RESUMEN
Atrial fibrillation, the most common cardiac arrhythmia, is an important contributor to mortality and morbidity, and particularly to the risk of stroke in humans1. Atrial-tissue fibrosis is a central pathophysiological feature of atrial fibrillation that also hampers its treatment; the underlying molecular mechanisms are poorly understood and warrant investigation given the inadequacy of present therapies2. Here we show that calcitonin, a hormone product of the thyroid gland involved in bone metabolism3, is also produced by atrial cardiomyocytes in substantial quantities and acts as a paracrine signal that affects neighbouring collagen-producing fibroblasts to control their proliferation and secretion of extracellular matrix proteins. Global disruption of calcitonin receptor signalling in mice causes atrial fibrosis and increases susceptibility to atrial fibrillation. In mice in which liver kinase B1 is knocked down specifically in the atria, atrial-specific knockdown of calcitonin promotes atrial fibrosis and increases and prolongs spontaneous episodes of atrial fibrillation, whereas atrial-specific overexpression of calcitonin prevents both atrial fibrosis and fibrillation. Human patients with persistent atrial fibrillation show sixfold lower levels of myocardial calcitonin compared to control individuals with normal heart rhythm, with loss of calcitonin receptors in the fibroblast membrane. Although transcriptome analysis of human atrial fibroblasts reveals little change after exposure to calcitonin, proteomic analysis shows extensive alterations in extracellular matrix proteins and pathways related to fibrogenesis, infection and immune responses, and transcriptional regulation. Strategies to restore disrupted myocardial calcitonin signalling thus may offer therapeutic avenues for patients with atrial fibrillation.
Asunto(s)
Arritmias Cardíacas/metabolismo , Calcitonina/metabolismo , Fibrinógeno/biosíntesis , Atrios Cardíacos/metabolismo , Miocardio/metabolismo , Comunicación Paracrina , Animales , Arritmias Cardíacas/patología , Arritmias Cardíacas/fisiopatología , Fibrilación Atrial , Colágeno Tipo I/metabolismo , Femenino , Fibroblastos/metabolismo , Fibrosis/metabolismo , Fibrosis/patología , Atrios Cardíacos/citología , Atrios Cardíacos/patología , Atrios Cardíacos/fisiopatología , Humanos , Masculino , Ratones , Miocardio/citología , Miocardio/patología , Miocitos Cardíacos/metabolismo , Receptores de Calcitonina/metabolismoRESUMEN
BACKGROUND: Recognition of the importance of conventional lipid measures and the advent of novel lipid-lowering medications have prompted the need for more comprehensive lipid panels to guide use of emerging treatments for the prevention of coronary heart disease (CHD). This report assessed the relevance of 13 apolipoproteins measured using a single mass-spectrometry assay for risk of CHD in the PROCARDIS case-control study of CHD (941 cases/975 controls). METHODS: The associations of apolipoproteins with CHD were assessed after adjustment for established risk factors and correction for statin use. Apolipoproteins were grouped into 4 lipid-related classes [lipoprotein(a), low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglycerides] and their associations with CHD were adjusted for established CHD risk factors and conventional lipids. Analyses of these apolipoproteins in a subset of the ASCOT trial (Anglo-Scandinavian Cardiac Outcomes Trial) were used to assess their within-person variability and to estimate a correction for statin use. The findings in the PROCARDIS study were compared with those for incident cardiovascular disease in the Bruneck prospective study (n=688), including new measurements of Apo(a). RESULTS: Triglyceride-carrying apolipoproteins (ApoC1, ApoC3, and ApoE) were most strongly associated with the risk of CHD (2- to 3-fold higher odds ratios for top versus bottom quintile) independent of conventional lipid measures. Likewise, ApoB was independently associated with a 2-fold higher odds ratios of CHD. Lipoprotein(a) was measured using peptides from the Apo(a)-kringle repeat and Apo(a)-constant regions, but neither of these associations differed from the association with conventionally measured lipoprotein(a). Among HDL-related apolipoproteins, ApoA4 and ApoM were inversely related to CHD, independent of conventional lipid measures. The disease associations with all apolipoproteins were directionally consistent in the PROCARDIS and Bruneck studies, with the exception of ApoM. CONCLUSIONS: Apolipoproteins were associated with CHD independent of conventional risk factors and lipids, suggesting apolipoproteins could help to identify patients with residual lipid-related risk and guide personalized approaches to CHD risk reduction.
Asunto(s)
Enfermedad Coronaria , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , Estudios Prospectivos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Estudios de Casos y Controles , Proteómica , Apolipoproteínas , Factores de Riesgo , Enfermedad Coronaria/epidemiología , Enfermedad Coronaria/etiología , Triglicéridos , HDL-Colesterol , Lipoproteína(a) , Apolipoproteínas B/uso terapéutico , Apolipoproteína A-IRESUMEN
BACKGROUND: Ventricular arrhythmia and sudden cardiac death are the most common lethal complications after myocardial infarction. Antiarrhythmic pharmacotherapy remains a clinical challenge and novel concepts are highly desired. Here, we focus on the cardioprotective CNP (C-type natriuretic peptide) as a novel antiarrhythmic principle. We hypothesize that antiarrhythmic effects of CNP are mediated by PDE2 (phosphodiesterase 2), which has the unique property to be stimulated by cGMP to primarily hydrolyze cAMP. Thus, CNP might promote beneficial effects of PDE2-mediated negative crosstalk between cAMP and cGMP signaling pathways. METHODS: To determine antiarrhythmic effects of cGMP-mediated PDE2 stimulation by CNP, we analyzed arrhythmic events and intracellular trigger mechanisms in mice in vivo, at organ level and in isolated cardiomyocytes as well as in human-induced pluripotent stem cell-derived cardiomyocytes. RESULTS: In ex vivo perfused mouse hearts, CNP abrogated arrhythmia after ischemia/reperfusion injury. Upon high-dose catecholamine injections in mice, PDE2 inhibition prevented the antiarrhythmic effect of CNP. In mouse ventricular cardiomyocytes, CNP blunted the catecholamine-mediated increase in arrhythmogenic events as well as in ICaL, INaL, and Ca2+ spark frequency. Mechanistically, this was driven by reduced cellular cAMP levels and decreased phosphorylation of Ca2+ handling proteins. Key experiments were confirmed in human iPSC-derived cardiomyocytes. Accordingly, the protective CNP effects were reversed by either specific pharmacological PDE2 inhibition or cardiomyocyte-specific PDE2 deletion. CONCLUSIONS: CNP shows strong PDE2-dependent antiarrhythmic effects. Consequently, the CNP-PDE2 axis represents a novel and attractive target for future antiarrhythmic strategies.
Asunto(s)
Miocitos Cardíacos , Hidrolasas Diéster Fosfóricas , Ratones , Animales , Humanos , Hidrolasas Diéster Fosfóricas/metabolismo , Miocitos Cardíacos/metabolismo , Transducción de Señal , Catecolaminas/metabolismo , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/etiología , Arritmias Cardíacas/prevención & control , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Antiarrítmicos/metabolismo , GMP Cíclico/metabolismo , Péptido Natriurético Tipo-C/farmacologíaRESUMEN
BACKGROUND: Using proteomics, we aimed to reveal molecular types of human atherosclerotic lesions and study their associations with histology, imaging, and cardiovascular outcomes. METHODS: Two hundred nineteen carotid endarterectomy samples were procured from 120 patients. A sequential protein extraction protocol was employed in conjunction with multiplexed, discovery proteomics. To focus on extracellular proteins, parallel reaction monitoring was employed for targeted proteomics. Proteomic signatures were integrated with bulk, single-cell, and spatial RNA-sequencing data, and validated in 200 patients from the Athero-Express Biobank study. RESULTS: This extensive proteomics analysis identified plaque inflammation and calcification signatures, which were inversely correlated and validated using targeted proteomics. The inflammation signature was characterized by the presence of neutrophil-derived proteins, such as S100A8/9 (calprotectin) and myeloperoxidase, whereas the calcification signature included fetuin-A, osteopontin, and gamma-carboxylated proteins. The proteomics data also revealed sex differences in atherosclerosis, with large-aggregating proteoglycans versican and aggrecan being more abundant in females and exhibiting an inverse correlation with estradiol levels. The integration of RNA-sequencing data attributed the inflammation signature predominantly to neutrophils and macrophages, and the calcification and sex signatures to smooth muscle cells, except for certain plasma proteins that were not expressed but retained in plaques, such as fetuin-A. Dimensionality reduction and machine learning techniques were applied to identify 4 distinct plaque phenotypes based on proteomics data. A protein signature of 4 key proteins (calponin, protein C, serpin H1, and versican) predicted future cardiovascular mortality with an area under the curve of 75% and 67.5% in the discovery and validation cohort, respectively, surpassing the prognostic performance of imaging and histology. CONCLUSIONS: Plaque proteomics redefined clinically relevant patient groups with distinct outcomes, identifying subgroups of male and female patients with elevated risk of future cardiovascular events.
Asunto(s)
Aterosclerosis , Calcinosis , Femenino , Humanos , Masculino , Proteómica , Caracteres Sexuales , Versicanos , alfa-2-Glicoproteína-HSRESUMEN
BACKGROUND: Smooth muscle cells (SMCs), which make up the medial layer of arteries, are key cell types involved in cardiovascular disease, the leading cause of mortality and morbidity worldwide. In response to microenvironment alterations, SMCs dedifferentiate from a contractile to a synthetic phenotype characterized by an increased proliferation, migration, production of ECM (extracellular matrix) components, and decreased expression of SMC-specific contractile markers. These phenotypic changes result in vascular remodeling and contribute to the pathogenesis of cardiovascular disease, including coronary artery disease, stroke, hypertension, and aortic aneurysms. Here, we aim to identify the genetic variants that regulate ECM secretion in SMCs and predict the causal proteins associated with vascular disease-related loci identified in genome-wide association studies. METHODS: Using human aortic SMCs from 123 multiancestry healthy heart transplant donors, we collected the serum-free media in which the cells were cultured for 24 hours and conducted liquid chromatography-tandem mass spectrometry-based proteomic analysis of the conditioned media. RESULTS: We measured the abundance of 270 ECM and related proteins. Next, we performed protein quantitative trait locus mapping and identified 20 loci associated with secreted protein abundance in SMCs. We functionally annotated these loci using a colocalization approach. This approach prioritized the genetic variant rs6739323-A at the 2p22.3 locus, which is associated with lower expression of LTBP1 (latent-transforming growth factor beta-binding protein 1) in SMCs and atherosclerosis-prone areas of the aorta, and increased risk for SMC calcification. We found that LTBP1 expression is abundant in SMCs, and its expression at mRNA and protein levels was reduced in unstable and advanced atherosclerotic plaque lesions. CONCLUSIONS: Our results unravel the SMC proteome signature associated with vascular disorders, which may help identify potential therapeutic targets to accelerate the pathway to translation.
Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/metabolismo , Estudio de Asociación del Genoma Completo , Proteómica , Músculo Liso Vascular/metabolismo , Aorta/metabolismo , Aterosclerosis/patología , Miocitos del Músculo Liso/metabolismo , Células CultivadasRESUMEN
Biological networks have been widely used in many different diseases to identify potential biomarkers and design drug targets. In the present review, we describe the main computational techniques for reconstructing and analyzing different types of protein networks and summarize the previous applications of such techniques in cardiovascular diseases. Existing tools are critically compared, discussing when each method is preferred such as the use of co-expression networks for functional annotation of protein clusters and the use of directed networks for inferring regulatory associations. Finally, we are presenting examples of reconstructing protein networks of different types (regulatory, co-expression, and protein-protein interaction networks). We demonstrate the necessity to reconstruct networks separately for each cardiovascular tissue type and disease entity and provide illustrative examples of the importance of taking into consideration relevant post-translational modifications. Finally, we demonstrate and discuss how the findings of protein networks could be interpreted using single-cell RNA-sequencing data.
Asunto(s)
Redes Reguladoras de Genes , Proteómica , Mapas de Interacción de Proteínas , Proteínas , Biología Computacional/métodosRESUMEN
High-density lipoprotein (HDL) levels are reduced in patients with coronavirus disease 2019 (COVID-19), and the extent of this reduction is associated with poor clinical outcomes. While lipoproteins are known to play a key role during the life cycle of the hepatitis C virus, their influence on coronavirus (CoV) infections is poorly understood. In this study, we utilize cross-linking mass spectrometry (XL-MS) to determine circulating protein interactors of the severe acute respiratory syndrome (SARS)-CoV-2 spike glycoprotein. XL-MS of plasma isolated from patients with COVID-19 uncovered HDL protein interaction networks, dominated by acute-phase serum amyloid proteins, whereby serum amyloid A2 was shown to bind to apolipoprotein (Apo) D. XL-MS on isolated HDL confirmed ApoD to interact with SARS-CoV-2 spike but not SARS-CoV-1 spike. Other direct interactions of SARS-CoV-2 spike upon HDL included ApoA1 and ApoC3. The interaction between ApoD and spike was further validated in cells using immunoprecipitation-MS, which uncovered a novel interaction between both ApoD and spike with membrane-associated progesterone receptor component 1. Mechanistically, XL-MS coupled with data-driven structural modeling determined that ApoD may interact within the receptor-binding domain of the spike. However, ApoD overexpression in multiple cell-based assays had no effect upon viral replication or infectivity. Thus, SARS-CoV-2 spike can bind to apolipoproteins on HDL, but these interactions do not appear to alter infectivity.
Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Lipoproteínas HDL/metabolismo , Unión Proteica , Espectrometría de MasasRESUMEN
Arterial thrombosis contributes to some of the most frequent causes of mortality globally, such as myocardial infarction and stroke. Platelets are essential mediators of physiological haemostasis and pathological thrombosis. Platelet activation is controlled by a multitude of signalling pathways. Upon activation, platelets shed platelet-derived extracellular vesicles (pEVs). In this Special Issue: Extracellular Vesicles, Moon et al. investigate the impact of various platelet agonists (thrombin, ADP, collagen) on the proteome of pEVs. The study demonstrates that pEVs exhibit an agonist-dependent altered proteome compared to their parent cells, with significant variations in proteins related to coagulation, complement, and platelet activation. The study observes the rapid generation of pEVs following agonist stimulation with specific proteome alterations that underscore an active packaging process. This commentary highlights the implications of their findings and discusses the role of pEV cargo in cardiovascular disease with potential novel therapeutic and diagnostic opportunities.
Asunto(s)
Plaquetas , Vesículas Extracelulares , Activación Plaquetaria , Proteoma , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efectos de los fármacos , Plaquetas/metabolismo , Plaquetas/efectos de los fármacos , Proteoma/metabolismo , Activación Plaquetaria/efectos de los fármacos , Proteómica/métodos , Trombina/metabolismo , Trombina/farmacologíaRESUMEN
The right ventricle (RV) differs developmentally, anatomically and functionally from the left ventricle (LV). Therefore, characteristics of LV adaptation to chronic pressure overload cannot easily be extrapolated to the RV. Mitochondrial abnormalities are considered a crucial contributor in heart failure (HF), but have never been compared directly between RV and LV tissues and cardiomyocytes. To identify ventricle-specific mitochondrial molecular and functional signatures, we established rat models with two slowly developing disease stages (compensated and decompensated) in response to pulmonary artery banding (PAB) or ascending aortic banding (AOB). Genome-wide transcriptomic and proteomic analyses were used to identify differentially expressed mitochondrial genes and proteins and were accompanied by a detailed characterization of mitochondrial function and morphology. Two clearly distinguishable disease stages, which culminated in a comparable systolic impairment of the respective ventricle, were observed. Mitochondrial respiration was similarly impaired at the decompensated stage, while respiratory chain activity or mitochondrial biogenesis were more severely deteriorated in the failing LV. Bioinformatics analyses of the RNA-seq. and proteomic data sets identified specifically deregulated mitochondrial components and pathways. Although the top regulated mitochondrial genes and proteins differed between the RV and LV, the overall changes in tissue and cardiomyocyte gene expression were highly similar. In conclusion, mitochondrial dysfuntion contributes to disease progression in right and left heart failure. Ventricle-specific differences in mitochondrial gene and protein expression are mostly related to the extent of observed changes, suggesting that despite developmental, anatomical and functional differences mitochondrial adaptations to chronic pressure overload are comparable in both ventricles.
Asunto(s)
Modelos Animales de Enfermedad , Insuficiencia Cardíaca , Mitocondrias Cardíacas , Animales , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Masculino , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/genética , Proteómica , Disfunción Ventricular Derecha/fisiopatología , Disfunción Ventricular Derecha/metabolismo , Disfunción Ventricular Derecha/genética , Disfunción Ventricular Derecha/patología , Función Ventricular Derecha , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Ventrículos Cardíacos/patología , Ratas , Función Ventricular Izquierda , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/genética , Transcriptoma , Ratas Sprague-Dawley , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genéticaRESUMEN
miR-33 is an intronic microRNA within the gene encoding the SREBP2 transcription factor. Like its host gene, miR-33 has been shown to be an important regulator of lipid metabolism. Inhibition of miR-33 has been shown to promote cholesterol efflux in macrophages by targeting the cholesterol transporter ABCA1, thus reducing atherosclerotic plaque burden. Inhibition of miR-33 has also been shown to improve high-density lipoprotein (HDL) biogenesis in the liver and increase circulating HDL-C levels in both rodents and nonhuman primates. However, evaluating the extent to which these changes in HDL metabolism contribute to atherogenesis has been hindered by the obesity and metabolic dysfunction observed in whole-body miR-33-knockout mice. To determine the impact of hepatic miR-33 deficiency on obesity, metabolic function, and atherosclerosis, we have generated a conditional knockout mouse model that lacks miR-33 only in the liver. Characterization of this model demonstrates that loss of miR-33 in the liver does not lead to increased body weight or adiposity. Hepatic miR-33 deficiency actually improves regulation of glucose homeostasis and impedes the development of fibrosis and inflammation. We further demonstrate that hepatic miR-33 deficiency increases circulating HDL-C levels and reverse cholesterol transport capacity in mice fed a chow diet, but these changes are not sufficient to reduce atherosclerotic plaque size under hyperlipidemic conditions. By elucidating the role of miR-33 in the liver and the impact of hepatic miR-33 deficiency on obesity and atherosclerosis, this work will help inform ongoing efforts to develop novel targeted therapies against cardiometabolic diseases.
Asunto(s)
Aterosclerosis/genética , Aterosclerosis/fisiopatología , Peso Corporal , Homeostasis , Hígado/metabolismo , Hígado/fisiopatología , MicroARNs/metabolismo , Animales , Aterosclerosis/sangre , Transporte Biológico , Tetracloruro de Carbono , Colesterol/metabolismo , Dieta Alta en Grasa , Conducta Alimentaria , Regulación de la Expresión Génica , Lipoproteínas HDL/sangre , Ratones , MicroARNs/genética , Obesidad/genética , Placa Aterosclerótica/genética , Placa Aterosclerótica/fisiopatologíaRESUMEN
Given the limited accuracy of clinically used risk scores such as the Systematic COronary Risk Evaluation 2 system and the Second Manifestations of ARTerial disease 2 risk scores, novel risk algorithms determining an individual's susceptibility of future incident or recurrent atherosclerotic cardiovascular disease (ASCVD) risk are urgently needed. Due to major improvements in assay techniques, multimarker proteomic and lipidomic panels hold the promise to be reliably assessed in a high-throughput routine. Novel machine learning-based approaches have facilitated the use of this high-dimensional data resulting from these analyses for ASCVD risk prediction. More than a dozen of large-scale retrospective studies using different sets of biomarkers and different statistical methods have consistently demonstrated the additive prognostic value of these panels over traditionally used clinical risk scores. Prospective studies are needed to determine the clinical utility of a biomarker panel in clinical ASCVD risk stratification. When combined with the genetic predisposition captured with polygenic risk scores and the actual ASCVD phenotype observed with coronary artery imaging, proteomics and lipidomics can advance understanding of the complex multifactorial causes underlying an individual's ASCVD risk.
Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Humanos , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/complicaciones , Enfermedades Cardiovasculares/etiología , Lipidómica , Proteómica , Estudios Retrospectivos , Medición de Riesgo/métodos , Aterosclerosis/diagnóstico , Aterosclerosis/complicaciones , Factores de Riesgo , BiomarcadoresRESUMEN
Rationale: Proprotein convertase subtilisin/kexin type 9 (PCSK9) circulates in a free and lipoprotein-bound form, yet the functional consequence of the association between PCSK9 and high-density lipoprotein (HDL) remains unexplored. Objective: This study sought to interrogate the novel relationship between PCSK9 and HDL in humans. Methods and Results: Comparing lipoprotein and apolipoprotein profiles by nuclear magnetic resonance and targeted mass spectrometry measurements with PCSK9 levels in the community-based Bruneck (n=656) study revealed a positive association of plasma PCSK9 with small HDL, alongside a highly significant positive correlation between plasma levels of PCSK9 and apolipoprotein-C3, an inhibitor of lipoprotein lipase. The latter association was replicated in an independent cohort, the SAPHIR study (n=270). Thus, PCSK9-HDL association was determined during the postprandial response in two dietary studies (n=20 participants each, 8 times points). Peak triglyceride levels coincided with an attenuation of the PCSK9-HDL association, a loss of apolipoprotein-C3 from HDL and lower levels of small HDL as measured by nuclear magnetic resonance. Crosslinking mass spectrometry (XLMS) upon isolated HDL identified PCSK9 as a potential HDL-binding partner. PCSK9 association with HDL was confirmed through size-exclusion chromatography and immuno-isolation. Quantitative proteomics upon HDL isolated from patients with coronary artery disease (n=172) returned PCSK9 as a core member of the HDL proteome. Combined interrogation of the HDL proteome and lipidome revealed a distinct cluster of PCSK9, phospholipid transfer protein, clusterin and apolipoprotein-E within the HDL proteome, that was altered by sex and positively correlated with sphingomyelin content. Mechanistically, HDL facilitated PCSK9-mediated low-density lipoprotein receptor degradation and reduced low-density lipoprotein uptake through the modulation of PCSK9 internalisation and multimerisation. Conclusions: This study reports HDL as a binder of PCSK9 and regulator of its function. The combination of -omic technologies revealed postprandial lipaemia as a driver of PCSK9 and apolipoprotein-C3 release from HDL.
Asunto(s)
Enfermedad de la Arteria Coronaria/sangre , Lipoproteínas HDL/metabolismo , Proproteína Convertasa 9/metabolismo , Apolipoproteína C-III/sangre , Biomarcadores/sangre , Femenino , Células Hep G2 , Humanos , Lipoproteínas HDL/sangre , Masculino , Persona de Mediana Edad , Periodo Posprandial , Proproteína Convertasa 9/sangre , Unión Proteica , Proteoma/metabolismoRESUMEN
[Figure: see text].
Asunto(s)
Fibrilación Atrial/metabolismo , Miocardio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Anciano , Animales , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/genética , Fibrilación Atrial/patología , Células Cultivadas , Femenino , Fibrosis , Humanos , Masculino , Mesalamina/farmacología , Mesalamina/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Miocardio/patología , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patología , Osteopontina/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/genéticaRESUMEN
OBJECTIVE: Platelets are central to acute myocardial infarction (MI). How the platelet proteome is altered during MI is unknown. We sought to describe changes in the platelet proteome during MI and identify corresponding functional consequences. Approach and Results: Platelets from patients experiencing ST-segment-elevation MI (STEMI) before and 3 days after treatment (n=30) and matched patients with severe stable coronary artery disease before and 3 days after coronary artery bypass grafting (n=25) underwent quantitative proteomic analysis. Elevations in the proteins S100A8 and S100A9 were detected at the time of STEMI compared with stable coronary artery disease (S100A8: FC, 2.00; false discovery rate, 0.05; S100A9: FC, 2.28; false discovery rate, 0.005). During STEMI, only S100A8 mRNA and protein levels were correlated in platelets (R=0.46, P=0.012). To determine whether de novo protein synthesis occurs, activated platelets were incubated with 13C-labeled amino acids for 24 hours and analyzed by mass spectrometry. No incorporation was confidently detected. Platelet S100A8 and S100A9 was strongly correlated with neutrophil abundance at the time of STEMI. When isolated platelets and neutrophils were coincubated under quiescent and activated conditions, release of S100A8 from neutrophils resulted in uptake of S100A8 by platelets. Neutrophils released S100A8/A9 as free heterodimer, rather than in vesicles or extracellular traps. In the community-based Bruneck study (n=338), plasma S100A8/A9 was inversely associated with platelet reactivity-an effect abrogated by aspirin. CONCLUSIONS: Leukocyte-to-platelet protein transfer may occur in a thromboinflammatory environment such as STEMI. Plasma S100A8/A9 was negatively associated with platelet reactivity. These findings highlight neutrophils as potential modifiers for thrombotic therapies in coronary artery disease.
Asunto(s)
Plaquetas/metabolismo , Calgranulina A/sangre , Calgranulina B/sangre , Activación Neutrófila , Neutrófilos/metabolismo , Activación Plaquetaria , Proteoma , Infarto del Miocardio con Elevación del ST/sangre , Anciano , Estudios de Casos y Controles , Línea Celular Tumoral , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Proteómica , Infarto del Miocardio con Elevación del ST/diagnóstico , Infarto del Miocardio con Elevación del ST/terapia , Factores de TiempoRESUMEN
We have previously shown that multimers of plasma pentraxin-3 (PTX3) were predictive of survival in patients with sepsis. To characterize the release kinetics and cellular source of plasma protein changes in sepsis, serial samples were obtained from healthy volunteers (n = 10; three time points) injected with low-dose endotoxin (lipopolysaccharide [LPS]) and analyzed using data-independent acquisition MS. The human plasma proteome response was compared with an LPS-induced endotoxemia model in mice. Proteomic analysis of human plasma revealed a rapid neutrophil degranulation signature, followed by a rise in acute phase proteins. Changes in circulating PTX3 correlated with increases in neutrophil-derived proteins following LPS injection. Time course analysis of the plasma proteome in mice showed a time-dependent increase in multimeric PTX3, alongside increases in neutrophil-derived myeloperoxidase (MPO) upon LPS treatment. The mechanisms of oxidation-induced multimerization of PTX3 were explored in two genetic mouse models: MPO global knock-out (KO) mice and LysM Cre Nox2 KO mice, in which NADPH oxidase 2 (Nox2) is only deficient in myeloid cells. Nox2 is the enzyme responsible for the oxidative burst in neutrophils. Increases in plasma multimeric PTX3 were not significantly different between wildtype and MPO or LysM Cre Nox2 KO mice. Thus, PTX3 may already be stored and released in a multimeric form. Through in vivo neutrophil depletion and multiplexed vascular proteomics, PTX3 multimer deposition within the aorta was confirmed to be neutrophil dependent. Proteomic analysis of aortas from LPS-injected mice returned PTX3 as the most upregulated protein, where multimeric PTX3 was deposited as early as 2 h post-LPS along with other neutrophil-derived proteins. In conclusion, the rise in multimeric PTX3 upon LPS injection correlates with neutrophil-related protein changes in plasma and aortas. MPO and myeloid Nox2 are not required for the multimerization of PTX3; instead, neutrophil extravasation is responsible for the LPS-induced deposition of multimeric PTX3 in the aorta.
Asunto(s)
Proteínas Sanguíneas/metabolismo , Endotoxemia/metabolismo , Lipopolisacáridos/farmacología , Proteoma/metabolismo , Animales , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Masculino , Ratones Noqueados , NADPH Oxidasa 2/genética , Neutrófilos/metabolismo , Peroxidasa/genética , ProteómicaRESUMEN
BACKGROUND: Remodeling of the extracellular matrix (ECM) is a hallmark of heart failure (HF). Our previous analysis of the secretome of murine cardiac fibroblasts returned ADAMTS5 (a disintegrin and metalloproteinase with thrombospondin motifs 5) as one of the most abundant proteases. ADAMTS5 cleaves chondroitin sulfate proteoglycans such as versican. The contribution of ADAMTS5 and its substrate versican to HF is unknown. METHODS: Versican remodeling was assessed in mice lacking the catalytic domain of ADAMTS5 (Adamts5ΔCat). Proteomics was applied to study ECM remodeling in left ventricular samples from patients with HF, with a particular focus on the effects of common medications used for the treatment of HF. RESULTS: Versican and versikine, an ADAMTS-specific versican cleavage product, accumulated in patients with ischemic HF. Versikine was also elevated in a porcine model of cardiac ischemia/reperfusion injury and in murine hearts after angiotensin II infusion. In Adamts5ΔCat mice, angiotensin II infusion resulted in an aggravated versican build-up and hyaluronic acid disarrangement, accompanied by reduced levels of integrin ß1, filamin A, and connexin 43. Echocardiographic assessment of Adamts5ΔCat mice revealed a reduced ejection fraction and an impaired global longitudinal strain on angiotensin II infusion. Cardiac hypertrophy and collagen deposition were similar to littermate controls. In a proteomics analysis of a larger cohort of cardiac explants from patients with ischemic HF (n=65), the use of ß-blockers was associated with a reduction in ECM deposition, with versican being among the most pronounced changes. Subsequent experiments in cardiac fibroblasts confirmed that ß1-adrenergic receptor stimulation increased versican expression. Despite similar clinical characteristics, patients with HF treated with ß-blockers had a distinct cardiac ECM profile. CONCLUSIONS: Our results in animal models and patients suggest that ADAMTS proteases are critical for versican degradation in the heart and that versican accumulation is associated with impaired cardiac function. A comprehensive characterization of the cardiac ECM in patients with ischemic HF revealed that ß-blockers may have a previously unrecognized beneficial effect on cardiac chondroitin sulfate proteoglycan content.
Asunto(s)
Proteína ADAMTS5/metabolismo , Matriz Extracelular/metabolismo , Insuficiencia Cardíaca/metabolismo , Proteoglicanos/metabolismo , Animales , Insuficiencia Cardíaca/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , ProteómicaRESUMEN
OBJECTIVE: The superoxide-generating Nox2 (NADPH oxidase-2) is expressed in multiple cell types. Previous studies demonstrated distinct roles for cardiomyocyte, endothelial cell, and leukocyte cell Nox2 in ANG II (angiotensin II)-induced cardiovascular remodeling. However, the in vivo role of fibroblast Nox2 remains unclear. Approach and Results: We developed a novel mouse model with inducible fibroblast-specific deficiency of Nox2 (fibroblast-specific Nox2 knockout or Fibro-Nox2KO mice) and investigated the responses to chronic ANG II stimulation. Fibro-Nox2KO mice showed no differences in basal blood pressure or vessel wall morphology, but the hypertensive response to ANG II infusion (1.1 mg/[kg·day] for 14 days) was substantially reduced as compared to control Nox2-Flox littermates. This was accompanied by a significant attenuation of aortic and resistance vessel remodeling. The conditioned medium of ANG II-stimulated primary fibroblasts induced a significant increase in vascular smooth muscle cell growth, which was inhibited by the short hairpin RNA (shRNA)-mediated knockdown of fibroblast Nox2. Mass spectrometric analysis of the secretome of ANG II-treated primary fibroblasts identified GDF6 (growth differentiation factor 6) as a potential growth factor that may be involved in these effects. Recombinant GDF6 induced a concentration-dependent increase in vascular smooth muscle cell growth while chronic ANG II infusion in vivo significantly increased aortic GDF6 protein levels in control mice but not Fibro-Nox2KO animals. Finally, silencing GDF6 in fibroblasts prevented the induction of vascular smooth muscle cell growth by fibroblast-conditioned media in vitro. CONCLUSIONS: These results indicate that fibroblast Nox2 plays a crucial role in the development of ANG II-induced vascular remodeling and hypertension in vivo. Mechanistically, fibroblast Nox2 may regulate paracrine signaling to medial vascular smooth muscle cells via factors, such as GDF6.
Asunto(s)
Fibroblastos/enzimología , Hipertensión/enzimología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , NADPH Oxidasa 2/metabolismo , Comunicación Paracrina , Remodelación Vascular , Angiotensina II , Animales , Aorta/metabolismo , Aorta/patología , Aorta/fisiopatología , Presión Sanguínea , Células Cultivadas , Modelos Animales de Enfermedad , Factor 6 de Diferenciación de Crecimiento/genética , Factor 6 de Diferenciación de Crecimiento/metabolismo , Hipertensión/inducido químicamente , Hipertensión/genética , Hipertensión/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/patología , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/patología , NADPH Oxidasa 2/genética , Transducción de SeñalRESUMEN
Platelets are essential mediators of physiological hemostasis and pathological thrombosis. Currently available tests and markers of platelet activation did not prove successful in guiding treatment decisions for patients with cardiovascular disease, justifying further research into novel markers of platelet reactivity. Platelets contain a variety of microRNAs (miRNAs) and are a major contributor to the extracellular circulating miRNA pool. Levels of platelet-derived miRNAs in the circulation have been associated with different measures of platelet activation as well as antiplatelet therapy and have therefore been implied as potential new markers of platelet reactivity. In contrast to the ex vivo assessment of platelet reactivity by current platelet function tests, miRNA measurements may enable assessment of platelet reactivity in vivo. It remains to be seen however, whether miRNAs may aid clinical diagnostics. Major limitations in the platelet miRNA research field remain the susceptibility to preanalytical variation, non-standardized sample preparation and data normalization that hampers inter-study comparisons. In this review, we provide an overview of the literature on circulating miRNAs as biomarkers of platelet activation, highlighting the underlying biology, the application in patients with cardiovascular disease and antiplatelet therapy and elaborating on technical limitations regarding their quantification in the circulation.
Asunto(s)
Enfermedades Cardiovasculares , MicroARN Circulante , MicroARNs , Biomarcadores , Plaquetas , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/tratamiento farmacológico , MicroARN Circulante/genética , Humanos , MicroARNs/genética , Activación Plaquetaria/genética , Inhibidores de Agregación Plaquetaria/uso terapéuticoRESUMEN
In the heart, the serine carboxypeptidase cathepsin A (CatA) is distributed between lysosomes and the extracellular matrix (ECM). CatA-mediated degradation of extracellular peptides may contribute to ECM remodeling and left ventricular (LV) dysfunction. Here, we aimed to evaluate the effects of CatA overexpression on LV remodeling. A proteomic analysis of the secretome of adult mouse cardiac fibroblasts upon digestion by CatA identified the extracellular antioxidant enzyme superoxide dismutase (EC-SOD) as a novel substrate of CatA, which decreased EC-SOD abundance 5-fold. In vitro, both cardiomyocytes and cardiac fibroblasts expressed and secreted CatA protein, and only cardiac fibroblasts expressed and secreted EC-SOD protein. Cardiomyocyte-specific CatA overexpression and increased CatA activity in the LV of transgenic mice (CatA-TG) reduced EC-SOD protein levels by 43%. Loss of EC-SOD-mediated antioxidative activity resulted in significant accumulation of superoxide radicals (WT, 4.54 µmol/mg tissue/min; CatA-TG, 8.62 µmol/mg tissue/min), increased inflammation, myocyte hypertrophy (WT, 19.8 µm; CatA-TG, 21.9 µm), cellular apoptosis, and elevated mRNA expression of hypertrophy-related and profibrotic marker genes, without affecting intracellular detoxifying proteins. In CatA-TG mice, LV interstitial fibrosis formation was enhanced by 19%, and the type I/type III collagen ratio was shifted toward higher abundance of collagen I fibers. Cardiac remodeling in CatA-TG was accompanied by an increased LV weight/body weight ratio and LV end diastolic volume (WT, 50.8 µl; CatA-TG, 61.9 µl). In conclusion, CatA-mediated EC-SOD reduction in the heart contributes to increased oxidative stress, myocyte hypertrophy, ECM remodeling, and inflammation, implicating CatA as a potential therapeutic target to prevent ventricular remodeling.
Asunto(s)
Catepsina A/metabolismo , Miocitos Cardíacos/metabolismo , Proteolisis , Superóxido Dismutasa/metabolismo , Remodelación Ventricular , Animales , Catepsina A/genética , Masculino , Ratones , Ratones Transgénicos , Miocitos Cardíacos/patología , Superóxido Dismutasa/genéticaRESUMEN
BACKGROUND: The adult mammalian heart has limited regenerative capacity, mostly attributable to postnatal cardiomyocyte cell cycle arrest. In the last 2 decades, numerous studies have explored cardiomyocyte cell cycle regulatory mechanisms to enhance myocardial regeneration after myocardial infarction. Pkm2 (Pyruvate kinase muscle isoenzyme 2) is an isoenzyme of the glycolytic enzyme pyruvate kinase. The role of Pkm2 in cardiomyocyte proliferation, heart development, and cardiac regeneration is unknown. METHODS: We investigated the effect of Pkm2 in cardiomyocytes through models of loss (cardiomyocyte-specific Pkm2 deletion during cardiac development) or gain using cardiomyocyte-specific Pkm2 modified mRNA to evaluate Pkm2 function and regenerative affects after acute or chronic myocardial infarction in mice. RESULTS: Here, we identify Pkm2 as an important regulator of the cardiomyocyte cell cycle. We show that Pkm2 is expressed in cardiomyocytes during development and immediately after birth but not during adulthood. Loss of function studies show that cardiomyocyte-specific Pkm2 deletion during cardiac development resulted in significantly reduced cardiomyocyte cell cycle, cardiomyocyte numbers, and myocardial size. In addition, using cardiomyocyte-specific Pkm2 modified RNA, our novel cardiomyocyte-targeted strategy, after acute or chronic myocardial infarction, resulted in increased cardiomyocyte cell division, enhanced cardiac function, and improved long-term survival. We mechanistically show that Pkm2 regulates the cardiomyocyte cell cycle and reduces oxidative stress damage through anabolic pathways and ß-catenin. CONCLUSIONS: We demonstrate that Pkm2 is an important intrinsic regulator of the cardiomyocyte cell cycle and oxidative stress, and highlight its therapeutic potential using cardiomyocyte-specific Pkm2 modified RNA as a gene delivery platform.