well as their abilities to promote cell adhesion, proliferation , migration, and differentiation.