Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(38): 20749-20754, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37722679

RESUMEN

Nature is rich with examples of highly specialized biological materials produced by organisms for functions, including defense, hunting, and protection. Along these lines, velvet worms (Onychophora) expel a protein-based slime used for hunting and defense that upon shearing and dehydration forms fibers as stiff as thermoplastics. These fibers can dissolve back into their precursor proteins in water, after which they can be drawn into new fibers, providing biological inspiration to design recyclable materials. Elevated phosphorus content in velvet worm slime was previously observed and putatively ascribed to protein phosphorylation. Here, we show instead that phosphorus is primarily present as phosphonate moieties in the slime of distantly related velvet worm species. Using high-resolution nuclear magnetic resonance (NMR), natural abundance dynamic nuclear polarization (DNP), and mass spectrometry (MS), we demonstrate that 2-aminoethyl phosphonate (2-AEP) is associated with glycans linked to large slime proteins, while transcriptomic analyses confirm the expression of 2-AEP synthesizing enzymes in slime glands. The evolutionary conservation of this rare protein modification suggests an essential functional role of phosphonates in velvet worm slime and should stimulate further study of the function of this unusual chemical modification in nature.


Asunto(s)
Organofosfonatos , Proteínas , Proteínas/química , Espectroscopía de Resonancia Magnética , Fósforo , Espectrometría de Masas
2.
Small ; 19(22): e2300516, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36828797

RESUMEN

For prey capture and defense, velvet worms eject an adhesive slime which has been established as a model system for recyclable complex liquids. Triggered by mechanical agitation, the liquid bio-adhesive rapidly transitions into solid fibers. In order to understand this mechanoresponsive behavior, here, the nanostructural organization of slime components are studied using small-angle scattering with neutrons and X-rays. The scattering intensities are successfully described with a three-component model accounting for proteins of two dominant molecular weight fractions and nanoscale globules. In contrast to the previous assumption that high molecular weight proteins-the presumed building blocks of the fiber core-are contained in the nanoglobules, it is found that the majority of slime proteins exist freely in solution. Only less than 10% of the slime proteins are contained in the nanoglobules, necessitating a reassessment of their function in fiber formation. Comparing scattering data of slime re-hydrated with light and heavy water reveals that the majority of lipids in slime are contained in the nanoglobules with homogeneous distribution. Vibrating mechanical impact under exclusion of air neither leads to formation of fibers nor alters the bulk structure of slime significantly, suggesting that interfacial phenomena and directional shearing are required for fiber formation.


Asunto(s)
Nanoestructuras , Proteínas , Proteínas/química , Dispersión del Ángulo Pequeño , Adhesivos/química , Dispersión de Radiación
3.
BMC Biol ; 20(1): 26, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35073910

RESUMEN

BACKGROUND: The evolution of the brain and its major neuropils in Panarthropoda (comprising Arthropoda, Tardigrada and Onychophora) remains enigmatic. As one of the closest relatives of arthropods, onychophorans are regarded as indispensable for a broad understanding of the evolution of panarthropod organ systems, including the brain, whose anatomical and functional organisation is often used to gain insights into evolutionary relations. However, while numerous recent studies have clarified the organisation of many arthropod nervous systems, a detailed investigation of the onychophoran brain with current state-of-the-art approaches is lacking, and further inconsistencies in nomenclature and interpretation hamper its understanding. To clarify the origins and homology of cerebral structures across panarthropods, we analysed the brain architecture in the onychophoran Euperipatoides rowelli by combining X-ray micro-computed tomography, histology, immunohistochemistry, confocal microscopy, and three-dimensional reconstruction. RESULTS: Here, we use this detailed information to generate a consistent glossary for neuroanatomical studies of Onychophora. In addition, we report novel cerebral structures, provide novel details on previously known brain areas, and characterise further structures and neuropils in order to improve the reproducibility of neuroanatomical observations. Our findings support homology of mushroom bodies and central bodies in onychophorans and arthropods. Their antennal nerve cords and olfactory lobes most likely evolved independently. In contrast to previous reports, we found no evidence for second-order visual neuropils, or a frontal ganglion in the velvet worm brain. CONCLUSION: We imaged the velvet worm nervous system at an unprecedented level of detail and compiled a comprehensive glossary of known and previously uncharacterised neuroanatomical structures to provide an in-depth characterisation of the onychophoran brain architecture. We expect that our data will improve the reproducibility and comparability of future neuroanatomical studies.


Asunto(s)
Artrópodos , Animales , Encéfalo , Sistema Nervioso , Reproducibilidad de los Resultados , Microtomografía por Rayos X
4.
Mol Biol Evol ; 37(12): 3601-3615, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-32750126

RESUMEN

Chemosensory perception is a fundamental biological process of particular relevance in basic and applied arthropod research. However, apart from insects, there is little knowledge of specific molecules involved in this system, which is restricted to a few taxa with uneven phylogenetic sampling across lineages. From an evolutionary perspective, onychophorans (velvet worms) and tardigrades (water bears) are of special interest since they represent the closest living relatives of arthropods, altogether comprising the Panarthropoda. To get insights into the evolutionary origin and diversification of the chemosensory gene repertoire in panarthropods, we sequenced the antenna- and head-specific transcriptomes of the velvet worm Euperipatoides rowelli and analyzed members of all major chemosensory families in representative genomes of onychophorans, tardigrades, and arthropods. Our results suggest that the NPC2 gene family was the only family encoding soluble proteins in the panarthropod ancestor and that onychophorans might have lost many arthropod-like chemoreceptors, including the highly conserved IR25a receptor of protostomes. On the other hand, the eutardigrade genomes lack genes encoding the DEG-ENaC and CD36-sensory neuron membrane proteins, the chemosensory members of which have been retained in arthropods; these losses might be related to lineage-specific adaptive strategies of tardigrades to survive extreme environmental conditions. Although the results of this study need to be further substantiated by an increased taxon sampling, our findings shed light on the diversification of chemosensory gene families in Panarthropoda and contribute to a better understanding of the evolution of animal chemical senses.


Asunto(s)
Proteínas de Artrópodos/genética , Células Quimiorreceptoras , Evolución Molecular , Invertebrados/genética , Familia de Multigenes , Animales , Femenino , Masculino
5.
Proc Natl Acad Sci U S A ; 114(33): 8835-8840, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28760981

RESUMEN

The early Cambrian problematica Xianguangia sinica, Chengjiangopenna wangii, and Galeaplumosus abilus from the Chengjiang biota (Yunnan, China) have caused much controversy in the past and their phylogenetic placements remain unresolved. Here we show, based on exceptionally preserved material (85 new specimens plus type material), that specimens previously assigned to these three species are in fact parts of the same organism and propose that C. wangii and G. abilus are junior synonyms of X. sinica Our reconstruction of the complete animal reveals an extinct body plan that combines the characteristics of the three described species and is distinct from all known fossil and living taxa. This animal resembled a cnidarian polyp in overall morphology and having a gastric cavity partitioned by septum-like structures. However, it possessed an additional body cavity within its holdfast, an anchoring pit on the basal disk, and feather-like tentacles with densely ciliated pinnules arranged in an alternating pattern, indicating that it was a suspension feeder rather than a predatory actiniarian. Phylogenetic analyses using Bayesian inference and maximum parsimony suggest that X. sinica is a stem-group cnidarian. This relationship implies that the last common ancestor of X. sinica and crown cnidarians was probably a benthic, polypoid animal with a partitioned gastric cavity and a single mouth/anus opening. This extinct body plan suggests that feeding strategies of stem cnidarians may have been drastically different from that of their crown relatives, which are almost exclusively predators, and reveals that the morphological disparity of total-group Cnidaria is greater than previously assumed.


Asunto(s)
Cnidarios/anatomía & histología , Cnidarios/clasificación , Fósiles , Animales
6.
Proc Natl Acad Sci U S A ; 114(47): 12378-12383, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29109262

RESUMEN

X-ray computed tomography (CT) is a powerful noninvasive technique for investigating the inner structure of objects and organisms. However, the resolution of laboratory CT systems is typically limited to the micrometer range. In this paper, we present a table-top nanoCT system in conjunction with standard processing tools that is able to routinely reach resolutions down to 100 nm without using X-ray optics. We demonstrate its potential for biological investigations by imaging a walking appendage of Euperipatoides rowelli, a representative of Onychophora-an invertebrate group pivotal for understanding animal evolution. Comparative analyses proved that the nanoCT can depict the external morphology of the limb with an image quality similar to scanning electron microscopy, while simultaneously visualizing internal muscular structures at higher resolutions than confocal laser scanning microscopy. The obtained nanoCT data revealed hitherto unknown aspects of the onychophoran limb musculature, enabling the 3D reconstruction of individual muscle fibers, which was previously impossible using any laboratory-based imaging technique.


Asunto(s)
Imagenología Tridimensional/métodos , Invertebrados/anatomía & histología , Músculos/anatomía & histología , Nanotecnología/métodos , Tomografía Computarizada por Rayos X/métodos , Animales , Extremidades/anatomía & histología , Extremidades/diagnóstico por imagen , Imagenología Tridimensional/instrumentación , Microscopía Confocal/métodos , Microscopía Electrónica de Rastreo/métodos , Músculos/diagnóstico por imagen , Nanotecnología/instrumentación , Tomografía Computarizada por Rayos X/instrumentación
7.
BMC Evol Biol ; 19(1): 11, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30626321

RESUMEN

BACKGROUND: Transposable elements (TEs) are a major component of metazoan genomes and are associated with a variety of mechanisms that shape genome architecture and evolution. Despite the ever-growing number of insect genomes sequenced to date, our understanding of the diversity and evolution of insect TEs remains poor. RESULTS: Here, we present a standardized characterization and an order-level comparison of arthropod TE repertoires, encompassing 62 insect and 11 outgroup species. The insect TE repertoire contains TEs of almost every class previously described, and in some cases even TEs previously reported only from vertebrates and plants. Additionally, we identified a large fraction of unclassifiable TEs. We found high variation in TE content, ranging from less than 6% in the antarctic midge (Diptera), the honey bee and the turnip sawfly (Hymenoptera) to more than 58% in the malaria mosquito (Diptera) and the migratory locust (Orthoptera), and a possible relationship between the content and diversity of TEs and the genome size. CONCLUSION: While most insect orders exhibit a characteristic TE composition, we also observed intraordinal differences, e.g., in Diptera, Hymenoptera, and Hemiptera. Our findings shed light on common patterns and reveal lineage-specific differences in content and evolution of TEs in insects. We anticipate our study to provide the basis for future comparative research on the insect TE repertoire.


Asunto(s)
Elementos Transponibles de ADN/genética , Evolución Molecular , Variación Genética , Insectos/genética , Animales , Regiones Antárticas , Secuencia de Bases , Tamaño del Genoma , Genoma de los Insectos , Filogenia
8.
BMC Dev Biol ; 19(1): 7, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30987579

RESUMEN

BACKGROUND: NK genes are a group of homeobox transcription factors that are involved in various molecular pathways across bilaterians. They are typically divided into two subgroups, the NK cluster (NKC) and NK-linked genes (NKL). While the NKC genes have been studied in various bilaterians, corresponding data of many NKL genes are missing to date. To further investigate the ancestral roles of NK family genes, we analyzed the expression patterns of NKL genes in the onychophoran Euperipatoides rowelli. RESULTS: The NKL gene complement of E. rowelli comprises eight genes, including BarH, Bari, Emx, Hhex, Nedx, NK2.1, vax and NK2.2, of which only NK2.2 was studied previously. Our data for the remaining seven NKL genes revealed expression in different structures associated with the developing nervous system in embryos of E. rowelli. While NK2.1 and vax are expressed in distinct medial regions of the developing protocerebrum early in development, BarH, Bari, Emx, Hhex and Nedx are expressed in late developmental stages, after all major structures of the nervous system have been established. Furthermore, BarH and Nedx are expressed in distinct mesodermal domains in the developing limbs. CONCLUSIONS: Comparison of our expression data to those of other bilaterians revealed similar patterns of NK2.1, vax, BarH and Emx in various aspects of neural development, such as the formation of anterior neurosecretory cells mediated by a conserved molecular mechanism including NK2.1 and vax, and the development of the central and peripheral nervous system involving BarH and Emx. A conserved role in neural development has also been reported from NK2.2, suggesting that the NKL genes might have been primarily involved in neural development in the last common ancestor of bilaterians or at least nephrozoans (all bilaterians excluding xenacoelomorphs). The lack of comparative data for many of the remaining NKL genes, including Bari, Hhex and Nedx currently hampers further evolutionary conclusions. Hence, future studies should focus on the expression of these genes in other bilaterians, which would provide a basis for comparative studies and might help to better understand the role of NK genes in the diversification of bilaterians.


Asunto(s)
Artrópodos/embriología , Artrópodos/genética , Regulación del Desarrollo de la Expresión Génica/genética , Genes Homeobox/genética , Proteínas de Homeodominio/genética , Animales , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Familia de Multigenes/genética , Sistema Nervioso/embriología , Factores de Transcripción/genética
9.
Front Zool ; 16: 16, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31182967

RESUMEN

BACKGROUND: Onychophorans, commonly known as velvet worms, display a remarkable diversity of reproductive strategies including oviparity, and placentotrophic, lecithotrophic, matrotrophic or combined lecithotrophic/matrotrophic viviparity. In the placentotrophic species, the embryos of consecutive developmental stages are attached to the uterus via a placental stalk, suggesting they might be transported passively towards the vagina due to proximal growth and distal degeneration of tissue. However, this assumption has never been tested using specific markers. We therefore analyzed the patterns of cell proliferation and apoptosis in the genital tracts of two placentotrophic peripatids from Colombia and a non-placentotrophic peripatopsid from Australia. RESULTS: All three species show a high number of apoptotic cells in the distal portion of the genital tract near the genital opening. In the two placentotrophic species, additional apoptotic cells appear in ring-like vestigial placentation zones of late embryonic chambers. While moderate cell proliferation occurs along the entire uterus in all three species, only the two placentotrophic species show a distinct proliferation zone near the ovary as well as in the ring-like implantation zone of the first embryonic chamber. In contrast to the two placentotrophic species, the non-placentotrophic species clearly does not show such regions of high proliferation in the uterus but exhibits proliferating and apoptotic cells in the ovarian stalks. While cell proliferation mainly occurs in stalks carrying maturating oocytes, apoptosis is restricted to stalks whose oocytes have been released into the ovarian lumen. CONCLUSIONS: Our results confirm the hypothesis that the uterus of placentotrophic onychophorans grows proximally but is resorbed distally. This is supported by the detection of a proximal proliferation zone and a distal degenerative zone in the two placentotrophic species. Hence, cell turnover might be responsible for the transport of their embryos towards the vagina, analogous to a conveyor belt. Surprisingly, the distal degenerative zone is also found in the non-placentotrophic species, in which cell turnover was unexpected. These findings suggest that the distal degenerative zone is an ancestral feature of Onychophora, whereas the proximal proliferation zone might have evolved in the last common ancestor of the placentotrophic Peripatidae.

10.
J Exp Biol ; 221(Pt 11)2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29626113

RESUMEN

Onychophorans, also known as velvet worms, possess a pair of simple lateral eyes, and are a key lineage with regard to the evolution of vision. They resemble ancient Cambrian forms, and are closely related to arthropods, which boast an unrivalled diversity of eye designs. Nonetheless, the visual capabilities of onychophorans have not been well explored. Here, we assessed the spatial resolution of the onychophoran Euperipatoides rowelli using behavioural experiments, three-dimensional reconstruction, anatomical and optical examinations, and modelling. Exploiting their spontaneous attraction towards dark objects, we found that E. rowelli can resolve stimuli that have the same average luminance as the background. Depending on the assumed contrast sensitivity of the animals, we estimate the spatial resolution to be in the range 15-40 deg. This results from an arrangement where the cornea and lens project the image largely behind the retina. The peculiar ellipsoid shape of the eye in combination with the asymmetric position and tilted orientation of the lens may improve spatial resolution in the forward direction. Nonetheless, the unordered network of interdigitating photoreceptors, which fills the whole eye chamber, precludes high-acuity vision. Our findings suggest that adult specimens of E. rowelli cannot spot or visually identify prey or conspecifics beyond a few centimetres from the eye, but the coarse spatial resolution that the animals exhibited in our experiments is likely to be sufficient to find shelter and suitable microhabitats from further away. To our knowledge, this is the first evidence of resolving vision in an onychophoran.


Asunto(s)
Invertebrados/fisiología , Visión Ocular/fisiología , Animales , Ojo/patología
11.
Biomacromolecules ; 19(10): 4034-4043, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30114911

RESUMEN

Velvet worms secrete a fluid hunting slime comprised of a dispersion of nanoglobules that form microfibers under small mechanical shear forces, facilitating the rapid formation of stiff biopolymeric fibers. Here, we demonstrate that the nanoglobules are held together and stabilized as a dispersion by electrostatic interactions reminiscent of coacervate-based natural adhesives. Variation of ionic strength and pH affects the stability of nanoglobules and their ability to form fibers. Fibers mainly consist of large (∼300 kDa), highly charged proteins, and current biochemical analysis reveals a high degree of protein phosphorylation and presence of divalent cations. Taken together, we surmise that polyampholytic protein sequences, phosphorylated sites, and ions give rise to transient ionic cross-linking, enabling reversible curing of ejected slime into high-stiffness fibers following dehydration. These results provide a deeper understanding of velvet worm adhesive fibers, which may stimulate new routes toward mechanoresponsive and sustainable materials.


Asunto(s)
Adhesivos/química , Proteínas de Artrópodos/metabolismo , Artrópodos/metabolismo , Reactivos de Enlaces Cruzados/química , Nanoestructuras/química , Fosfoproteínas/metabolismo , Electricidad Estática , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/química , Concentración de Iones de Hidrógeno , Concentración Osmolar , Fosfoproteínas/química , Procesamiento Proteico-Postraduccional
12.
J Microsc ; 270(3): 343-358, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29469207

RESUMEN

Non-invasive imaging techniques like X-ray computed tomography have become very popular in zoology, as they allow for simultaneous imaging of the internal and external morphology of organisms. Nevertheless, the effect of different staining approaches required for this method on samples lacking mineralized tissues, such as soft-bodied invertebrates, remains understudied. Herein, we used synchrotron radiation-based X-ray micro-computed tomography to compare the effects of commonly used contrasting approaches on onychophorans - soft-bodied invertebrates important for studying animal evolution. Representatives of Euperipatoides rowelli were stained with osmium tetroxide (vapour or solution), ruthenium red, phosphotungstic acid, or iodine. Unstained specimens were imaged using both standard attenuation-based and differential phase-contrast setups to simulate analyses with museum material. Our comparative qualitative analyses of several tissue types demonstrate that osmium tetroxide provides the best overall tissue contrast in onychophorans, whereas the remaining staining agents rather favour the visualisation of specific tissues and/or structures. Quantitative analyses using signal-to-noise ratio measurements show that the level of image noise may vary according to the staining agent and scanning medium selected. Furthermore, box-and-whisker plots revealed substantial overlap in grey values among structures in all datasets, suggesting that a combination of semiautomatic and manual segmentation of structures is required for comprehensive 3D reconstructions of Onychophora, irrespective of the approach selected. Our results show that X-ray micro-computed tomography is a promising technique for studying onychophorans and, despite the benefits and disadvantages of different staining agents for specific tissues/structures, this method retrieves informative data that may eventually help address evolutionary questions long associated with Onychophora.


Asunto(s)
Helmintos/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Coloración y Etiquetado/métodos , Microtomografía por Rayos X/métodos , Animales , Yodo/metabolismo , Tetróxido de Osmio/metabolismo , Ácido Fosfotúngstico/metabolismo , Rojo de Rutenio/metabolismo
13.
Dev Dyn ; 246(5): 403-416, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28198063

RESUMEN

BACKGROUND: Apoptosis is involved in various developmental processes, including cell migration and tissue and organ formation. Some of these processes are conserved across metazoans, while others are specific to particular taxa. Although the patterns of apoptosis have been investigated in arthropods, no corresponding data are available from one of their closest relatives, the Onychophora (velvet worms). RESULTS: We analyzed the patterns of apoptosis in embryos of two onychophoran species: the lecithotrophic/matrotrophic viviparous peripatopsid Euperipatoides rowelli, and the placentotrophic viviparous peripatid Principapillatus hitoyensis. Our data show that apoptosis occurs early in development and might be responsible for the degeneration of extra-embryonic tissues. Moreover, apoptosis might be involved in the morphogenesis of the ventral and preventral organs in both species and occurs additionally in the placental stalk of P. hitoyensis. CONCLUSIONS: Despite the different developmental modes in these onychophoran species, our data suggest that patterns of apoptosis are conserved among onychophorans. While apoptosis in the dorsal extra-embryonic tissue might contribute to dorsal closure-a process also known from arthropods-the involvement of apoptosis in ventral closure might be unique to onychophorans. Apoptosis in the placental stalk of P. hitoyensis is most likely a derived feature of the placentotrophic onychophorans. Developmental Dynamics 246:403-416, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Anélidos/embriología , Apoptosis/fisiología , Desarrollo Embrionario/fisiología , Morfogénesis , Animales , Artrópodos/embriología , Tipificación del Cuerpo , Organogénesis
14.
BMC Evol Biol ; 17(1): 3, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-28049417

RESUMEN

BACKGROUND: Due to their phylogenetic position as one of the closest arthropod relatives, studies of the organisation of the nervous system in onychophorans play a key role for understanding the evolution of body segmentation in arthropods. Previous studies revealed that, in contrast to the arthropods, segmentally repeated ganglia are not present within the onychophoran ventral nerve cords, suggesting that segmentation is either reduced or might be incomplete in the onychophoran ventral nervous system. RESULTS: To assess segmental versus non-segmental features in the ventral nervous system of onychophorans, we screened the nerve cords for various markers, including synapsin, serotonin, gamma-aminobutyric acid, RFamide, dopamine, tyramine and octopamine. In addition, we performed retrograde fills of serially repeated commissures and leg nerves to localise the position of neuronal somata supplying those. Our data revealed a mixture of segmental and non-segmental elements within the onychophoran nervous system. CONCLUSIONS: We suggest that the segmental ganglia of arthropods evolved by a gradual condensation of subsets of neurons either in the arthropod or the arthropod-tardigrade lineage. These findings are in line with the hypothesis of gradual evolution of segmentation in panarthropods and thus contradict a loss of ancestral segmentation within the onychophoran lineage.


Asunto(s)
Artrópodos/anatomía & histología , Ganglios de Invertebrados , Animales , Artrópodos/clasificación , Artrópodos/metabolismo , Evolución Biológica , Biomarcadores/metabolismo , Sistema Nervioso/anatomía & histología , Neuronas , Neuropéptidos , Filogenia , Serotonina/metabolismo
15.
Artículo en Inglés | MEDLINE | ID: mdl-28600600

RESUMEN

Understanding the origin and evolution of arthropods requires examining their closest outgroups, the tardigrades (water bears) and onychophorans (velvet worms). Despite the rise of molecular techniques, the phylogenetic positions of tardigrades and onychophorans in the panarthropod tree (onychophorans + tardigrades + arthropods) remain unresolved. Hence, these methods alone are currently insufficient for clarifying the panarthropod topology. Therefore, the evolution of different morphological traits, such as one of the most intriguing features of panarthropods-their nervous system-becomes essential for shedding light on the origin and evolution of arthropods and their relatives within the Panarthropoda. In this review, we summarise current knowledge of the evolution of panarthropod nervous and visual systems. In particular, we focus on the evolution of segmental ganglia, the segmental identity of brain regions, and the visual system from morphological and developmental perspectives. In so doing, we address some of the many controversies surrounding these topics, such as the homology of the onychophoran eyes to those of arthropods as well as the segmentation of the tardigrade brain. Finally, we attempt to reconstruct the most likely state of these systems in the last common ancestors of arthropods and panarthropods based on what is currently known about tardigrades and onychophorans.


Asunto(s)
Artrópodos/anatomía & histología , Artrópodos/clasificación , Evolución Biológica , Animales , Sistema Nervioso/anatomía & histología , Filogenia , Vías Visuales/anatomía & histología , Vías Visuales/fisiología
16.
J Clin Apher ; 32(1): 12-15, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26939709

RESUMEN

BACKGROUND: Extracorporeal photopheresis (ECP) is an important cell-based therapy for various diseases but is limited to patients eligible for apheresis. We developed an alternative mini buffy coat (BC) preparation method using the Spectra Optia® apheresis system and compared its efficacy of white blood cell (WBC) recovery with the standard mini BC preparation method already established for pediatric patients. METHODS: Whole blood (450 ± 45 mL) samples were collected from 30 randomly selected healthy volunteer blood donors and divided into two groups. In the first group, WBCs were separated with a fully automated separator device (Compomat G4® ). In the second group, BCs were separated with the bone marrow processing program of the Spectra Optia apheresis system. RESULTS: There were no significant differences in total leukocyte counts per product between the two groups. In contrast, lymphocyte counts per product were significantly higher (P < 0.001) in BCs separated from apheresis. CONCLUSION: Our novel technique resulted in similar WBC yields but higher lymphocyte yields than the standard mini BC preparation method. This method can serve as an alternative to WBC collection in conventional ECP for adult patients with apheresis contraindications. J. Clin. Apheresis 32:12-15, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Capa Leucocitaria de la Sangre/citología , Fotoféresis/métodos , Adulto , Eliminación de Componentes Sanguíneos/métodos , Eliminación de Componentes Sanguíneos/normas , Separación Celular/métodos , Humanos , Recuento de Leucocitos , Leucocitos/citología , Recuento de Linfocitos , Fotoféresis/normas
17.
BMC Genomics ; 17(1): 861, 2016 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-27809783

RESUMEN

BACKGROUND: Body plan development in multi-cellular organisms is largely determined by homeotic genes. Expression of homeotic genes, in turn, is partially regulated by insulator binding proteins (IBPs). While only a few enhancer blocking IBPs have been identified in vertebrates, the common fruit fly Drosophila melanogaster harbors at least twelve different enhancer blocking IBPs. We screened recently compiled insect transcriptomes from the 1KITE project and genomic and transcriptomic data from public databases, aiming to trace the origin of IBPs in insects and other arthropods. RESULTS: Our study shows that the last common ancestor of insects (Hexapoda) already possessed a substantial number of IBPs. Specifically, of the known twelve insect IBPs, at least three (i.e., CP190, Su(Hw), and CTCF) already existed prior to the evolution of insects. Furthermore we found GAF orthologs in early branching insect orders, including Zygentoma (silverfish and firebrats) and Diplura (two-pronged bristletails). Mod(mdg4) is most likely a derived feature of Neoptera, while Pita is likely an evolutionary novelty of holometabolous insects. Zw5 appears to be restricted to schizophoran flies, whereas BEAF-32, ZIPIC and the Elba complex, are probably unique to the genus Drosophila. Selection models indicate that insect IBPs evolved under neutral or purifying selection. CONCLUSIONS: Our results suggest that a substantial number of IBPs either pre-date the evolution of insects or evolved early during insect evolution. This suggests an evolutionary history of insulator binding proteins in insects different to that previously thought. Moreover, our study demonstrates the versatility of the 1KITE transcriptomic data for comparative analyses in insects and other arthropods.


Asunto(s)
Artrópodos/genética , Proteínas de Unión al ADN/genética , Evolución Molecular , Elementos Aisladores , Transcriptoma , Animales , Drosophila melanogaster/genética , Elementos de Facilitación Genéticos , Perfilación de la Expresión Génica , Filogenia
18.
Evol Dev ; 17(1): 3-20, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25627710

RESUMEN

Pax family genes encode a class of transcription factors that regulate various developmental processes. To shed light on the evolutionary history of these genes in Panarthropoda (Onychophora + Tardigrada + Arthropoda), we analyzed the Pax repertoire in the embryonic and adult transcriptomes of the onychophoran Euperipatoides rowelli. Our data revealed homologs of all five major bilaterian Pax subfamilies in this species, including Pax2/5/8, Pax4/6, Pox-neuro, Pax1/9/Pox-meso, and Pax3/7. In addition, we identified a new Pax member, pax-α, which does not fall into any other known Pax subfamily but instead clusters in the heterogenic Pax-α/ß clade containing deuterostome, ecdysozoan, and lophotrochozoan gene sequences. These findings suggest that the last common bilaterian ancestor possessed six rather than five Pax genes, which have been retained in the panarthropod lineage. The expression data of Pax orthologs in the onychophoran embryo revealed distinctive patterns, some of which might be related to their ancestral roles in the last common panarthropod ancestor, whereas others might be specific to the onychophoran lineage. The derived roles include, for example, an involvement of pax2/5/8, pox-neuro, and pax3/7 in onychophoran nephridiogenesis, and an additional function of pax2/5/8 in the formation of the ventral and preventral organs. Furthermore, our transcriptomic analyses suggest that at least some Pax genes, including pax6 and pax-α, are expressed in the adult onychophoran head, although the corresponding functions remain to be clarified. The remarkable diversity of the Pax expression patterns highlights the functional and evolutionary plasticity of these genes in panarthropods.


Asunto(s)
Expresión Génica , Invertebrados/clasificación , Invertebrados/genética , Factores de Transcripción Paired Box/genética , Filogenia , Animales , Evolución Molecular , Perfilación de la Expresión Génica
19.
Dev Genes Evol ; 225(4): 207-19, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26093940

RESUMEN

Zinc finger transcription factors encoded by hunchback homologs play different roles in arthropods, including maternally mediated control, segmentation, and mesoderm and neural development. Knockdown experiments in spider and insect embryos have also revealed homeotic effects and gap phenotypes, the latter indicating a function of hunchback as a "gap gene". Although the expression pattern of hunchback has been analysed in representatives of all four major arthropod groups (chelicerates, myriapods, crustaceans and insects), nothing is known about its expression in one of the closest arthropod relatives, the Onychophora (velvet worms). We therefore examined the expression pattern of hunchback in embryos of the onychophoran Euperipatoides rowelli. Our transcriptomic and phylogenetic analyses revealed only one hunchback ortholog in this species. The putative Hunchback protein contains all nine zinc finger domains known from other protostomes. We found no indication of maternally contributed transcripts of hunchback in early embryos of E. rowelli. Its initial expression occurs in the ectodermal tissue of the antennal segment, followed by the jaw, slime papilla and trunk segments in an anterior-to-posterior progression. Later, hunchback expression is seen in the mesoderm of the developing limbs. A second "wave" of expression commences later in development in the antennal segment and continues posteriorly along each developing nerve cord. This expression is restricted to the neural tissues and does not show any segmental pattern. These findings are in line with the ancestral roles of hunchback in mesoderm and neural development, whereas we find no evidence for a putative function of hunchback as a "gap gene" in Onychophora.


Asunto(s)
Invertebrados/embriología , Invertebrados/genética , Factores de Transcripción/genética , Animales , Artrópodos/clasificación , Artrópodos/genética , Expresión Génica , Invertebrados/clasificación , Filogenia
20.
BMC Neurosci ; 16: 53, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26303946

RESUMEN

BACKGROUND: While the tripartite brain of arthropods is believed to have evolved by a fusion of initially separate ganglia, the evolutionary origin of the bipartite brain of onychophorans-one of the closest arthropod relatives-remains obscure. Clarifying the segmental identity of post-oral commissures and pharyngeal nerves might provide useful insights into the evolution of the onychophoran brain. We therefore performed retrograde fills of these commissures and nerves in the onychophoran Euperipatoides rowelli. RESULTS: Our fills of the anterior and posterior pharyngeal nerves revealed groups of somata that are mainly associated with the deutocerebrum. This resembles the innervation pattern of other feeding structures in Onychophora, including the jaws and several lip papillae surrounding the mouth. Our fills of post-oral commissures in E. rowelli revealed a graded arrangement of anteriorly shifted somata associated with post-oral commissures #1 to #5. The number of deutocerebral somata associated with each commissure decreases posteriorly, i.e., commissure #1 shows the highest and commissure #5 the lowest numbers of associated somata, whereas none of the subsequent median commissures, beginning with commissure #6, shows somata located in the deutocerebrum. CONCLUSIONS: Based on the graded and shifted arrangement of somata associated with the anteriormost post-oral commissures, we suggest that the onychophoran brain, which is a bipartite syncerebrum, might have evolved by a successive anterior/anterodorsal migration of neurons towards the protocerebrum in the last onychophoran ancestor. This implies that the composite brain of onychophorans and the compound brain of arthropods might have independent evolutionary origins, as in contrast to arthropods the onychophoran syncerebrum is unlikely to have evolved by a fusion of initially separate ganglia.


Asunto(s)
Invertebrados/anatomía & histología , Animales , Microscopía Confocal , Microscopía Fluorescente , Boca/anatomía & histología , Boca/inervación , Sistema Nervioso/anatomía & histología , Técnicas de Trazados de Vías Neuroanatómicas , Trazadores del Tracto Neuronal , Neuronas/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA