Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(2): 102851, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36587767

RESUMEN

Misfolded proteins are recognized and degraded through protein quality control (PQC) pathways, which are essential for maintaining proteostasis and normal cellular functions. Defects in PQC can result in disease, including cancer, cardiovascular disease, and neurodegeneration. The small ubiquitin-related modifiers (SUMOs) were previously implicated in the degradation of nuclear misfolded proteins, but their functions in cytoplasmic PQC are unclear. Here, in a systematic screen of SUMO protein mutations in the budding yeast Saccharomyces cerevisiae, we identified a mutant allele (Smt3-K38A/K40A) that sensitizes cells to proteotoxic stress induced by amino acid analogs. Smt3-K38A/K40A mutant strains also exhibited a defect in the turnover of a soluble PQC model substrate containing the CL1 degron (NES-GFP-Ura3-CL1) localized in the cytoplasm, but not the nucleus. Using human U2OS SUMO1- and SUMO2-KO cell lines, we observed a similar SUMO-dependent pathway for degradation of the mammalian degron-containing PQC reporter protein, GFP-CL1, also only in the cytoplasm but not the nucleus. Moreover, we found that turnover of GFP-CL1 in the cytoplasm was uniquely dependent on SUMO1 but not the SUMO2 paralogue. Additionally, we showed that turnover of GFP-CL1 in the cytoplasm is dependent on the AAA-ATPase, Cdc48/p97. Cellular fractionation studies and analysis of a SUMO1-GFP-CL1 fusion protein revealed that SUMO1 promotes cytoplasmic misfolded protein degradation by maintaining substrate solubility. Collectively, our findings reveal a conserved and previously unrecognized role for SUMO1 in regulating cytoplasmic PQC and provide valuable insights into the roles of sumoylation in PQC-associated diseases.


Asunto(s)
Proteolisis , Proteína SUMO-1 , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animales , Humanos , Citoplasma/metabolismo , Citosol/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo
2.
J Cell Sci ; 133(20)2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33008845

RESUMEN

Keratin 17 (KRT17; K17), a non-lamin intermediate filament protein, was recently found to occur in the nucleus. We report here on K17-dependent differences in nuclear morphology, chromatin organization, and cell proliferation. Human tumor keratinocyte cell lines lacking K17 exhibit flatter nuclei relative to normal. Re-expression of wild-type K17, but not a mutant form lacking an intact nuclear localization signal (NLS), rescues nuclear morphology in KRT17-null cells. Analyses of primary cultures of skin keratinocytes from a mouse strain expressing K17 with a mutated NLS corroborated these findings. Proteomics screens identified K17-interacting nuclear proteins with known roles in gene expression, chromatin organization and RNA processing. Key histone modifications and LAP2ß (an isoform encoded by TMPO) localization within the nucleus are altered in the absence of K17, correlating with decreased cell proliferation and suppression of GLI1 target genes. Nuclear K17 thus impacts nuclear morphology with an associated impact on chromatin organization, gene expression, and proliferation in epithelial cells.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Queratina-17 , Queratinocitos , Animales , Proliferación Celular/genética , Cromatina/genética , Queratina-17/genética , Ratones , Piel
3.
Nature ; 525(7567): 56-61, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26308891

RESUMEN

The hexanucleotide repeat expansion (HRE) GGGGCC (G4C2) in C9orf72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent studies support an HRE RNA gain-of-function mechanism of neurotoxicity, and we previously identified protein interactors for the G4C2 RNA including RanGAP1. A candidate-based genetic screen in Drosophila expressing 30 G4C2 repeats identified RanGAP (Drosophila orthologue of human RanGAP1), a key regulator of nucleocytoplasmic transport, as a potent suppressor of neurodegeneration. Enhancing nuclear import or suppressing nuclear export of proteins also suppresses neurodegeneration. RanGAP physically interacts with HRE RNA and is mislocalized in HRE-expressing flies, neurons from C9orf72 ALS patient-derived induced pluripotent stem cells (iPSC-derived neurons), and in C9orf72 ALS patient brain tissue. Nuclear import is impaired as a result of HRE expression in the fly model and in C9orf72 iPSC-derived neurons, and these deficits are rescued by small molecules and antisense oligonucleotides targeting the HRE G-quadruplexes. Nucleocytoplasmic transport defects may be a fundamental pathway for ALS and FTD that is amenable to pharmacotherapeutic intervention.


Asunto(s)
Transporte Activo de Núcleo Celular/genética , Núcleo Celular/metabolismo , Expansión de las Repeticiones de ADN/genética , Sistemas de Lectura Abierta/genética , Proteínas/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Proteína C9orf72 , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Femenino , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , G-Cuádruplex , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , Neuronas/patología , Poro Nuclear/química , Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Oligonucleótidos Antisentido/genética , ARN/genética , ARN/metabolismo
4.
Mol Cell Proteomics ; 17(5): 871-888, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29438996

RESUMEN

Proteomics studies have revealed that SUMOylation is a widely used post-translational modification (PTM) in eukaryotes. However, how SUMO E1/2/3 complexes use different SUMO isoforms and recognize substrates remains largely unknown. Using a human proteome microarray-based activity screen, we identified over 2500 proteins that undergo SUMO E3-dependent SUMOylation. We next constructed a SUMO isoform- and E3 ligase-dependent enzyme-substrate relationship network. Protein kinases were significantly enriched among SUMOylation substrates, suggesting crosstalk between phosphorylation and SUMOylation. Cell-based analyses of tyrosine kinase, PYK2, revealed that SUMOylation at four lysine residues promoted PYK2 autophosphorylation at tyrosine 402, which in turn enhanced its interaction with SRC and full activation of the SRC-PYK2 complex. SUMOylation on WT but not the 4KR mutant of PYK2 further elevated phosphorylation of the downstream components in the focal adhesion pathway, such as paxillin and Erk1/2, leading to significantly enhanced cell migration during wound healing. These studies illustrate how our SUMO E3 ligase-substrate network can be used to explore crosstalk between SUMOylation and other PTMs in many biological processes.


Asunto(s)
Movimiento Celular , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Secuencia de Aminoácidos , Células HeLa , Humanos , Fosforilación , Fosfotirosina/metabolismo , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Proteómica , Reproducibilidad de los Resultados , Transducción de Señal , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/metabolismo
5.
PLoS Genet ; 13(2): e1006612, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28166236

RESUMEN

Sumoylation regulates a wide range of essential cellular functions through diverse mechanisms that remain to be fully understood. Using S. cerevisiae, a model organism with a single essential SUMO gene (SMT3), we developed a library of >250 mutant strains with single or multiple amino acid substitutions of surface or core residues in the Smt3 protein. By screening this library using plate-based assays, we have generated a comprehensive structure-function based map of Smt3, revealing essential amino acid residues and residues critical for function under a variety of genotoxic and proteotoxic stress conditions. Functionally important residues mapped to surfaces affecting Smt3 precursor processing and deconjugation from protein substrates, covalent conjugation to protein substrates, and non-covalent interactions with E3 ligases and downstream effector proteins containing SUMO-interacting motifs. Lysine residues potentially involved in formation of polymeric chains were also investigated, revealing critical roles for polymeric chains, but redundancy in specific chain linkages. Collectively, our findings provide important insights into the molecular basis of signaling through sumoylation. Moreover, the library of Smt3 mutants represents a valuable resource for further exploring the functions of sumoylation in cellular stress response and other SUMO-dependent pathways.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Relación Estructura-Actividad , Sumoilación/efectos de los fármacos , Sustitución de Aminoácidos/genética , Análisis Mutacional de ADN , Mutagénesis/genética , Mutágenos/toxicidad , Unión Proteica , Saccharomyces cerevisiae/química , Ubiquitina-Proteína Ligasas/genética
6.
Mol Cell ; 42(1): 4-5, 2011 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-21474063

RESUMEN

An intimate relationship exists between the transcriptional coregulator Daxx, SUMO, and PML nuclear bodies. In this issue, Chang et al. (2011) provide structural insights into how phosphorylation of Daxx increases its affinity toward SUMOs and functional insights into how enhanced SUMO binding affects Daxx-PML interactions, PML nuclear body localization, and Daxx-mediated repression of genes encoding for antiapoptotic factors.

7.
Mol Cell Proteomics ; 16(5): 812-823, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28254775

RESUMEN

SUMOylation is a critical regulator of a broad range of cellular processes, and is thought to do so in part by modulation of protein interaction. To comprehensively identify human proteins whose interaction is modulated by SUMOylation, we developed an in vitro binding assay using human proteome microarrays to identify targets of SUMO1 and SUMO2. We then integrated these results with protein SUMOylation and protein-protein interaction data to perform network motif analysis. We focused on a single network motif we termed a SUMOmodPPI (SUMO-modulated Protein-Protein Interaction) that included the INO80 chromatin remodeling complex subunits TFPT and INO80E. We validated the SUMO-binding activity of INO80E, and showed that TFPT is a SUMO substrate both in vitro and in vivo We then demonstrated a key role for SUMOylation in mediating the interaction between these two proteins, both in vitro and in vivo By demonstrating a key role for SUMOylation in regulating the INO80 chromatin remodeling complex, this work illustrates the power of bioinformatics analysis of large data sets in predicting novel biological phenomena.


Asunto(s)
Ensamble y Desensamble de Cromatina , ADN Helicasas/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , ATPasas Asociadas con Actividades Celulares Diversas , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , ADN Helicasas/química , Proteínas de Unión al ADN , Ontología de Genes , Humanos , Lisina/metabolismo , Chaperonas Moleculares/metabolismo , Análisis por Matrices de Proteínas , Unión Proteica , Dominios Proteicos , Proteínas Inhibidoras de STAT Activados/metabolismo , Mapas de Interacción de Proteínas , Proteoma/metabolismo
8.
J Biol Chem ; 291(17): 9014-24, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-26917720

RESUMEN

Thymine-DNA glycosylase (TDG) plays critical roles in DNA base excision repair and DNA demethylation. It has been proposed, based on structural studies and in vitro biochemistry, that sumoylation is required for efficient TDG enzymatic turnover following base excision. However, whether sumoylation is required for TDG activity in vivo has not previously been tested. We have developed an in vivo assay for TDG activity that takes advantage of its recently discovered role in DNA demethylation and selective recognition and repair of 5-carboxylcytosine. Using this assay, we investigated the role of sumoylation in regulating TDG activity through the use of TDG mutants defective for sumoylation and Small Ubiquitin-like Modifier (SUMO) binding and by altering TDG sumoylation through SUMO and SUMO protease overexpression experiments. Our findings indicate that sumoylation and SUMO binding are not essential for TDG-mediated excision and repair of 5-carboxylcytosine bases. Moreover, in vitro assays revealed that apurinic/apyrimidinic nuclease 1 provides nearly maximum stimulation of TDG processing of G·caC substrates. Thus, under our assay conditions, apurinic/apyrimidinic nuclease 1-mediated stimulation or other mechanisms sufficiently alleviate TDG product inhibition and promote its enzymatic turnover in vivo.


Asunto(s)
Citosina/análogos & derivados , Metilación de ADN/fisiología , Mutación , Proteína SUMO-1/metabolismo , Sumoilación/fisiología , Timina ADN Glicosilasa/metabolismo , Citosina/metabolismo , Células HEK293 , Humanos , Proteína SUMO-1/genética , Timina ADN Glicosilasa/genética
9.
J Biol Chem ; 291(8): 3860-70, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26697886

RESUMEN

Protein modification by small ubiquitin-related modifiers (SUMOs) is essential and conserved in the malaria parasite, Plasmodium falciparum. We have previously shown that interactions between the SUMO E1-activating and E2-conjugating enzyme in P. falciparum are distinct compared with human, suggesting a potential target for development of parasite-specific inhibitors of SUMOylation. The parasite asexual trophozoite stage is susceptible to iron-induced oxidative stress and is subsequently a target for many of the current anti-malarial drugs. Here, we provide evidence that SUMOylation plays a role in the parasite response to oxidative stress during red blood cell stages, indicative of a protective role seen in other organisms. Using x-ray crystallography, we solved the structure of the human SUMO E1 ubiquitin fold domain in complex with the E2, Ubc9. The interface defined in this structure guided in silico modeling, mutagenesis, and in vitro biochemical studies of the P. falciparum SUMO E1 and E2 enzymes, resulting in the identification of surface residues that explain species-specific interactions. Our findings suggest that parasite-specific inhibitors of SUMOylation could be developed and used in combination therapies with drugs that induce oxidative stress.


Asunto(s)
Modelos Moleculares , Plasmodium falciparum/enzimología , Proteínas Protozoarias/química , Enzimas Ubiquitina-Conjugadoras/química , Humanos , Estrés Oxidativo/fisiología , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Especificidad de la Especie , Sumoilación/fisiología , Trofozoítos/química , Trofozoítos/enzimología , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo
10.
Mol Cell ; 33(5): 570-80, 2009 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-19285941

RESUMEN

Vertebrates express three small ubiquitin-related modifiers (SUMO-1, SUMO-2, and SUMO-3) that are conjugated in part to unique subsets of proteins and, thereby, regulate distinct cellular processes. Mechanisms regulating paralog-selective sumoylation, however, remain poorly understood. Despite being equally well modified by SUMO-1 and SUMO-2 in vitro, RanGAP1 is selectively modified by SUMO-1 in vivo. We have found that this paralog-selective modification is determined at the level of deconjugation by isopeptidases. Our findings indicate that, relative to SUMO-2-modified RanGAP1, SUMO-1-modified RanGAP1 forms a more stable, higher affinity complex with the nucleoporin Nup358/RanBP2 that preferentially protects it from isopeptidases. By swapping residues in SUMO-1 and SUMO-2 responsible for Nup358/RanBP2 binding, or by manipulating isopeptidase expression levels, paralog-selective modification of RanGAP1 could be affected both in vitro and in vivo. Thus, protection from isopeptidases, through interactions with SUMO-binding proteins, represents an important mechanism defining paralog-selective sumoylation.


Asunto(s)
Liasas de Carbono-Nitrógeno/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Animales , Liasas de Carbono-Nitrógeno/genética , Línea Celular , Cisteína Endopeptidasas/metabolismo , Proteínas Activadoras de GTPasa/genética , Humanos , Ratones , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Conformación Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Proteína SUMO-1/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Factores de Tiempo , Transfección , Enzimas Ubiquitina-Conjugadoras/metabolismo
11.
Mol Cell ; 29(6): 729-41, 2008 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-18374647

RESUMEN

SUMOylation is essential for cell-cycle regulation in invertebrates; however, its functions during the mammalian cell cycle are largely uncharacterized. Mammals express three SUMO paralogs: SUMO-1, SUMO-2, and SUMO-3 (SUMO-2 and SUMO-3 are 96% identical and referred to as SUMO-2/3). We found that SUMO-2/3 localize to centromeres and condensed chromosomes, whereas SUMO-1 localizes to the mitotic spindle and spindle midzone, indicating that SUMO paralogs regulate distinct mitotic processes in mammalian cells. Consistent with this, global inhibition of SUMOylation caused a prometaphase arrest due to defects in targeting the microtubule motor protein CENP-E to kinetochores. CENP-E was found to be modified specifically by SUMO-2/3 and to possess SUMO-2/3 polymeric chain-binding activity essential for kinetochore localization. Our findings indicate that SUMOylation is a key regulator of the mammalian cell cycle, with SUMO-1 and SUMO-2/3 modification of different proteins regulating distinct processes.


Asunto(s)
Ciclo Celular/fisiología , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cinetocoros/metabolismo , Mitosis/fisiología , Proteína SUMO-1/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Cisteína Endopeptidasas/metabolismo , ADN-Topoisomerasas/metabolismo , Genes Reporteros , Células HeLa , Humanos , Cinética , Metafase , Unión Proteica
12.
Proteomics ; 15(4): 763-72, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25367092

RESUMEN

Sumoylation is essential for progression through mitosis, but the specific protein targets and functions remain poorly understood. In this study, we used chromosome spreads to more precisely define the localization of SUMO-2/3 (small ubiquitin-related modifier) to the inner centromere and protein scaffold of mitotic chromosomes. We also developed methods to immunopurify proteins modified by endogenous, untagged SUMO-2/3 from mitotic chromosomes. Using these methods, we identified 149 chromosome-associated SUMO-2/3 substrates by nLC-ESI-MS/MS. Approximately one-third of the identified proteins have reported functions in mitosis. Consistent with SUMO-2/3 immunolocalization, we identified known centromere- and kinetochore-associated proteins, as well as chromosome scaffold associated proteins. Notably, >30 proteins involved in chromatin modification or remodeling were identified. Our results provide insights into the roles of sumoylation as a regulator of chromatin structure and other diverse processes in mitosis. Furthermore, our purification and fractionation methodologies represent an important compliment to existing approaches to identify sumoylated proteins using exogenously expressed and tagged SUMOs.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/metabolismo , Mitosis/fisiología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación/fisiología , Proteínas Cromosómicas no Histona/análisis , Proteínas Cromosómicas no Histona/química , Células HeLa , Humanos , Mapas de Interacción de Proteínas , Proteómica , Reproducibilidad de los Resultados , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/análisis , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química
13.
J Biol Chem ; 289(22): 15810-9, 2014 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-24753249

RESUMEN

Thymine DNA glycosylase (TDG) initiates the repair of G·T mismatches that arise by deamination of 5-methylcytosine (mC), and it excises 5-formylcytosine and 5-carboxylcytosine, oxidized forms of mC. TDG functions in active DNA demethylation and is essential for embryonic development. TDG forms a tight enzyme-product complex with abasic DNA, which severely impedes enzymatic turnover. Modification of TDG by small ubiquitin-like modifier (SUMO) proteins weakens its binding to abasic DNA. It was proposed that sumoylation of product-bound TDG regulates product release, with SUMO conjugation and deconjugation needed for each catalytic cycle, but this model remains unsubstantiated. We examined the efficiency and specificity of TDG sumoylation using in vitro assays with purified E1 and E2 enzymes, finding that TDG is modified efficiently by SUMO-1 and SUMO-2. Remarkably, we observed similar modification rates for free TDG and TDG bound to abasic or undamaged DNA. To examine the conjugation step directly, we determined modification rates (kobs) using preformed E2∼SUMO-1 thioester. The hyperbolic dependence of kobs on TDG concentration gives kmax = 1.6 min(-1) and K1/2 = 0.55 µM, suggesting that E2∼SUMO-1 has higher affinity for TDG than for the SUMO targets RanGAP1 and p53 (peptide). Whereas sumoylation substantially weakens TDG binding to DNA, TDG∼SUMO-1 still binds relatively tightly to AP-DNA (Kd ∼50 nM). Although E2∼SUMO-1 exhibits no specificity for product-bound TDG, the relatively high conjugation efficiency raises the possibility that E2-mediated sumoylation could stimulate product release in vivo. This and other implications for the biological role and mechanism of TDG sumoylation are discussed.


Asunto(s)
Reparación del ADN/fisiología , Proteína SUMO-1/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Timina ADN Glicosilasa/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Metilación de ADN/fisiología , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Glicosilación , Células HeLa , Humanos , Procesamiento Proteico-Postraduccional/fisiología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteína SUMO-1/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Especificidad por Sustrato , Sumoilación/fisiología , Timina ADN Glicosilasa/química , Timina ADN Glicosilasa/genética , Enzimas Ubiquitina-Conjugadoras/genética
14.
J Biol Chem ; 288(39): 27724-36, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-23943616

RESUMEN

Small ubiquitin-related modifiers (SUMOs) are post-translationally conjugated to other proteins and are thereby essential regulators of a wide range of cellular processes. Sumoylation, and enzymes of the sumoylation pathway, are conserved in the malaria causing parasite, Plasmodium falciparum. However, the specific functions of sumoylation in P. falciparum, and the degree of functional conservation between enzymes of the human and P. falciparum sumoylation pathways, have not been characterized. Here, we demonstrate that sumoylation levels peak during midstages of the intra-erythrocyte developmental cycle, concomitant with hemoglobin consumption and elevated oxidative stress. In vitro studies revealed that P. falciparum E1- and E2-conjugating enzymes interact effectively to recognize and modify RanGAP1, a model mammalian SUMO substrate. However, in heterologous reactions, P. falciparum E1 and E2 enzymes failed to interact with cognate human E2 and E1 partners, respectively, to modify RanGAP1. Structural analysis, binding studies, and functional assays revealed divergent amino acid residues within the E1-E2 binding interface that define organism-specific enzyme interactions. Our studies identify sumoylation as a potentially important regulator of oxidative stress response during the P. falciparum intra-erythrocyte developmental cycle, and define E1 and E2 interactions as a promising target for development of parasite-specific inhibitors of sumoylation and parasite replication.


Asunto(s)
Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Secuencia de Aminoácidos , Eritrocitos/metabolismo , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Microscopía Fluorescente , Conformación Molecular , Datos de Secuencia Molecular , Estrés Oxidativo , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Sumoilación , Ubiquitina/metabolismo
15.
J Virol ; 86(10): 5412-21, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22398289

RESUMEN

An Epstein-Barr virus (EBV) protein microarray was used to screen for proteins binding noncovalently to the small ubiquitin-like modifier SUMO2. Among the 11 SUMO binding proteins identified was the conserved protein kinase BGLF4. The mutation of potential SUMO interaction motifs (SIMs) in BGLF4 identified N- and C-terminal SIMs. The mutation of both SIMs changed the intracellular localization of BGLF4 from nuclear to cytoplasmic, while BGLF4 mutated in the N-terminal SIM remained predominantly nuclear. The mutation of the C-terminal SIM yielded an intermediate phenotype with nuclear and cytoplasmic staining. The transfer of BGLF4 amino acids 342 to 359 to a nuclear green fluorescent protein (GFP)-tagged reporter protein led to the relocalization of the reporter to the cytoplasm. Thus, the C-terminal SIM lies adjacent to a nuclear export signal, and coordinated SUMO binding by the N- and C-terminal SIMs blocks export and allows the nuclear accumulation of BGLF4. The mutation of either SIM prevented SUMO binding in vitro. The ability of BGLF4 to abolish the SUMOylation of the EBV lytic cycle transactivator ZTA was dependent on both BGLF4 SUMO binding and BGLF4 kinase activity. The global profile of SUMOylated cell proteins was also suppressed by BGLF4 but not by the SIM or kinase-dead BGLF4 mutant. The effective BGLF4-mediated dispersion of promyelocytic leukemia (PML) bodies was dependent on SUMO binding. The SUMO binding function of BGLF4 was also required to induce the cellular DNA damage response and to enhance the production of extracellular virus during EBV lytic replication. Thus, SUMO binding by BGLF4 modulates BGLF4 function and affects the efficiency of lytic EBV replication.


Asunto(s)
Infecciones por Virus de Epstein-Barr/metabolismo , Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína SUMO-1/metabolismo , Proteínas Virales/metabolismo , Secuencias de Aminoácidos , Infecciones por Virus de Epstein-Barr/genética , Herpesvirus Humano 4/química , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiología , Humanos , Mutación , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Proteína SUMO-1/genética , Sumoilación , Proteínas Virales/química , Proteínas Virales/genética
16.
Cells ; 13(1)2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38201212

RESUMEN

Small ubiquitin-related modifiers (SUMOs) function as post-translational protein modifications and regulate nearly every aspect of cellular function. While a single ubiquitin protein is expressed across eukaryotic organisms, multiple SUMO paralogues with distinct biomolecular properties have been identified in plants and vertebrates. Five SUMO paralogues have been characterized in humans, with SUMO1, SUMO2 and SUMO3 being the best studied. SUMO2 and SUMO3 share 97% protein sequence homology (and are thus referred to as SUMO2/3) but only 47% homology with SUMO1. To date, thousands of putative sumoylation substrates have been identified thanks to advanced proteomic techniques, but the identification of SUMO1- and SUMO2/3-specific modifications and their unique functions in physiology and pathology are not well understood. The SUMO2/3 paralogues play an important role in proteostasis, converging with ubiquitylation to mediate protein degradation. This function is achieved primarily through SUMO-targeted ubiquitin ligases (STUbLs), which preferentially bind and ubiquitylate poly-SUMO2/3 modified proteins. Effects of the SUMO1 paralogue on protein solubility and aggregation independent of STUbLs and proteasomal degradation have also been reported. Consistent with these functions, sumoylation is implicated in multiple human diseases associated with disturbed proteostasis, and a broad range of pathogenic proteins have been identified as SUMO1 and SUMO2/3 substrates. A better understanding of paralogue-specific functions of SUMO1 and SUMO2/3 in cellular protein quality control may therefore provide novel insights into disease pathogenesis and therapeutic innovation. This review summarizes current understandings of the roles of sumoylation in protein quality control and associated diseases, with a focus on the specific effects of SUMO1 and SUMO2/3 paralogues.


Asunto(s)
Proteómica , Ubiquitina , Humanos , Animales , Procesamiento Proteico-Postraduccional , Eucariontes , Poli A , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina , Proteína SUMO-1
17.
PLoS Biol ; 7(12): e1000252, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19956565

RESUMEN

The gene mutated in Bloom's syndrome, BLM, is important in the repair of damaged replication forks, and it has both pro- and anti-recombinogenic roles in homologous recombination (HR). At damaged forks, BLM interacts with RAD51 recombinase, the essential enzyme in HR that catalyzes homology-dependent strand invasion. We have previously shown that defects in BLM modification by the small ubiquitin-related modifier (SUMO) cause increased gamma-H2AX foci. Because the increased gamma-H2AX could result from defective repair of spontaneous DNA damage, we hypothesized that SUMO modification regulates BLM's function in HR repair at damaged forks. To test this hypothesis, we treated cells that stably expressed a normal BLM (BLM+) or a SUMO-mutant BLM (SM-BLM) with hydroxyurea (HU) and examined the effects of stalled replication forks on RAD51 and its DNA repair functions. HU treatment generated excess gamma-H2AX in SM-BLM compared to BLM+ cells, consistent with a defect in replication-fork repair. SM-BLM cells accumulated increased numbers of DNA breaks and were hypersensitive to DNA damage. Importantly, HU treatment failed to induce sister-chromatid exchanges in SM-BLM cells compared to BLM+ cells, indicating a specific defect in HR repair and suggesting that RAD51 function could be compromised. Consistent with this hypothesis, RAD51 localization to HU-induced repair foci was impaired in SM-BLM cells. These data suggested that RAD51 might interact noncovalently with SUMO. We found that in vitro RAD51 interacts noncovalently with SUMO and that it interacts more efficiently with SUMO-modified BLM compared to unmodified BLM. These data suggest that SUMOylation controls the switch between BLM's pro- and anti-recombinogenic roles in HR. In the absence of BLM SUMOylation, BLM perturbs RAD51 localization at damaged replication forks and inhibits fork repair by HR. Conversely, BLM SUMOylation relieves its inhibitory effects on HR, and it promotes RAD51 function.


Asunto(s)
Reparación del ADN , Replicación del ADN , Procesamiento Proteico-Postraduccional , Recombinasa Rad51/metabolismo , RecQ Helicasas/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Línea Celular , Daño del ADN , Humanos , Unión Proteica
18.
Dev Cell ; 11(5): 596-7, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17084352

RESUMEN

Two articles in a recent issue of Molecular Cell (Shen et al., 2006; Lin et al., 2006) demonstrate that noncovalent interactions between the SUMO moieties of SUMO-modified PML, and SUMO binding motifs on PML and other PML nuclear-body-associated proteins, affect the assembly of PML nuclear bodies and the recruitment of proteins in and out of these subnuclear structures.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Secuencias de Aminoácidos , Animales , Estructuras del Núcleo Celular/metabolismo , Humanos , Unión Proteica , Estructura Terciaria de Proteína
19.
Mol Biol Cell ; 32(19): 1849-1866, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34232706

RESUMEN

The small ubiquitin-related modifiers (SUMOs) regulate nearly every aspect of cellular function, from gene expression in the nucleus to ion transport at the plasma membrane. In humans, the SUMO pathway has five SUMO paralogues with sequence homologies that range from 45% to 97%. SUMO1 and SUMO2 are the most distantly related paralogues and also the best studied. To what extent SUMO1, SUMO2, and the other paralogues impart unique and nonredundant effects on cellular functions, however, has not been systematically examined and is therefore not fully understood. For instance, knockout studies in mice have revealed conflicting requirements for the paralogues during development and studies in cell culture have relied largely on transient paralogue overexpression or knockdown. To address the existing gap in understanding, we first analyzed SUMO paralogue gene expression levels in normal human tissues and found unique patterns of SUMO1-3 expression across 30 tissue types, suggesting paralogue-specific functions in adult human tissues. To systematically identify and characterize unique and nonredundant functions of the SUMO paralogues in human cells, we next used CRISPR-Cas9 to knock out SUMO1 and SUMO2 expression in osteosarcoma (U2OS) cells. Analysis of these knockout cell lines revealed essential functions for SUMO1 and SUMO2 in regulating cellular morphology, promyelocytic leukemia (PML) nuclear body structure, responses to proteotoxic and genotoxic stress, and control of gene expression. Collectively, our findings reveal nonredundant regulatory roles for SUMO1 and SUMO2 in controlling essential cellular processes and provide a basis for more precise SUMO-targeting therapies.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Proteína SUMO-1/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Ubiquitinas/genética , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Supervivencia Celular/genética , Técnicas de Inactivación de Genes , Ontología de Genes , Humanos , Immunoblotting/métodos , Microscopía Fluorescente/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Proteína SUMO-1/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Ubiquitinas/metabolismo
20.
Front Genet ; 12: 753535, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868226

RESUMEN

Sumoylation is an important enhancer of responses to DNA replication stress and the SUMO-targeted ubiquitin E3 ligase RNF4 regulates these responses by ubiquitylation of sumoylated DNA damage response factors. The specific targets and functional consequences of RNF4 regulation in response to replication stress, however, have not been fully characterized. Here we demonstrated that RNF4 is required for the restart of DNA replication following prolonged hydroxyurea (HU)-induced replication stress. Contrary to its role in repair of γ-irradiation-induced DNA double-strand breaks (DSBs), our analysis revealed that RNF4 does not significantly impact recognition or repair of replication stress-associated DSBs. Rather, using DNA fiber assays, we found that the firing of new DNA replication origins, which is required for replication restart following prolonged stress, was inhibited in cells depleted of RNF4. We also provided evidence that RNF4 recognizes and ubiquitylates sumoylated Bloom syndrome DNA helicase BLM and thereby promotes its proteosome-mediated turnover at damaged DNA replication forks. Consistent with it being a functionally important RNF4 substrate, co-depletion of BLM rescued defects in the firing of new replication origins observed in cells depleted of RNF4 alone. We concluded that RNF4 acts to remove sumoylated BLM from collapsed DNA replication forks, which is required to facilitate normal resumption of DNA synthesis after prolonged replication fork stalling and collapse.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA