Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Neurosci ; 44(19)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38575342

RESUMEN

The histone lysine demethylase KDM5B is implicated in recessive intellectual disability disorders, and heterozygous, protein-truncating variants in KDM5B are associated with reduced cognitive function in the population. The KDM5 family of lysine demethylases has developmental and homeostatic functions in the brain, some of which appear to be independent of lysine demethylase activity. To determine the functions of KDM5B in hippocampus-dependent learning and memory, we first studied male and female mice homozygous for a Kdm5b Δ ARID allele that lacks demethylase activity. Kdm5b Δ ARID/ Δ ARID mice exhibited hyperactivity and long-term memory deficits in hippocampus-dependent learning tasks. The expression of immediate early, activity-dependent genes was downregulated in these mice and hyperactivated upon a learning stimulus compared with wild-type (WT) mice. A number of other learning-associated genes were also significantly dysregulated in the Kdm5b Δ ARID/ Δ ARID hippocampus. Next, we knocked down Kdm5b specifically in the adult, WT mouse hippocampus with shRNA. Kdm5b knockdown resulted in spontaneous seizures, hyperactivity, and hippocampus-dependent long-term memory and long-term potentiation deficits. These findings identify KDM5B as a critical regulator of gene expression and synaptic plasticity in the adult hippocampus and suggest that at least some of the cognitive phenotypes associated with KDM5B gene variants are caused by direct effects on memory consolidation mechanisms.


Asunto(s)
Hipocampo , Discapacidad Intelectual , Histona Demetilasas con Dominio de Jumonji , Consolidación de la Memoria , Memoria a Largo Plazo , Animales , Hipocampo/metabolismo , Ratones , Masculino , Femenino , Discapacidad Intelectual/genética , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Consolidación de la Memoria/fisiología , Memoria a Largo Plazo/fisiología , Potenciación a Largo Plazo/genética , Potenciación a Largo Plazo/fisiología , Ratones Endogámicos C57BL , Proteínas de Unión al ADN
2.
Acta Neuropathol ; 146(5): 663-683, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37656188

RESUMEN

Microglia are the brain's resident macrophages, which guide various developmental processes crucial for brain maturation, activity, and plasticity. Microglial progenitors enter the telencephalic wall by the 4th postconceptional week and colonise the fetal brain in a manner that spatiotemporally tracks key neurodevelopmental processes in humans. However, much of what we know about how microglia shape neurodevelopment comes from rodent studies. Multiple differences exist between human and rodent microglia warranting further focus on the human condition, particularly as microglia are emerging as critically involved in the pathological signature of various cognitive and neurodevelopmental disorders. In this article, we review the evidence supporting microglial involvement in basic neurodevelopmental processes by focusing on the human species. We next concur on the neuropathological evidence demonstrating whether and how microglia contribute to the aetiology of two neurodevelopmental disorders: autism spectrum conditions and schizophrenia. Next, we highlight how recent technologies have revolutionised our understanding of microglial biology with a focus on how these tools can help us elucidate at unprecedented resolution the links between microglia and neurodevelopmental disorders. We conclude by reviewing which current treatment approaches have shown most promise towards targeting microglia in neurodevelopmental disorders and suggest novel avenues for future consideration.


Asunto(s)
Trastorno del Espectro Autista , Trastornos del Neurodesarrollo , Humanos , Microglía/patología , Trastornos del Neurodesarrollo/patología , Macrófagos/patología , Neuropatología , Encéfalo/patología
3.
Brain Behav Immun ; 114: 488-499, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37717669

RESUMEN

The aetiology of autism spectrum disorder (ASD) is complex and, partly, accounted by genetic factors. Nonetheless, the genetic underpinnings of ASD are poorly defined. The presence of immune dysregulations in autistic individuals, and their families, supports a role of the immune system and its genetic regulators. Albeit immune responses belong either to the innate or adaptive arms, the overall immune system genetics is broad, and encompasses a multitude of functionally heterogenous pathways which may have different influences on ASD. Hence, to gain insights on the immunogenetic underpinnings of ASD, we conducted a systematic literature review of previous immune genetic and transcription studies in ASD. We defined a list of immune genes relevant to ASD and explored their neuro-immune function. Our review confirms the presence of immunogenetic variability in ASD, accounted by inherited variations of innate and adaptive immune system genes and genetic expression changes in the blood and post-mortem brain of autistic individuals. Besides their immune function, the identified genes control neurodevelopment processes (neuronal and synaptic plasticity) and are highly expressed in pre/peri-natal periods. Hence, our synthesis bolsters the hypothesis that perturbation in immune genes may contribute to ASD by derailing the typical trajectory of neurodevelopment. Our review also helped identifying some of the limitations of prior immunogenetic research in ASD. Thus, alongside clarifying the neurodevelopment role of immune genes, we outline key considerations for future work into the aetiology of ASD and possible novel intervention targets.

4.
Brain Behav Immun ; 110: 43-59, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36781081

RESUMEN

BACKGROUND: Prenatal exposure to elevated interleukin (IL)-6 levels is associated with increased risk for psychiatric disorders with a putative neurodevelopmental origin, such as schizophrenia (SZ), autism spectrum condition (ASC) and bipolar disorder (BD). Although rodent models provide causal evidence for this association, we lack a detailed understanding of the cellular and molecular mechanisms in human model systems. To close this gap, we characterized the response of human induced pluripotent stem cell (hiPSC-)derived microglia-like cells (MGL) and neural progenitor cells (NPCs) to IL-6 in monoculture. RESULTS: We observed that human forebrain NPCs did not respond to acute IL-6 exposure in monoculture at both protein and transcript levels due to the absence of IL6R expression and soluble (s)IL6Ra secretion. By contrast, acute IL-6 exposure resulted in STAT3 phosphorylation and increased IL6, JMJD3 and IL10 expression in MGL, confirming activation of canonical IL6Ra signaling. Bulk RNAseq identified 156 up-regulated genes (FDR < 0.05) in MGL following acute IL-6 exposure, including IRF8, REL, HSPA1A/B and OXTR, which significantly overlapped with an up-regulated gene set from human post-mortem brain tissue from individuals with schizophrenia. Acute IL-6 stimulation significantly increased MGL motility, consistent with gene ontology pathways highlighted from the RNAseq data and replicating rodent model indications that IRF8 regulates microglial motility. Finally, IL-6 induces MGLs to secrete CCL1, CXCL1, MIP-1α/ß, IL-8, IL-13, IL-16, IL-18, MIF and Serpin-E1 after 3 h and 24 h. CONCLUSION: Our data provide evidence for cell specific effects of acute IL-6 exposure in a human model system, ultimately suggesting that microglia-NPC co-culture models are required to study how IL-6 influences human cortical neural progenitor cell development in vitro.


Asunto(s)
Interleucina-6 , Microglía , Células-Madre Neurales , Receptores de Interleucina-6 , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Factores Reguladores del Interferón/metabolismo , Interleucina-6/efectos adversos , Interleucina-6/metabolismo , Interleucina-6/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Receptores de Interleucina-6/metabolismo
5.
Brain Behav Immun ; 97: 410-422, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34352366

RESUMEN

Neurogenesis, the process in which new neurons are generated, occurs throughout life in the mammalian hippocampus. Decreased adult hippocampal neurogenesis (AHN) is a common feature across psychiatric disorders, including schizophrenia, depression- and anxiety-related behaviours, and is highly regulated by environmental influences. Epidemiological studies have consistently implicated maternal immune activation (MIA) during neurodevelopment as a risk factor for psychiatric disorders in adulthood. The extent to which the reduction of hippocampal neurogenesis in adulthood may be driven by early life exposures, such as MIA, is however unclear. We therefore reviewed the literature for evidence of the involvement of MIA in disrupting AHN. Consistent with our hypothesis, data from both in vivo murine and in vitro human models of AHN provide evidence for key roles of specific cytokines induced by MIA in the foetal brain in disrupting hippocampal neural progenitor cell proliferation and differentiation early in development. The precise molecular mechanisms however remain unclear. Nonetheless, these data suggest a potential latent vulnerability mechanism, whereby MIA primes dysfunction in the unique hippocampal pool of neural stem/progenitor cells. This renders offspring potentially more susceptible to additional environmental exposures later in life, such as chronic stress, resulting in the unmasking of psychopathology. We highlight the need for studies to test this hypothesis using validated animal models of MIA, but also to test the relevance of such data for human pathology at a molecular basis through the use of patient-derived induced pluripotent stem cells (hiPSC) differentiated into hippocampal progenitor cells.


Asunto(s)
Hipocampo , Neurogénesis , Adulto , Animales , Trastornos de Ansiedad , Diferenciación Celular , Humanos , Ratones , Neuronas
6.
Front Psychiatry ; 13: 836217, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186864

RESUMEN

Human epidemiological data links maternal immune activation (MIA) during gestation with increased risk for psychiatric disorders with a putative neurodevelopmental origin, including schizophrenia and autism. Animal models of MIA provide evidence for this association and suggest that inflammatory cytokines represent one critical link between maternal infection and any potential impact on offspring brain and behavior development. However, to what extent specific cytokines are necessary and sufficient for these effects remains unclear. It is also unclear how specific cytokines may impact the development of specific cell types. Using a human cellular model, we recently demonstrated that acute exposure to interferon-γ (IFNγ) recapitulates molecular and cellular phenotypes associated with neurodevelopmental disorders. Here, we extend this work to test whether IFNγ can impact the development of immature glutamatergic neurons using an induced neuronal cellular system. We find that acute exposure to IFNγ activates a signal transducer and activator of transcription 1 (STAT1)-pathway in immature neurons, and results in significantly increased major histocompatibility complex I (MHCI) expression at the mRNA and protein level. Furthermore, acute IFNγ exposure decreased synapsin I/II protein in neurons but did not affect the expression of synaptic genes. Interestingly, complement component 4A (C4A) gene expression was significantly increased following acute IFNγ exposure. This study builds on our previous work by showing that IFNγ-mediated disruption of relevant synaptic proteins can occur at early stages of neuronal development, potentially contributing to neurodevelopmental disorder phenotypes.

7.
FEBS J ; 288(24): 7143-7161, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33410283

RESUMEN

Hypoxia has a significant impact on many physiological and pathological processes. Over the recent years, its role in modulation of epigenetic remodelling has also become clearer. In cancer, low oxygen environments and aberrant epigenomes often go hand in hand, and changes in DNA methylation are now commonly recognised as potential outcome indicators. TET (ten-eleven translocation) family enzymes are alpha-ketoglutarate-, iron- and oxygen-dependent DNA demethylases and are key players in these processes. Although TETs have historically been considered tumour suppressors, recent studies suggest that their functions in cancer might not be straightforward. Recently, inhibition of TETs has been reported to have positive impact in cancer immunotherapy and vaccination studies. This underlines the current interest in developing targeted pharmaceutical inhibitors of these enzymes. Here, we will survey the complexity of TET roles in cancer, and its hypoxic modulation, as well as highlight the potential of these enzymes as therapeutic targets.


Asunto(s)
Oxigenasas de Función Mixta/metabolismo , Neoplasias/enzimología , Oxígeno/metabolismo , Animales , Humanos , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética
8.
Blood Adv ; 4(18): 4483-4493, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32941648

RESUMEN

Cancer immunotherapy is advancing rapidly and gene-modified T cells expressing chimeric antigen receptors (CARs) show particular promise. A challenge of CAR-T cell therapy is that the ex vivo-generated CAR-T cells become exhausted during expansion in culture, and do not persist when transferred back to patients. It has become clear that naive and memory CD8 T cells perform better than the total CD8 T-cell populations in CAR-T immunotherapy because of better expansion, antitumor activity, and persistence, which are necessary features for therapeutic success and prevention of disease relapse. However, memory CAR-T cells are rarely used in the clinic due to generation challenges. We previously reported that mouse CD8 T cells cultured with the S enantiomer of the immunometabolite 2-hydroxyglutarate (S-2HG) exhibit enhanced antitumor activity. Here, we show that clinical-grade human donor CAR-T cells can be generated from naive precursors after culture with S-2HG. S-2HG-treated CAR-T cells establish long-term memory cells in vivo and show superior antitumor responses when compared with CAR-T cells generated with standard clinical protocols. This study provides the basis for a phase 1 clinical trial evaluating the activity of S-2HG-treated CD19-CAR-T cells in patients with B-cell malignancies.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Receptores Quiméricos de Antígenos , Animales , Linfocitos T CD8-positivos , Glutaratos , Humanos , Inmunoterapia Adoptiva , Ratones , Receptores de Antígenos de Linfocitos T/genética , Receptores Quiméricos de Antígenos/genética
9.
Medicine (Baltimore) ; 96(16): e6521, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28422838

RESUMEN

RATIONALE: Chromosomal rearrangements are the major cause of multiple congenital abnormalities and intellectual disability. PATIENT CONCERNS AND DIAGNOSIS: We report 2 first cousins with unbalanced chromosomal aberrations of chromosomes 1 and 21, resulting from balanced familial translocation. Chromosome microarray analysis revealed 8.5 Mb1q43q44 duplication/21q22.2q22.3 deletion and 6.8 Mb 1q43q44 deletion/21q22.2q22.3 duplication. Among other features, cognitive and motor development delay and craniofacial anomalies are present in both patients, whereas congenital heart defect and hearing impairment is only present in patient carrying 1q43q44 duplication/21q22.2q22.3 deletion. LESSONS: In this report, we provide detailed analysis of the phenotypic features of both patients as well as compare our data with previously published reports of similar aberrations and discuss possible functional effects of AKT3, CEP170, ZBTB18, DSCAM, and TMPRSS3 genes included in the deleted and/or duplicated regions. Partial trisomy 1q/monosomy 21q has only been reported once before, and this is the first report of partial monosomy 1q/trisomy 21q. The expressed phenotype of mirroring chromosomal aberrations in our patients supports the previous suggestion that the dosage effect of some of the genes included in deleted/duplicated regions may result in opposite phenotypes of the patients.


Asunto(s)
Anomalías Múltiples/genética , Cromosomas Humanos Par 1 , Cromosomas Humanos Par 21 , Discapacidad Intelectual/genética , Translocación Genética , Anomalías Múltiples/patología , Anomalías Múltiples/terapia , Niño , Familia , Femenino , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA