RESUMEN
Thymic epithelial cell differentiation, growth and function depend on the expression of the transcription factor Foxn1; however, its target genes have never been physically identified. Using static and inducible genetic model systems and chromatin studies, we developed a genome-wide map of direct Foxn1 target genes for postnatal thymic epithelia and defined the Foxn1 binding motif. We determined the function of Foxn1 in these cells and found that, in addition to the transcriptional control of genes involved in the attraction and lineage commitment of T cell precursors, Foxn1 regulates the expression of genes involved in antigen processing and thymocyte selection. Thus, critical events in thymic lympho-stromal cross-talk and T cell selection are indispensably choreographed by Foxn1.
Asunto(s)
Células Epiteliales/fisiología , Factores de Transcripción Forkhead/metabolismo , Células Precursoras de Linfocitos T/fisiología , Linfocitos T/fisiología , Timo/fisiología , Animales , Presentación de Antígeno/genética , Comunicación Celular , Diferenciación Celular/genética , Linaje de la Célula/genética , Células Cultivadas , Selección Clonal Mediada por Antígenos/genética , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica , Genoma/genética , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones TransgénicosRESUMEN
Intrathymic T-cell development is critically dependent on cortical and medullary thymic epithelial cells (TECs). Both epithelial subsets originate during early thymus organogenesis from progenitor cells that express the thymoproteasome subunit ß5t, a typical feature of cortical TECs. Using in vivo lineage fate mapping, we demonstrate in mice that ß5t(+) TEC progenitors give rise to the medullary TEC compartment early in life but significantly limit their contribution once the medulla has completely formed. Lineage-tracing studies at single cell resolution demonstrate for young mice that the postnatal medulla is expanded from individual ß5t(+) cortical progenitors located at the cortico-medullary junction. These results therefore not only define a developmental window during which the expansion of medulla is efficiently enabled by progenitors resident in the thymic cortex, but also reveal the spatio-temporal dynamics that control the growth of the thymic medulla.
Asunto(s)
Células Epiteliales/citología , Complejo de la Endopetidasa Proteasomal/metabolismo , Linfocitos T/citología , Timo/citología , Timo/embriología , Animales , Diferenciación Celular , Linaje de la Célula/inmunología , Proliferación Celular , Doxiciclina/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Organogénesis/fisiología , Células Madre/citología , Linfocitos T/inmunologíaRESUMEN
The thymus provides multiple microenvironments that are essential for the development and repertoire selection of T lymphocytes. The thymic cortex induces the generation and positive selection of T lymphocytes, whereas the thymic medulla establishes self-tolerance among the positively selected T lymphocytes. Cortical thymic epithelial cells (cTECs) and medullary TECs (mTECs) constitute the major stromal cells that structurally form and functionally characterize the cortex and the medulla, respectively. cTECs and mTECs are both derived from the endodermal epithelium of the third pharyngeal pouch. However, the molecular and cellular characteristics of the progenitor cells for the distinct TEC lineages are unclear. Here we report the preparation and characterization of mice that express the recombinase Cre instead of ß5t, a proteasome subunit that is abundant in cTECs and not detected in other cell types, including mTECs. By crossing ß5t-Cre knock-in mice with loxP-dependent GFP reporter mice, we found that ß5t-Cre-mediated recombination occurs specifically in TECs but not in any other cell types in the mouse. Surprisingly, in addition to cTECs, ß5t-Cre-loxP-mediated GFP expression was detected in almost all mTECs. These results indicate that the majority of mTECs, including autoimmune regulator-expressing mTECs, are derived from ß5t-expressing progenitor cells.
Asunto(s)
Células Epiteliales/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Células Madre/metabolismo , Timo/metabolismo , Animales , Citometría de Flujo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Integrasas/genética , Integrasas/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal , Complejo de la Endopetidasa Proteasomal/genética , Linfocitos T/metabolismo , Timo/citología , Timo/embriología , Factores de Tiempo , Factores de Transcripción/metabolismo , Proteína AIRERESUMEN
Thymic epithelial cells provide unique cues for the lifelong selection and differentiation of a repertoire of functionally diverse T cells. Rendered microRNA (miRNA) deficient, these stromal cells in the mouse lose their capacity to instruct the commitment of hematopoietic precursors to a T cell fate, to effect thymocyte positive selection, and to achieve promiscuous gene expression required for central tolerance induction. Over time, the microenvironment created by miRNA-deficient thymic epithelia assumes the cellular composition and structure of peripheral lymphoid tissue, where thympoiesis fails to be supported. These findings emphasize a global role for miRNA in the maintenance and function of the thymic epithelial cell scaffold and establish a novel mechanism how these cells control peripheral tissue Ag expression to prompt central immunological tolerance.
Asunto(s)
Diferenciación Celular/inmunología , Linaje de la Célula/inmunología , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , MicroARNs/fisiología , Linfocitos T/inmunología , Timo/inmunología , Timo/metabolismo , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , ARN Helicasas DEAD-box/deficiencia , Células Epiteliales/patología , Ratones , Ratones Desnudos , Ratones Transgénicos , MicroARNs/antagonistas & inhibidores , Mutación , Técnicas de Cultivo de Órganos , Ribonucleasa III/deficiencia , Células del Estroma/inmunología , Células del Estroma/metabolismo , Células del Estroma/patología , Linfocitos T/citología , Linfocitos T/metabolismo , Timo/embriologíaRESUMEN
Medullary thymic epithelial cells (mTECs) play an essential role in establishing self-tolerance in T cells. mTECs originate from bipotent TEC progenitors that generate both mTECs and cortical TECs (cTECs), although mTEC-restricted progenitors also have been reported. Here, we report in vivo fate-mapping analysis of cells that transcribe ß5t, a cTEC trait expressed in bipotent progenitors, during a given period in mice. We show that, in adult mice, most mTECs are derived from progenitors that transcribe ß5t during embryogenesis and the neonatal period up to 1 week of age. The contribution of adult ß5t(+) progenitors was minor even during injury-triggered regeneration. Our results further demonstrate that adult mTEC-restricted progenitors are derived from perinatal ß5t(+) progenitors. These results indicate that the adult thymic medullary epithelium is maintained and regenerated by mTEC-lineage cells that pass beyond the bipotent stage during early ontogeny.