Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 53(4): 733-744.e8, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32946741

RESUMEN

Discovering potent human monoclonal antibodies (mAbs) targeting the Plasmodium falciparum circumsporozoite protein (PfCSP) on sporozoites (SPZ) and elucidating their mechanisms of neutralization will facilitate translation for passive prophylaxis and aid next-generation vaccine development. Here, we isolated a neutralizing human mAb, L9 that preferentially bound NVDP minor repeats of PfCSP with high affinity while cross-reacting with NANP major repeats. L9 was more potent than six published neutralizing human PfCSP mAbs at mediating protection against mosquito bite challenge in mice. Isothermal titration calorimetry and multiphoton microscopy showed that L9 and the other most protective mAbs bound PfCSP with two binding events and mediated protection by killing SPZ in the liver and by preventing their egress from sinusoids and traversal of hepatocytes. This study defines the subdominant PfCSP minor repeats as neutralizing epitopes, identifies an in vitro biophysical correlate of SPZ neutralization, and demonstrates that the liver is an important site for antibodies to prevent malaria.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antiprotozoarios/inmunología , Antimaláricos/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Esporozoítos/inmunología , Adolescente , Adulto , Animales , Línea Celular , Línea Celular Tumoral , Epítopos/inmunología , Femenino , Células HEK293 , Hepatocitos/inmunología , Hepatocitos/parasitología , Humanos , Hígado/inmunología , Hígado/parasitología , Malaria/inmunología , Malaria/parasitología , Vacunas contra la Malaria/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Adulto Joven
2.
PLoS Comput Biol ; 18(4): e1010003, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35385469

RESUMEN

Broadly neutralizing antibodies (bNAbs) are promising agents to prevent HIV infection and achieve HIV remission without antiretroviral therapy (ART). As with ART, bNAb combinations are likely needed to cover HIV's extensive diversity. Not all bNAbs are identical in terms of their breadth, potency, and in vivo longevity (half-life). Given these differences, it is important to optimally select the composition, or dose ratio, of combination bNAb therapies for future clinical studies. We developed a model that synthesizes 1) pharmacokinetics, 2) potency against a wide HIV diversity, 3) interaction models for how drugs work together, and 4) correlates that translate in vitro potency to clinical protection. We found optimization requires drug-specific balances between potency, longevity, and interaction type. As an example, tradeoffs between longevity and potency are shown by comparing a combination therapy to a bi-specific antibody (a single protein merging both bNAbs) that takes the better potency but the worse longevity of the two components. Then, we illustrate a realistic dose ratio optimization of a triple combination of VRC07, 3BNC117, and 10-1074 bNAbs. We apply protection estimates derived from both a non-human primate (NHP) challenge study meta-analysis and the human antibody mediated prevention (AMP) trials. In both cases, we find a 2:1:1 dose emphasizing VRC07 is nearly optimal. Our approach can be immediately applied to optimize the next generation of combination antibody prevention and cure studies.


Asunto(s)
Infecciones por VIH , VIH-1 , Animales , Anticuerpos Neutralizantes , Anticuerpos ampliamente neutralizantes , Terapia Combinada , Anticuerpos Anti-VIH , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/prevención & control
3.
PLoS Pathog ; 16(6): e1008522, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32589686

RESUMEN

DNA vectors have been widely used as a priming of poxvirus vaccine in prime/boost regimens. Whether the number of DNA impacts qualitatively or quantitatively the immune response is not fully explored. With the aim to reinforce T-cell responses by optimizing the prime-boost regimen, the multicentric EV03/ANRS VAC20 phase I/II trial, randomized 147 HIV-negative volunteers to either 3xDNA plus 1xNYVAC (weeks 0, 4, 8 plus 24; n = 74) or to 2xDNA plus 2xNYVAC (weeks 0, 4 plus 20, 24; n = 73) groups. T-cell responses (IFN-γ ELISPOT) to at least one peptide pool were higher in the 3xDNA than the 2xDNA groups (91% and 80% of vaccinees) (P = 0.049). In the 3xDNA arm, 26 (37%) recipients developed a broader T-cell response (Env plus at least to one of the Gag, Pol, Nef pools) than in the 2xDNA (15; 22%) arms (primary endpoint; P = 0.047) with a higher magnitude against Env (at week 26) (P<0.001). In both groups, vaccine regimens induced HIV-specific polyfunctional CD4 and CD8 T cells and the production of Th1, Th2 and Th17/IL-21 cytokines. Antibody responses were also elicited in up to 81% of vaccines. A higher percentage of IgG responders was noted in the 2xDNA arm compared to the 3xDNA arm, while the 3xDNA group tended to elicit a higher magnitude of IgG3 response against specific Env antigens. We show here that the modulation of the prime strategy, without modifying the route or the dose of administration, or the combination of vectors, may influence the quality of the responses.


Asunto(s)
Vacunas contra el SIDA/inmunología , Vectores Genéticos/inmunología , Antígenos VIH/inmunología , Poxviridae/inmunología , Vacunas de ADN/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/genética , Adolescente , Adulto , Linfocitos T CD8-positivos/inmunología , Femenino , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Antígenos VIH/administración & dosificación , Antígenos VIH/genética , Humanos , Interferón gamma/inmunología , Masculino , Persona de Mediana Edad , Poxviridae/genética , Linfocitos T Colaboradores-Inductores/metabolismo , Vacunas de ADN/administración & dosificación , Vacunas de ADN/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/administración & dosificación , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
4.
PLoS Comput Biol ; 16(2): e1007626, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32084132

RESUMEN

The ongoing Antibody Mediated Prevention (AMP) trials will uncover whether passive infusion of the broadly neutralizing antibody (bNAb) VRC01 can protect against HIV acquisition. Previous statistical simulations indicate these trials may be partially protective. In that case, it will be crucial to identify the mechanism of breakthrough infections. To that end, we developed a mathematical modeling framework to simulate the AMP trials and infer the breakthrough mechanisms using measurable trial outcomes. This framework combines viral dynamics with antibody pharmacokinetics and pharmacodynamics, and will be generally applicable to forthcoming bNAb prevention trials. We fit our model to human viral load data (RV217). Then, we incorporated VRC01 neutralization using serum pharmacokinetics (HVTN 104) and in vitro pharmacodynamics (LANL CATNAP database). We systematically explored trial outcomes by reducing in vivo potency and varying the distribution of sensitivity to VRC01 in circulating strains. We found trial outcomes could be used in a clinical trial regression model (CTRM) to reveal whether partially protective trials were caused by large fractions of VRC01-resistant (IC50>50 µg/mL) circulating strains or rather a global reduction in VRC01 potency against all strains. The former mechanism suggests the need to enhance neutralizing antibody breadth; the latter suggests the need to enhance VRC01 delivery and/or in vivo binding. We will apply the clinical trial regression model to data from the completed trials to help optimize future approaches for passive delivery of anti-HIV neutralizing antibodies.


Asunto(s)
Anticuerpos ampliamente neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/prevención & control , Modelos Teóricos , Ensayos Clínicos como Asunto , Infecciones por VIH/inmunología , Humanos
5.
Malar J ; 19(1): 113, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32183833

RESUMEN

BACKGROUND: New strategies are needed to reduce the incidence of malaria, and promising approaches include the development of vaccines and monoclonal antibodies (mAbs) that target the circumsporozoite protein (CSP). To select the best candidates and speed development, it is essential to standardize preclinical assays to measure the potency of such interventions in animal models. METHODS: Two assay configurations were studied using transgenic Plasmodium berghei expressing Plasmodium falciparum full-length circumsporozoite protein. The assays measured (1) reduction in parasite infection of the liver (liver burden) following an intravenous (i.v) administration of sporozoites and (2) protection from parasitaemia following mosquito bite challenge. Two human CSP mAbs, AB311 and AB317, were compared for their ability to inhibit infection. Multiple independent experiments were conducted to define assay variability and resultant impact on the ability to discriminate differences in mAb functional activity. RESULTS: Overall, the assays produced highly consistent results in that all individual experiments showed greater functional activity for AB317 compared to AB311 as calculated by the dose required for 50% inhibition (ID50) as well as the serum concentration required for 50% inhibition (IC50). The data were then used to model experimental designs with adequate statistical power to rigorously screen, compare, and rank order novel anti-CSP mAbs. CONCLUSION: The results indicate that in vivo assays described here can provide reliable information for comparing the functional activity of mAbs. The results also provide guidance regarding selection of the appropriate experimental design, dose selection, and group sizes.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Parasitemia/prevención & control , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Antiprotozoarios/sangre , Modelos Animales de Enfermedad , Femenino , Concentración 50 Inhibidora , Hígado/parasitología , Malaria Falciparum/inmunología , Malaria Falciparum/terapia , Ratones , Ratones Endogámicos C57BL , Organismos Modificados Genéticamente , Carga de Parásitos , Plasmodium berghei/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
6.
Blood ; 129(16): 2316-2325, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28209721

RESUMEN

Strategies to prevent active infection with certain double-stranded DNA (dsDNA) viruses after allogeneic hematopoietic cell transplantation (HCT) are limited by incomplete understanding of their epidemiology and clinical impact. We retrospectively tested weekly plasma samples from allogeneic HCT recipients at our center from 2007 to 2014. We used quantitative PCR to test for cytomegalovirus, BK polyomavirus, human herpesvirus 6B, HHV-6A, adenovirus, and Epstein-Barr virus between days 0 and 100 post-HCT. We evaluated risk factors for detection of multiple viruses and association of viruses with mortality through day 365 post-HCT with Cox models. Among 404 allogeneic HCT recipients, including 125 cord blood, 125 HLA-mismatched, and 154 HLA-matched HCTs, detection of multiple viruses was common through day 100: 90% had ≥1, 62% had ≥2, 28% had ≥3, and 5% had 4 or 5 viruses. Risk factors for detection of multiple viruses included cord blood or HLA-mismatched HCT, myeloablative conditioning, and acute graft-versus-host disease (P values < .01). Absolute lymphocyte count of <200 cells/mm3 was associated with greater virus exposure on the basis of the maximum cumulative viral load area under the curve (AUC) (P = .054). The maximum cumulative viral load AUC was the best predictor of early (days 0-100) and late (days 101-365) overall mortality (adjusted hazard ratio [aHR] = 1.36, 95% confidence interval [CI] [1.25, 1.49], and aHR = 1.04, 95% CI [1.0, 1.08], respectively) after accounting for immune reconstitution and graft-versus-host disease. In conclusion, detection of multiple dsDNA viruses was frequent after allogeneic HCT and had a dose-dependent association with increased mortality. These data suggest opportunities to improve outcomes with better antiviral strategies.


Asunto(s)
Infecciones por Adenoviridae/mortalidad , ADN Viral/aislamiento & purificación , Trasplante de Células Madre Hematopoyéticas/mortalidad , Infecciones por Herpesviridae/mortalidad , Infecciones Oportunistas/mortalidad , Adenoviridae/genética , Adenoviridae/aislamiento & purificación , Infecciones por Adenoviridae/diagnóstico , Infecciones por Adenoviridae/inmunología , Infecciones por Adenoviridae/virología , Adulto , Área Bajo la Curva , Virus BK/genética , Virus BK/aislamiento & purificación , Niño , Trasplante de Células Madre de Sangre del Cordón Umbilical/mortalidad , Citomegalovirus/genética , Citomegalovirus/aislamiento & purificación , ADN Viral/genética , Femenino , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/mortalidad , Enfermedad Injerto contra Huésped/patología , Infecciones por Herpesviridae/diagnóstico , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/aislamiento & purificación , Herpesvirus Humano 6/genética , Herpesvirus Humano 6/aislamiento & purificación , Humanos , Masculino , Persona de Mediana Edad , Infecciones Oportunistas/diagnóstico , Infecciones Oportunistas/inmunología , Infecciones Oportunistas/virología , Modelos de Riesgos Proporcionales , Reacción en Cadena en Tiempo Real de la Polimerasa , Estudios Retrospectivos , Factores de Riesgo , Trasplante Homólogo , Donante no Emparentado , Carga Viral
7.
BMC Biol ; 16(1): 75, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29996827

RESUMEN

BACKGROUND: RNA-guided CRISPR/Cas9 systems can be designed to mutate or excise the integrated HIV genome from latently infected cells and have therefore been proposed as a curative approach for HIV. However, most studies to date have focused on molecular clones with ideal target site recognition and do not account for target site variability observed within and between patients. For clinical success and broad applicability, guide RNA (gRNA) selection must account for circulating strain diversity and incorporate the within-host diversity of HIV. RESULTS: We identified a set of gRNAs targeting HIV LTR, gag, and pol using publicly available sequences for these genes and ranked gRNAs according to global conservation across HIV-1 group M and within subtypes A-C. By considering paired and triplet combinations of gRNAs, we found triplet sets of target sites such that at least one of the gRNAs in the set was present in over 98% of all globally available sequences. We then selected 59 gRNAs from our list of highly conserved LTR target sites and evaluated in vitro activity using a loss-of-function LTR-GFP fusion reporter. We achieved efficient GFP knockdown with multiple gRNAs and found clustering of highly active gRNA target sites near the middle of the LTR. Using published deep-sequence data from HIV-infected patients, we found that globally conserved sites also had greater within-host target conservation. Lastly, we developed a mathematical model based on varying distributions of within-host HIV sequence diversity and enzyme efficacy. We used the model to estimate the number of doses required to deplete the latent reservoir and achieve functional cure thresholds. Our modeling results highlight the importance of within-host target site conservation. While increased doses may overcome low target cleavage efficiency, inadequate targeting of rare strains is predicted to lead to rebound upon cART cessation even with many doses. CONCLUSIONS: Target site selection must account for global and within host viral genetic diversity. Globally conserved target sites are good starting points for design, but multiplexing is essential for depleting quasispecies and preventing viral load rebound upon therapy cessation.


Asunto(s)
Sistemas CRISPR-Cas/genética , Productos del Gen gag/genética , Genes pol , Duplicado del Terminal Largo de VIH/genética , VIH-1/genética , ARN Guía de Kinetoplastida , Edición Génica , Terapia Genética , Variación Genética , Infecciones por VIH/terapia , Infecciones por VIH/virología , VIH-1/fisiología , Humanos , Latencia del Virus
8.
Clin Infect Dis ; 66(3): 368-375, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29020348

RESUMEN

Background: Improved understanding of double-stranded DNA (dsDNA) virus kinetics after hematopoietic cell transplantation (HCT) would facilitate development of therapeutic strategies. Methods: We tested weekly plasma samples from 404 patients through day 100 after allogeneic HCT for cytomegalovirus (CMV), human herpesvirus (HHV) 6A and 6B, BK polyomavirus (BKV), adenovirus (AdV), and Epstein-Barr virus (EBV) using quantitative polymerase chain reaction. Episodes lasting ≤1 week were defined as blips and >1 week as persistent. We described virus-specific kinetics, analyzed the association of virus area under the curve (AUC) with overall mortality, and identified risk factors for persistent episodes. Results: We identified 428 episodes of CMV, 292 of BKV, 224 of HHV-6B, 46 of AdV, and 53 of EBV. CMV and BKV had the highest proportions of persistent episodes (68% and 80%, respectively). Detection and kinetics varied by virus. HHV-6B episodes reached maximum levels fastest and had the shortest intervals between detection and end-organ disease. End-organ disease occurred within 14 days of viremia in 68% of cases, generally during persistent episodes. For all viruses, higher viral load AUC increased risk for overall mortality through day 365, persistent episodes had higher viral load than blips, and higher first positive viral load significantly increased risk for persistent episodes. First viral load >2 log10 copies/mL (range, 2.04-3.06 per virus) had high specificity for persistent episodes. Conclusions: Persistent high viral load dsDNA viremia episodes after allogeneic HCT predict mortality. Virus-specific kinetics can guide timing and thresholds for early intervention in studies of novel agents.


Asunto(s)
ADN Viral/sangre , ADN/sangre , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Carga Viral , Viremia/mortalidad , Adulto , Área Bajo la Curva , Infecciones por Citomegalovirus/sangre , Infecciones por Citomegalovirus/diagnóstico , Infecciones por Virus de Epstein-Barr/sangre , Infecciones por Virus de Epstein-Barr/diagnóstico , Femenino , Humanos , Cinética , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa , Estudios Retrospectivos , Factores de Riesgo , Infecciones por Roseolovirus/sangre , Infecciones por Roseolovirus/diagnóstico , Adulto Joven
9.
J Virol ; 91(12)2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28381570

RESUMEN

Cytomegalovirus (CMV) is acquired by the oral route in children, and primary infection is associated with abundant mucosal replication, as well as the establishment of latency in myeloid cells that results in lifelong infection. The efficiency of primary CMV infection in humans following oral exposure, however, is unknown. We consistently detected self-limited, low-level oral CMV shedding events, which we termed transient CMV infections, in a prospective birth cohort of 30 highly exposed CMV-uninfected infants. We estimated the likelihood of transient oral CMV infections by comparing their observed frequency to that of established primary infections, characterized by persistent high-level shedding, viremia, and seroconversion. We developed mathematical models of viral dynamics upon initial oral CMV infection and validated them using clinical shedding data. Transient infections comprised 76 to 88% of oral CMV shedding events. For this high percentage of transient infections to occur, we identified two mathematical prerequisites: a very small number of initially infected oral cells (1 to 4) and low viral infectivity (<1.5 new cells infected/cell). These observations indicate that oral CMV infection in infants typically begins with a single virus that spreads inefficiently to neighboring cells. Thus, although the incidence of CMV infection is high during infancy, our data provide a mechanistic framework to explain why multiple CMV exposures are typically required before infection is successfully established. These findings imply that a sufficiently primed immune response could prevent CMV from establishing latent infection in humans and support the achievability of a prophylactic CMV vaccine.IMPORTANCE CMV infects the majority of the world's population and is a major cause of birth defects. Developing a vaccine to prevent CMV infection would be extremely valuable but would be facilitated by a better understanding of how natural human CMV infection is acquired. We studied CMV acquisition in infants and found that infections are usually brief and self-limited and are successfully established relatively rarely. Thus, although most people eventually acquire CMV infection, it usually requires numerous exposures. Our analyses indicate that this is because the virus is surprisingly inefficient, barely replicating well enough to spread to neighboring cells in the mouth. Greater knowledge of why CMV infection usually fails may provide insight into how to prevent it from succeeding.


Asunto(s)
Citomegalovirus/fisiología , Boca/virología , Esparcimiento de Virus , Niño , Preescolar , Infecciones por Citomegalovirus/transmisión , Infecciones por Citomegalovirus/virología , Femenino , Humanos , Lactante , Masculino , Modelos Teóricos , Estudios Prospectivos , Seroconversión , Uganda , Viremia , Latencia del Virus , Replicación Viral
10.
J Infect Dis ; 214(11): 1735-1743, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27651417

RESUMEN

Cytomegalovirus (CMV) infection occurs frequently in young children, who, when infected, are then a major source of transmission. Oral CMV shedding by 14 infants with primary infection was comprehensively characterized using quantitative polymerase chain reaction weekly for ≥9 months. Three phases of oral shedding were identified: expansion, transition, and clearance. Viral expansion occurred over a median of 7 weeks, with a median doubling time of 3 days. During the transition phase, expansion slowed over a median of 6 weeks before peak viral load was reached. Clearance was slow (22-day median half-life), and shedding did not resolve during observation for any infant. Mathematical modeling demonstrated that prolonged oral CMV expansion is explained by a low within-host reproduction number (median, 1.63) and a delayed immune response that only decreases the infected cell half-life by 44%. Thus, the prolonged oral CMV shedding observed during primary infection can be explained by slow viral expansion and inefficient immunologic control.


Asunto(s)
Infecciones por Citomegalovirus/patología , Infecciones por Citomegalovirus/virología , Citomegalovirus/aislamiento & purificación , Boca/virología , Esparcimiento de Virus , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Modelos Teóricos , Embarazo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Tiempo , Uganda
11.
J Infect Dis ; 212(5): 793-802, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25676470

RESUMEN

BACKGROUND: Bacterial vaginosis (BV) is a common polymicrobial disease associated with numerous negative reproductive health outcomes, including an increased risk of human immunodeficiency virus acquisition. BV is treatable with antibiotics, but relapse is common. A more detailed understanding of bacterial dynamics during antibiotic therapy for BV could identify conditions that favor establishment, maintenance, and eradication of BV-associated bacterial species, thereby improving treatment outcomes. METHODS: We used mathematical models to analyze daily quantitative measurements of 11 key bacterial species during metronidazole treatment for 15 cases of BV. RESULTS: We identified complete reorganization of vaginal bacterial composition within a day of initiating therapy. Although baseline bacterial levels predicted a longer time to clearance, all anaerobic species were eliminated rapidly within a median of 3 days. However, reemergence of BV-associated species was common following treatment cessation. Gardnerella vaginalis, a facultative anaerobe, was cleared more slowly than anaerobic BV-associated species, and levels of G. vaginalis often rebounded during treatment. We observed gradual Lactobacillus species growth, indicating that untargeted microbes fill the transient vacuum formed during treatment. CONCLUSIONS: Under antibiotic pressure, the human microbiome can undergo rapid shifts on a scale of hours. When treatment is stopped, BV-associated bacteria quickly reemerge, suggesting a possible role for intermittent prophylactic treatment.


Asunto(s)
Antibacterianos/uso terapéutico , Bacterias/efectos de los fármacos , Biota/efectos de los fármacos , Metronidazol/uso terapéutico , Vagina/microbiología , Vaginosis Bacteriana/tratamiento farmacológico , Bacterias/aislamiento & purificación , Femenino , Humanos , Estudios Longitudinales , Modelos Teóricos , Factores de Tiempo
12.
Vaccines (Basel) ; 12(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38543894

RESUMEN

Human rotavirus (HRV) is still a leading cause of severe dehydrating gastroenteritis globally, particularly in infants and children. Previously, we demonstrated the immunogenicity of mRNA-based HRV vaccine candidates expressing the viral spike protein VP8* in rodent models. In the present study, we assessed the immunogenicity and protective efficacy of two mRNA-based HRV trivalent vaccine candidates, encoding VP8* of the genotypes P[8], P[6], or P[4], in the gnotobiotic (Gn) pig model of Wa (G1P[8]) HRV infection and diarrhea. Vaccines either encoded VP8* alone fused to the universal T-cell epitope P2 (P2-VP8*) or expressed P2-VP8* as a fusion protein with lumazine synthase (LS-P2-VP8*) to allow the formation and secretion of protein particles that present VP8* on their surface. Gn pigs were randomly assigned into groups and immunized three times with either P2-VP8* (30 µg) or LS-P2-VP8* (30 µg or 12 µg). A trivalent alum-adjuvanted P2-VP8* protein vaccine or an LNP-formulated irrelevant mRNA vaccine served as the positive and negative control, respectively. Upon challenge with virulent Wa HRV, a significantly shortened duration and decreased severity of diarrhea and significant protection from virus shedding was induced by both mRNA vaccine candidates compared to the negative control. Both LS-P2-VP8* doses induced significantly higher VP8*-specific IgG antibody titers in the serum after immunizations than the negative as well as the protein control. The P[8] VP8*-specific IgG antibody-secreting cells in the ileum, spleen, and blood seven days post-challenge, as well as VP8*-specific IFN-γ-producing T-cell numbers increased in all three mRNA-vaccinated pig groups compared to the negative control. Overall, there was a clear tendency towards improved responses in LS-P2-VP8* compared to the P2-VP8*mRNA vaccine. The demonstrated strong humoral immune responses, priming for effector T cells, and the significant reduction of viral shedding and duration of diarrhea in Gn pigs provide a promising proof of concept and may provide guidance for the further development of mRNA-based rotavirus vaccines.

13.
NPJ Vaccines ; 9(1): 29, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341502

RESUMEN

New strategies are needed to reduce the incidence of malaria, and promising approaches include vaccines targeting the circumsporozoite protein (CSP). To improve upon the malaria vaccine, RTS,S/AS01, it is essential to standardize preclinical assays to measure the potency of next-generation vaccines against this benchmark. We focus on RTS,S/AS01-induced antibody responses and functional activity in conjunction with robust statistical analyses. Transgenic Plasmodium berghei sporozoites containing full-length P. falciparum CSP (tgPb-PfCSP) allow two assessments of efficacy: quantitative reduction in liver infection following intravenous challenge, and sterile protection from mosquito bite challenge. Two or three doses of RTS,S/AS01 were given intramuscularly at 3-week intervals, with challenge 2-weeks after the last vaccination. Minimal inter- and intra-assay variability indicates the reproducibility of the methods. Importantly, the range of this model is suitable for screening more potent vaccines. Levels of induced anti-CSP antibody 2A10 equivalency were also associated with activity: 105 µg/mL (95% CI: 68.8, 141) reduced liver infection by 50%, whereas 285 µg/mL (95% CI: 166, 404) is required for 50% sterile protection from mosquito bite challenge. Additionally, the liver burden model was able to differentiate between protected and non-protected human plasma samples from a controlled human malaria infection study, supporting these models' relevance and predictive capability. Comparison in animal models of CSP-based vaccine candidates to RTS,S/AS01 is now possible under well controlled conditions. Assessment of the quality of induced antibodies, likely a determinant of durability of protection in humans, should be possible using these methods.

14.
Pharmaceutics ; 16(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38794258

RESUMEN

Monoclonal antibodies are commonly engineered with an introduction of Met428Leu and Asn434Ser, known as the LS mutation, in the fragment crystallizable region to improve pharmacokinetic profiles. The LS mutation delays antibody clearance by enhancing binding affinity to the neonatal fragment crystallizable receptor found on endothelial cells. To characterize the LS mutation for monoclonal antibodies targeting HIV, we compared pharmacokinetic parameters between parental versus LS variants for five pairs of anti-HIV immunoglobin G1 monoclonal antibodies (VRC01/LS/VRC07-523LS, 3BNC117/LS, PGDM1400/LS PGT121/LS, 10-1074/LS), analyzing data from 16 clinical trials of 583 participants without HIV. We described serum concentrations of these monoclonal antibodies following intravenous or subcutaneous administration by an open two-compartment disposition, with first-order elimination from the central compartment using non-linear mixed effects pharmacokinetic models. We compared estimated pharmacokinetic parameters using the targeted maximum likelihood estimation method, accounting for participant differences. We observed lower clearance rate, central volume, and peripheral volume of distribution for all LS variants compared to parental monoclonal antibodies. LS monoclonal antibodies showed several improvements in pharmacokinetic parameters, including increases in the elimination half-life by 2.7- to 4.1-fold, the dose-normalized area-under-the-curve by 4.1- to 9.5-fold, and the predicted concentration at 4 weeks post-administration by 3.4- to 7.6-fold. Results suggest a favorable pharmacokinetic profile of LS variants regardless of HIV epitope specificity. Insights support lower dosages and/or less frequent dosing of LS variants to achieve similar levels of antibody exposure in future clinical applications.

16.
Am J Epidemiol ; 177(11): 1236-45, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23592542

RESUMEN

Polio eradication is on the cusp of success, with only a few regions still maintaining transmission. Improving our understanding of why some regions have been successful and others have not will help with both global eradication of polio and development of more effective vaccination strategies for other pathogens. To examine the past 25 years of eradication efforts, we constructed a transmission model for wild poliovirus that incorporates waning immunity (which affects both infection risk and transmissibility of any resulting infection), age-mediated vaccination rates, and transmission of oral polio vaccine. The model produces results consistent with the 4 country categories defined by the Global Polio Eradication Program: elimination with no subsequent outbreaks; elimination with subsequent transient outbreaks; elimination with subsequent outbreaks and transmission detected for more than 12 months; and endemic polio transmission. Analysis of waning immunity rates and oral polio vaccine transmissibility reveals that higher waning immunity rates make eradication more difficult because of increasing numbers of infectious adults, and that higher oral polio vaccine transmission rates make eradication easier as adults become reimmunized. Given these dynamic properties, attention should be given to intervention strategies that complement childhood vaccination. For example, improvement in sanitation can reduce the reproduction number in problematic regions, and adult vaccination can lower adult transmission.


Asunto(s)
Erradicación de la Enfermedad , Modelos Inmunológicos , Poliomielitis/transmisión , Humanos , Vacunación Masiva , Poliomielitis/inmunología , Poliomielitis/prevención & control , Vacuna Antipolio Oral/efectos adversos
18.
Nat Commun ; 14(1): 8299, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097552

RESUMEN

The Antibody Mediated Prevention (AMP) trials (NCT02716675 and NCT02568215) demonstrated that passive administration of the broadly neutralizing monoclonal antibody VRC01 could prevent some HIV-1 acquisition events. Here, we use mathematical modeling in a post hoc analysis to demonstrate that VRC01 influenced viral loads in AMP participants who acquired HIV. Instantaneous inhibitory potential (IIP), which integrates VRC01 serum concentration and VRC01 sensitivity of acquired viruses in terms of both IC50 and IC80, follows a dose-response relationship with first positive viral load (p = 0.03), which is particularly strong above a threshold of IIP = 1.6 (r = -0.6, p = 2e-4). Mathematical modeling reveals that VRC01 activity predicted from in vitro IC80s and serum VRC01 concentrations overestimates in vivo neutralization by 600-fold (95% CI: 300-1200). The trained model projects that even if future therapeutic HIV trials of combination monoclonal antibodies do not always prevent acquisition, reductions in viremia and reservoir size could be expected.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Anticuerpos Neutralizantes , Carga Viral , Anticuerpos Anti-VIH , Modelos Teóricos
19.
Sci Adv ; 8(2): eabj5666, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35020436

RESUMEN

The engineered protein eCD4Ig has emerged as a promising approach to achieve HIV remission in the absence of antiviral therapy. eCD4Ig neutralizes nearly all HIV-1 isolates and induces antibody-dependent cell-mediated cytotoxicity (ADCC) in vitro. To characterize the in vivo antiviral neutralization and possible ADCC effects of eCD4Ig, we fit mathematical models to eCD4Ig, anti­eCD4Ig-drug antibody (ADA), and viral load kinetics from healthy and simian-human immunodeficiency virus AD8 (SHIV-AD8) infected nonhuman primates that were treated with single or sequentially dosed eCD4Ig passive administrations. Our model predicts that eCD4Ig transiently decreases SHIV viral loads due to neutralization only with an in vivo IC50 of ~25 µg/ml but with limited effect due to ADA. Simulations suggest that endogenous, continuous expression of eCD4Ig at levels greater than 105 µg/day, as is possible with Adeno-associated virus (AAV) vector-based production, could overcome the diminishing effects of ADA and allow for long-term remission of SHIV viremia in nonhuman primates.

20.
Nat Med ; 28(6): 1288-1296, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35551291

RESUMEN

HIV-1 therapy with single or dual broadly neutralizing antibodies (bNAbs) has shown viral escape, indicating that at least a triple bNAb therapy may be needed for robust suppression of viremia. We performed a two-part study consisting of a single-center, randomized, double-blind, dose-escalation, placebo-controlled first-in-human trial of the HIV-1 V2-glycan-specific antibody PGDM1400 alone or in combination with the V3-glycan-specific antibody PGT121 in 24 adults without HIV in part 1, as well as a multi-center, open-label trial of the combination of PGDM1400, PGT121 and the CD4-binding-site antibody VRC07-523LS in five viremic adults living with HIV not on antiretroviral therapy (ART) in part 2 ( NCT03205917 ). The primary endpoints were safety, tolerability and pharmacokinetics for both parts and antiviral activity among viremic adults living with HIV and not on ART for part 2 of the study. The secondary endpoints were changes in CD4+ T cell counts and development of HIV-1 sequence variations associated with PGDM1400, PGT121 and VRC07-523LS resistance in part 2. Intravenously administered PGDM1400 was safe and well-tolerated at doses up to 30 mg kg-1 and when given in combination with PGT121 and VRC07-523LS. A single intravenous infusion of 20 mg kg-1 of each of the three antibodies reduced plasma HIV RNA levels in viremic individuals by a maximum mean of 2.04 log10 copies per ml; however, viral rebound occurred in all participants within a median of 20 days after nadir. Rebound viruses demonstrated partial to complete resistance to PGDM1400 and PGT121 in vitro, whereas susceptibility to VRC07-523LS was preserved. Viral rebound occurred despite mean VRC07-523LS serum concentrations of 93 µg ml-1. The trial met the pre-specified endpoints. Our data suggest that future bNAb combinations likely need to achieve broad antiviral activity, while also maintaining high serum concentrations, to mediate viral control.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Adulto , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Neutralizantes , Antivirales/uso terapéutico , Anticuerpos ampliamente neutralizantes , Anticuerpos Anti-VIH , Humanos , Viremia/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA