Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Insects ; 13(3)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35323519

RESUMEN

In the absence of entomological information, tools for predicting Anopheles spp. presence can help evaluate the entomological risk of malaria transmission. Here, we illustrate how species distribution models (SDM) could quantify potential dominant vector species presence in malaria elimination settings. We fitted a 250 m resolution ensemble SDM for Anopheles albimanus Wiedemann. The ensemble SDM included predictions based on seven different algorithms, 110 occurrence records and 70 model projections. SDM covariates included nine environmental variables that were selected based on their importance from an original set of 28 layers that included remotely and spatially interpolated locally measured variables for the land surface of Costa Rica. Goodness of fit for the ensemble SDM was very high, with a minimum AUC of 0.79. We used the resulting ensemble SDM to evaluate differences in habitat suitability (HS) between commercial plantations and surrounding landscapes, finding a higher HS in pineapple and oil palm plantations, suggestive of An. albimanus presence, than in surrounding landscapes. The ensemble SDM suggested a low HS for An. albimanus at the presumed epicenter of malaria transmission during 2018-2019 in Costa Rica, yet this vector was likely present at the two main towns also affected by the epidemic. Our results illustrate how ensemble SDMs in malaria elimination settings can provide information that could help to improve vector surveillance and control.

2.
Artículo en Inglés | MEDLINE | ID: mdl-35284867

RESUMEN

Problems with vector surveillance are a major barrier for the effective control of vector-borne disease transmission through Latin America. Here, we present results from a 80-week longitudinal study where Aedes aegypti (L.) (Diptera: Culicidae) ovitraps were monitored weekly at 92 locations in Puntarenas, a coastal city in Costa Rica with syndemic Zika, chikungunya and dengue transmission. We used separate models to investigate the association of either Ae. aegypti-borne arboviral cases or Ae. aegypti egg counts with remotely sensed environmental variables. We also evaluated whether Ae. aegypti-borne arboviral cases were associated with Ae. aegypti egg counts. Using cross-correlation and time series modeling, we found that arboviral cases were not significantly associated with Ae. aegypti egg counts. Through model selection we found that cases had a non-linear response to multi-scale (1-km and 30-m resolution) measurements of temperature standard deviation (SD) with a lag of up to 4 weeks, while simultaneously increasing with finely-grained NDVI (30-m resolution). Meanwhile, median ovitrap Ae. aegypti egg counts increased, and respectively decreased, with temperature SD (1-km resolution) and EVI (30-m resolution) with a lag of 6 weeks. A synchrony analysis showed that egg counts had a travelling wave pattern, with synchrony showing cyclic changes with distance, a pattern not observed in remotely sensed data with 30-m and 10-m resolution. Spatially, using generalized additive models, we found that eggs were more abundant at locations with higher temperatures and where EVI was leptokurtic during the study period. Our results suggest that, in Puntarenas, remotely sensed environmental variables are associated with both Ae. aegypti-borne arbovirus transmission and Ae. aegypti egg counts from ovitraps.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA