RESUMEN
Estuaries are considered as key habitats for the early life stages of fish. However, in the face of massive destruction of many estuarine intertidal areas, management and conservation measures are needed. Fish condition indicators may be used as a proxy of habitat quality and provide valuable information for management of coastal areas. In this study, the larvae of golden mullet (Chelon auratus) and European glass eels (Anguilla anguilla) were sampled in three sites of the Gironde Estuary. Different lipid classes and fatty acids were quantified: phospholipids (globally, phosphatidylethanolamine and phosphatidylcholine), triglycerides, omega-3 (particularly docosahexaenoic and eicosapentaenoic acids), omega-6 and C18:1. These biomarkers provide information on the nutritional status of the larvae as well as on prey availability and larvae diet between sites. One site significantly differed from the others as it seemed to offer abundant and better-quality prey. The very high levels of omega-3 contained in mullet larvae suggested that this site provided a high amount of diatoms. However, the mullet larvae that colonized this site also showed physiological stress that could be explained by exposure to pollutants through their prey. This work constitutes an essential baseline for developing biomarkers to assess the quality of habitats in a global change context.
Asunto(s)
Anguilla , Biomarcadores , Estuarios , Larva , Animales , Biomarcadores/análisis , Anguilla/fisiología , Anguilla/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Estado Nutricional , Lípidos/análisis , Fosfolípidos/análisis , Ácidos Grasos/análisisRESUMEN
In freshwater environments, microbial assemblages attached to submerged substrates play an essential role in ecosystem processes such as primary production, supported by periphyton, or organic matter decomposition, supported by microbial communities attached to leaf litter or sediments. These microbial assemblages, also called biofilms, are not only involved in nutrients fluxes but also in contaminants dynamics. Biofilms can accumulate metals and organic contaminants transported by the water flow and/or adsorbed onto substrates. Furthermore, due to their high metabolic activity and their role in aquatic food webs, microbial biofilms are also likely to influence contaminant fate in aquatic ecosystems. In this review, we provide (1) a critical overview of the analytical methods currently in use for detecting and quantifying metals and organic micropollutants in microbial biofilms attached to benthic substrata (rocks, sediments, leaf litter); (2) a review of the distribution of those contaminants within aquatic biofilms and the role of these benthic microbial communities in contaminant fate; (3) a set of future challenges concerning the role of biofilms in contaminant accumulation and trophic transfers in the aquatic food web. This literature review highlighted that most knowledge on the interaction between biofilm and contaminants is focused on contaminants dynamics in periphyton while technical limitations are still preventing a thorough estimation of contaminants accumulation in biofilms attached to leaf litter or sediments. In addition, microbial biofilms represent an important food resource in freshwater ecosystems, yet their role in dietary contaminant exposure has been neglected for a long time, and the importance of biofilms in trophic transfer of contaminants is still understudied.
Asunto(s)
Bioacumulación , Biopelículas , Ecosistema , Cadena Alimentaria , Agua Dulce , Contaminantes Químicos del Agua/toxicidadRESUMEN
Variations of temperature and photoperiod throughout different seasons can affect aquatic communities such as biofilms. Biofilms, generally present at the base of trophic chains in freshwaters, are also subject to organic contamination, and are especially affected by herbicides. Many studies have investigated the effect and interactions of herbicides and environmental factors on biofilms, but never with a toxicokinetic point of view. The objective of this study was to assess structural and functional changes in biofilms exposed to diuron, and to link them with contaminant accumulation, under the influence of temperature and light variations. To this aim, biofilms were exposed to all possible combinations of three concentrations (0, 5 and 50 µg L-1) of diuron, two temperatures (10 and 26 °C), and two light/dark photoperiods (16/8, 10/14), for durations of 0, 1 and 3 days. Diuron accumulation in biofilms was quantified and structural descriptors (protein and polysaccharide contents, dry weight) and functional endpoints (photosynthetic and enzymatic activities) were analyzed. The results obtained mainly highlighted the influence of temperature on diuron bioaccumulation and the associated toxic impact on biofilms. Bioaccumulation in biofilms exposed during three days at 10 °C, at the highest diuron concentration, was in average 1.4 times higher than bioaccumulation on biofilms exposed to 26 °C. Accordingly, the photosynthetic yield was more inhibited at lower than at higher temperatures. Temperature was also the highest impacting factor for metabolism regulation; for example, at 26 °C after three days of exposure, polysaccharide production was boosted under both photoperiods tested.
Asunto(s)
Biopelículas/efectos de los fármacos , Diurona/toxicidad , Herbicidas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Luz Solar , TemperaturaRESUMEN
BACKGROUND: Microalgae play a key role in ecosystems and are widely used in ecological status assessment. Research focusing on such organisms is then well developed and essential. Anyway, approaches for a better comprehension of their metabolome's response towards anthropogenic stressors are only emerging. AIM OF REVIEW: This review presents the biochemical responses of various microalgae species towards several contaminants including metals and chemicals as pesticides or industrial compounds. We aim to provide a comprehensive and up-to-date overview of analytical approaches deciphering anthropogenic contaminants impact on microalgae metabolome dynamics, in order to bring out relevant biochemical markers that could be used for risk assessment. KEY SCIENTIFIC CONCEPTS OF REVIEW: Studies to date on ecotoxicological metabolomics on microalgae are highly heterogeneous in both analytical techniques and resulting metabolite identification. There is a real need for studies using complementary approaches to determine biomarkers usable for ecological risk assessment.
Asunto(s)
Metaboloma , Microalgas/metabolismo , Antioxidantes/metabolismo , Betaína/metabolismo , Biopelículas , Metabolómica , Metales/química , Metales/toxicidad , Microalgas/efectos de los fármacos , Plaguicidas/química , Especies Reactivas de Oxígeno/metabolismo , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidadRESUMEN
Glyphosate is the most widely used herbicide on a world scale for the last 40 years, for both urban and agricultural uses. Here we describe the first passive sampling method for estimating the concentration of glyphosate and AMPA (aminomethyl phosphonic acid, one of its major degradation products) in surface water. The sampling method is based on a newly developed configuration of the diffusive gradient in thin-film (DGT) technique, which includes a TiO2 binding phase, already in use for a wide range of anions. Glyphosate and AMPA were retained well on a TiO2 binding phase, and elution in a 1 mL of 1 M NaOH led to recoveries greater than 65%. We found no influence of pH or flow velocity on the diffusion coefficients through 0.8 mm polyacrylamide gels, although they did increase with temperature. TiO2 binding gels were able to accumulate up to 1167 ng of P for both glyphosate and AMPA, and linear accumulation was expected over several weeks, depending on environmental conditions. DGT sampling rates were close to 10 mL day(-1) in ultrapure water, while they were less than 1 mL day(-1) in the presence of naturally occurring ions (e.g., copper, iron, calcium, magnesium). These last results highlighted (i) the ability of DGT to measure only the freely dissolved fraction of glyphosate and AMPA in water and (ii) the needs to determine which fraction (total, particulate, dissolved, freely dissolved) is indeed bioactive.
RESUMEN
This paper presents an optimization of the pharmaceutical Polar Organic Chemical Integrative Sampler (POCIS-200) under controlled laboratory conditions for the sampling of acidic (2,4-dichlorophenoxyacetic acid (2,4-D), acetochlor ethanesulfonic acid (ESA), acetochlor oxanilic acid, bentazon, dicamba, mesotrione, and metsulfuron) and polar (atrazine, diuron, and desisopropylatrazine) herbicides in water. Indeed, the conventional configuration of the POCIS-200 (46 cm(2) exposure window, 200 mg of Oasis® hydrophilic lipophilic balance (HLB) receiving phase) is not appropriate for the sampling of very polar and acidic compounds because they rapidly reach a thermodynamic equilibrium with the Oasis HLB receiving phase. Thus, we investigated several ways to extend the initial linear accumulation. On the one hand, increasing the mass of sorbent to 600 mg resulted in sampling rates (R s s) twice as high as those observed with 200 mg (e.g., 287 vs. 157 mL day(-1) for acetochlor ESA). Although detection limits could thereby be reduced, most acidic analytes followed a biphasic uptake, proscribing the use of the conventional first-order model and preventing us from estimating time-weighted average concentrations. On the other hand, reducing the exposure window (3.1 vs. 46 cm(2)) allowed linear accumulations of all analytes over 35 days, but R s s were dramatically reduced (e.g., 157 vs. 11 mL day(-1) for acetochlor ESA). Otherwise, the observation of biphasic releases of performance reference compounds (PRC), though mirroring acidic herbicide biphasic uptake, might complicate the implementation of the PRC approach to correct for environmental exposure conditions.
RESUMEN
The Morcille River located in the Beaujolais vineyard area (Eastern France) is subjected to strong vine-growing pressure leading to the contamination by a range of herbicides and fungicides of the surrounding freshwater environment. Particularly high concentrations of norflurazon, desmethyl norflurazon and tebuconazole were recorded in spring 2010 at the downstream site of the river. Despite their occurrence in rivers, scarce toxicity data are available for these products, in particular in the case of desmethyl norflurazon (main norflurazon degradation product). Furthermore, the toxicity data are generally available only for single compounds and are issued from single species toxicity tests, leading to a lack of ecological relevance. Consequently, this study was undertaken to evaluate the toxic effects of norflurazon, desmethyl norflurazon and tebuconazole singly and in a ternary mixture on fluvial biofilm. Toxicity tests were performed in microplates for 48 h. Photosynthetic endpoints were measured using pulse amplitude-modulated fluorometry; diatom densities and taxonomic composition were determined. After 48 h of exposure, significant effects on optimal quantum yield (F v/F m) for desmethyl norflurazon and mixture were observed.
Asunto(s)
Biopelículas/efectos de los fármacos , Monitoreo del Ambiente/métodos , Plaguicidas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Diatomeas/efectos de los fármacos , Plaguicidas/análisis , Fotosíntesis/efectos de los fármacos , Pruebas de Toxicidad/métodos , Contaminantes Químicos del Agua/análisisRESUMEN
It is now widely recognized that the sampling rate of Polar Organic Chemical Integrative Samplers (POCIS) is significantly affected by flow velocity, which can cause a consequent bias when determining time-weighted average concentrations (TWAC). We already observed the desorption of deisopropylatrazine (DIA) over time when added to the receiving phase of a POCIS. This desorption rate was particularly influenced by flow velocity, in an agitated water environment in situ. In the method presented here, we calibrated 30 pesticides under controlled laboratory conditions, varying the flow velocity over four levels. We simultaneously studied the desorption rate of DIA-d5 (a deuterated form of DIA) over time. An empirical model based on a power law involving flow velocity was used to process the information from the accumulation kinetics of the compounds of interest and elimination of DIA-d5. This type of model makes it possible to consider the effect of this crucial factor on exchange kinetics, and then to obtain more accurate TWACs with reduced bias and more acceptable dispersion of results.
Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Plaguicidas/análisis , Compuestos Orgánicos/química , CalibraciónRESUMEN
Aquatic ecosystems and their communities are exposed to numerous stressors of various natures (chemical and physical), whose impacts are often poorly documented. In urban areas, the use of biocides such as dodecyldimethylbenzylammonium chloride (DDBAC) and their subsequent release in wastewater result in their transfer to urban aquatic ecosystems. DDBAC is known to be toxic to most aquatic organisms. Artificial light at night (ALAN) is another stressor that is increasing globally, especially in urban areas. ALAN may have a negative impact on photosynthetic cycles of periphytic biofilms, which in turn may result in changes in their metabolic functioning. Moreover, studies suggest that exposure to artificial light could increase the biocidal effect of DDBAC on biofilms. The present study investigates the individual and combined effects of DDBAC and/or ALAN on the functioning and structure of photosynthetic biofilms. We exposed biofilms in artificial channels to a nominal concentration of 30 mg.L-1 of DDBAC and/or ALAN for 10 days. ALAN modified DDBAC exposure, decreasing concentrations in the water but not accumulation in biofilms. DDBAC had negative impacts on biofilm functioning and structure. Photosynthetic activity was inhibited by > 90% after 2 days of exposure, compared to the controls, and did not recover over the duration of the experiment. Biofilm composition was also impacted, with a marked decrease in green algae and the disappearance of microfauna under DDBAC exposure. The integrity of algal cells was compromised where DDBAC exposure altered the chloroplasts and chlorophyll content. Impacts on autotrophs were also observed through a shift in lipid profiles, in particular a strong decrease in glycolipid content was noted. We found no significant interactive effect of ALAN and DDBAC on the studied endpoints.
Asunto(s)
Biopelículas , Agua Dulce , Contaminantes Químicos del Agua , Biopelículas/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Fotosíntesis/efectos de los fármacos , Compuestos de Benzalconio/toxicidad , Compuestos de Benzalconio/farmacología , Luz , Desinfectantes/toxicidad , CiudadesRESUMEN
Urban ecosystems are subjected to multiple anthropogenic stresses, which impact aquatic communities. Artificial light at night (ALAN) for instance can significantly alter the composition of algal communities as well as the photosynthetic cycles of autotrophic organisms, possibly leading to cellular oxidative stress. The combined effects of ALAN and chemical contamination could increase oxidative impacts in aquatic primary producers, although such combined effects remain insufficiently explored. To address this knowledge gap, a one-month experimental approach was implemented under controlled conditions to elucidate effects of ALAN and dodecylbenzyldimethylammonium chloride (DDBAC) on aquatic biofilms. DDBAC is a biocide commonly used in virucidal products, and is found in urban aquatic ecosystems. The bioaccumulation of DDBAC in biofilms exposed or not to ALAN was analyzed. The responses of taxonomic composition, photosynthetic activity, and fatty acid composition of biofilms were examined. The results indicate that ALAN negatively affects photosynthetic yield and chlorophyll production of biofilms. Additionally, exposure to DDBAC at environmental concentrations induces lipid peroxidation, with an increase of oxylipins. This experimental study provides first insights on the consequences of ALAN and DDBAC for aquatic ecosystems. It also opens avenues for the identification of new biomarkers that could be used to monitor urban pollution impacts in natural environments.
Asunto(s)
Biopelículas , Agua Dulce , Estrés Oxidativo , Fotosíntesis , Contaminantes Químicos del Agua , Biopelículas/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Agua Dulce/microbiología , Peroxidación de Lípido/efectos de los fármacos , Desinfectantes/toxicidad , Clorofila/metabolismo , Ácidos Grasos/metabolismoRESUMEN
The Polar Organic Chemical Integrative Samplers (POCIS) is the most widely used passive sampler for hydrophilic compounds, but unsuitable for certain ionic organic contaminants. The Diffusive Gradient in Thin-Film technique (o-DGT) has shown positive results for both ionic and hydrophilic compounds. However, a calibration step is now needed to evaluate kinetic constant of accumulation for a wide range of molecules. In this study, o-DGT and POCIS were compared for the sampling of three families of micropollutants of potential risk to aquatic environments: 53 pesticides, 36 pharmaceuticals and 20 hormones. A calibration experiment was conducted to compare the kinetic models and constants from a scientific and practical perspective. The results are discussed in a single table that summarizes the performance of both passive samplers for the 109 compounds of interest. The advantage of o-DGT is that it allows linear accumulation for 72 compounds versus only 33 with POCIS. The mean times to equilibrium obtained with o-DGT are higher than those obtained with POCIS. These results confirm that the presence of a diffusion gel delays the achievement of equilibrium during compound accumulation. Therefore, o-DGT can be considered for situations where POCIS cannot be used due to non-linear accumulation over a typical 14-day deployment period. However, overall sampling rates and mass transfer coefficients also appear reduced with o-DGT, which is explained by the smaller exchange surface area, as well as the consideration of an additional diffusive layer in this device. This paper also showed that the most appropriate membrane to sample polar compounds with o-DGT was a polyethersulfone polymer with a pore size of 5 µm.
RESUMEN
Hydrophilic interaction liquid chromatography (HILIC), coupled to tandem mass spectrometry, can be used to separate and determine various polar lipid classes. The development of an HILIC chromatographic separation of several molecular species among five phospholipid classes (PC, PE, PG, PI and PS) is reported here. In this method, a gradient with acetonitrile and 40 mM ammonium acetate buffer was employed. The initial composition was 95% of acetonitrile, then this proportion was decreased to 70% in order to elute all the compounds of interest for a total running time of 11 mins. Furthermore, mobile phase pH can affect the ionizable character of the compounds, according to their pKa values, and also the stationary phase charge state. The influence of such a parameter on both retention times and resolution was evaluated. Besides, the response of different kinds of internal standards (post-extraction standard addition) was evaluated in four different biological matrices, two microalgae extracts and two marine fish extracts. This study found that the recovery rates were between 70 and 140% of the expected value, with relative standard deviations between 10 and 35%, and then limited matrix effects.â¢HILIC approach can be used to separate phospholipid according to their polar head-group, and electrospray ionization in negative mode as well as MS/MS allows further identification of the molecular species within each phospholipid class.â¢Matrix effects are low and compensated with appropriate internal standards.â¢The limits of quantifications were ranging from 0.05 to 0.14 µg.mL-1, depending on the analyte.
RESUMEN
This paper presents a multi-step methodology to identify relationships between integrative pesticide quantifications and land uses on a given watershed of the Adour-Garonne Basin (Southwestern France). In fact, a large amount of pesticide concentration data was collected from 51 sites located in the Adour-Garonne Basin for a 1 year monitoring period in 2016. The sampling devices used here were polar organic chemical integrative samplers (POCIS), which provided time-weighted average concentration estimates. For each study site, its associated watershed and land cover distribution were determined using Corine Land Cover 2012 (CLC 2012) and Geographic Information System (GIS). The large-scale data were analyzed using multivariate statistical analyses, such as hierarchical cluster analysis (HCA) and principal component analysis (PCA). HCA grouped the 51 sites into five clusters with similar primary land uses. Next, the integrated pesticide concentration and land use distribution data sets were analyzed in a PCA. The key variables responsible for discriminating the sample sites showed distribution patterns consistent with specific land uses. To confirm these observations, pesticide fingerprints from sites with contrasting land uses were compared using a waffle method. The overall multivariate approach allowed for the identification of contamination sources related to their likely initial use, at the watershed level, that could be useful for preventing or containing pesticide pollution beyond simply acting on areas at risk.
RESUMEN
To evaluate the effects of hydrological variability on pesticide dissipation capacity by stream biofilms, we conducted a microcosm study. We exposed biofilms to short and frequent droughts (daily frequency), long and less frequent droughts (weekly frequency) and permanently immersed controls, prior to test their capacities to dissipate a cocktail of pesticides composed of tebuconazole, terbuthylazine, imidacloprid, glyphosate and its metabolite aminomethylphosphonic acid. A range of structural and functional descriptors of biofilms (algal and bacterial biomass, extracellular polymeric matrix (EPS) concentration, microbial respiration, phosphorus uptake and community-level physiological profiles) were measured to assess drought effects. In addition, various parameters were measured to characterise the dynamics of pesticide dissipation by biofilms in the different hydrological treatments (% dissipation, peak asymmetry, bioconcentration factor, among others). Results showed higher pesticide dissipation rates in biofilms exposed to short and frequent droughts, despite of their lower biomass and EPS concentration, compared to biofilms in immersed controls or exposed to long and less frequent droughts. High accumulation of hydrophobic pesticides (tebuconazole and terbuthylazine) was measured in biofilms despite the short exposure time (few minutes) in our open-flow microcosm approach. This research demonstrated the stream biofilms capacity to adsorb hydrophobic pesticides even in stressed drought environments.
Asunto(s)
Plaguicidas , Ríos , Biopelículas , Transporte Biológico , Biomasa , Plaguicidas/farmacologíaRESUMEN
Acidic herbicides are increasingly monitored in freshwater, since their high solubility favors their rapid transfer to the water phase. Therefore, contaminant levels in the water can vary rapidly and passive sampling would be preferred over spot sampling to integrate all pollution events over a given exposure time. In this work, we propose to compare the conventional pharmaceutical polar organic chemical integrative sampler (POCIS) with modified POCISs containing two different receiving phases: a standard polystyrene divinylbenzene polymer with a higher specific surface area (Chromabond HR-X) and a mixed-mode anion exchange sorbent providing additional strong anion exchange interaction sites (Oasis MAX). Due to its hydrophobic character, Chromabond HR-X had little interaction with water (no sampling of acidic herbicides); whereas Oasis MAX provided acceptable sampling parameters (longer kinetic regime together with higher sampling rates). Additional experiments with POCIS-MAX showed no influence of nitrates on analyte uptakes, and linear isotherms reaching 10 µg L⻹, supporting the applicability of this device for the sampling of organic acids in continental water. The performance and reference compound (PRC) approach would be then applicable for POCIS-MAX if no competition is observed with other anions, especially organic acids (e.g., humic acids).
Asunto(s)
Ácidos Carboxílicos/análisis , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Resinas de Intercambio Iónico/química , Compuestos Orgánicos/análisis , Adsorción , Agua Potable/química , Nitratos/análisis , Estándares de Referencia , Ríos/química , Extracción en Fase Sólida , TemperaturaRESUMEN
The responses of aquatic organisms to chronic exposure to environmental concentrations of toxicants, often found in mixtures, are poorly documented. Here passive sampler extracts were used in experimental contamination of laboratory channels, to investigate their effects on natural biofilm communities. A realistic mixture of pesticides extracted from Polar Organic Chemical Integrative Samplers was used to expose biofilms in laboratory channels to total pesticide concentrations averaging 0.5 ± 0.1 µg l⻹. The level of exposure was representative of field conditions in terms of relative proportions of the substances but the exposure concentration was not maintained (decreasing concentrations between contamination occasions). The impact on the structural as well as the functional characteristics of the autotrophic and heterotrophic components was determined, using biofilm grown in uncontaminated conditions (reference site) and in sites exposed to pesticides (contaminated site). The exposure imposed did not significantly modify the structure or functions of reference biofilms, nor did it modify tolerance as measured by mixture EC50 (EC50 mix). In contrast, the communities from the more contaminated downstream section lost tolerance following decreased dose exposure, but community composition remained fairly stable. Overall, these results indicate that low levels of contamination did not lead to strong changes in community structure, and 14-day changes in tolerance seemed to depend mainly on physiological adaptation, suggesting that other environmental factors or longer-lasting processes prevailed. This study reports the first attempt to use passive sampler extracts as a realistic composite contaminant for experimental exposure of biofilms, with promising perspectives in further ecotoxicology studies.
Asunto(s)
Biopelículas/efectos de los fármacos , Exposición a Riesgos Ambientales/efectos adversos , Compuestos Orgánicos/toxicidad , Plaguicidas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Procesos Autotróficos/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ecosistema , Ecotoxicología , Exposición a Riesgos Ambientales/análisis , Procesos Heterotróficos/efectos de los fármacos , Compuestos Orgánicos/química , Plaguicidas/química , Pruebas de Toxicidad Crónica , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/químicaRESUMEN
The Leyre River is the main tributary to the Bassin d'Arcachon lagoon. Herbicides belonging to the chloroacetanilide class have been found in the river (S-metolachlor and acetochlor) as well as some of their metabolites at higher concentrations. As the environmental toxicity of these molecules is not well known, ecotoxicological tests have been carried out on river periphyton at different levels of biological diversity: from the clone of one diatom species (Nitzschia nana) to the population of the same species (several clones) up to the multi-specific species community dominated by diatoms. Moreover, tests were performed on diatoms coming from an unpolluted upstream site and from a contaminated downstream site, in order to investigate possible tolerance acquisition to pollutants. The method consisted in measuring diatom growth inhibition at different doses of each substance from the increase of chlorophyll-a concentration after 4 days. It resulted that acetochlor was clearly more toxic than S-metolachlor at all levels of biological diversity. EC(50) values estimated from the tests suggest no effect of contaminants on diatom growth or biomass in the river. The toxicity of the metabolites appeared very low compared to that of their parent compounds. No difference in tolerance to the herbicides was demonstrated between summer diatom communities from the two sites in spite of different specific compositions. However, concerning the populations of N. nana isolated in winter following the highest herbicide concentrations in the river (about 0.5 µg L(-1)), the downstream population showed a higher tolerance to acetochlor but there was no co-tolerance to S-metolachlor. Thus, it appeared that acetochlor represents the highest toxic pressure on periphyton among the other contaminants in the Leyre River.
Asunto(s)
Diatomeas/efectos de los fármacos , Herbicidas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Acetamidas/análisis , Acetamidas/toxicidad , Diatomeas/crecimiento & desarrollo , Francia , Herbicidas/análisis , Ríos/química , Toluidinas/análisis , Toluidinas/toxicidad , Contaminantes Químicos del Agua/análisisRESUMEN
The diffusive gradient in thin film technique was recently adapted to organic compounds. The diffusional coefficient (D) is a key parameter needed to calculate the time-weighted average concentration. In this study, two methods are used for D measurement in two gels (agarose and polyacrylamide): the diffusion cell method (Dcell) and the slice stacking method (Dstack). Thus, D were discussed and compared for 112 organic compounds, including pesticides, hormones, and pharmaceuticals. Dstack tends to be higher than Dcell. It could be explained by the presence of a non-negligible diffusive boundary layer thickness in diffusion cell. Consequently, the use of sampling rates (RS) should be more adequate to determine water concentration, for a given bulk flow velocity. Dstack also corresponds to the diffusion in gel only, allowing the determination of the maximal RS, and would be considered as a reference value that can be adjusted to in situ conditions, by applying the appropriate DBL thickness. The range and variability of D values found in the literature and obtained in this work were discussed. Relationships between D and compound physicochemical properties (molecular mass, log Dow, polar surface area, van der Waals volume) were investigated. We did not find clear and robust correlation between D and any single physicochemical property, for the set of compounds tested.
Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Resinas Acrílicas , Difusión , Monitoreo del Ambiente/métodos , Compuestos Orgánicos/química , Sefarosa/química , Contaminantes Químicos del Agua/análisisRESUMEN
In this lab-scale study, the POCIS capacity to integrate short contamination peaks of variable intensity and duration was evaluated. POCIS were immersed for 14 days in tanks filled with tap water and spiked at different concentrations with 12 pesticides of various polarities (log Kow = 1.1-4.7) and classes (herbicides, fungicides, and insecticides). Concentrations were kept relatively constant at 1 µg L-1 and 5 µg L-1, respectively, in two "background" exposure tanks. Three contamination peaks of increasing intensity and decreasing duration were simulated (10 µg L-1 for 24 h, 40 µg L-1 for 6 h, and 60 µg L-1 for 1 h). This lab-scale study demonstrated that ten moderately polar compounds (2 < log Kow < 4) showed a linear uptake, as observed in previous studies, while a non-linear model fits the data of the two most polar pesticides (log Kow < 2). Depending on chemical polarity, some compounds exhibited a "burst effect" or "lag effect" during the first 3 days of exposure. After 14 days of exposure, contamination peaks appeared integrated for seven compounds, showing the ability of POCIS to catch very short pollution events and to provide acceptable time-weighted average concentration estimates under laboratory-controlled conditions.