Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(27): 15862-15873, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32561647

RESUMEN

Albuminuria is an independent risk factor for the progression to end-stage kidney failure, cardiovascular morbidity, and premature death. As such, discovering signaling pathways that modulate albuminuria is desirable. Here, we studied the transcriptomes of podocytes, key cells in the prevention of albuminuria, under diabetic conditions. We found that Neuropeptide Y (NPY) was significantly down-regulated in insulin-resistant vs. insulin-sensitive mouse podocytes and in human glomeruli of patients with early and late-stage diabetic nephropathy, as well as other nondiabetic glomerular diseases. This contrasts with the increased plasma and urinary levels of NPY that are observed in such conditions. Studying NPY-knockout mice, we found that NPY deficiency in vivo surprisingly reduced the level of albuminuria and podocyte injury in models of both diabetic and nondiabetic kidney disease. In vitro, podocyte NPY signaling occurred via the NPY2 receptor (NPY2R), stimulating PI3K, MAPK, and NFAT activation. Additional unbiased proteomic analysis revealed that glomerular NPY-NPY2R signaling predicted nephrotoxicity, modulated RNA processing, and inhibited cell migration. Furthermore, pharmacologically inhibiting the NPY2R in vivo significantly reduced albuminuria in adriamycin-treated glomerulosclerotic mice. Our findings suggest a pathogenic role of excessive NPY-NPY2R signaling in the glomerulus and that inhibiting NPY-NPY2R signaling in albuminuric kidney disease has therapeutic potential.


Asunto(s)
Albuminuria/metabolismo , Enfermedades Renales/metabolismo , Neuropéptido Y/metabolismo , Receptores de Neuropéptido Y/metabolismo , Transducción de Señal/fisiología , Animales , Arginina/análogos & derivados , Arginina/farmacología , Benzazepinas/farmacología , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas , Modelos Animales de Enfermedad , Regulación hacia Abajo , Doxorrubicina/farmacología , Humanos , Insulina/metabolismo , Enfermedades Renales/patología , Glomérulos Renales/efectos de los fármacos , Glomérulos Renales/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Neuropéptido Y/farmacología , Neuropéptido Y/orina , Podocitos/metabolismo , Proteómica , Receptores de Neuropéptido Y/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
2.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37629102

RESUMEN

Human patients with mutations within NPPC or NPR2 genes (encoding C-type natriuretic peptide (CNP) and guanylyl cyclase-B (GC-B), respectively) display clinical signs associated with skeletal abnormalities, such as overgrowth or short stature. Mice with induced models of Nppc or Npr2 deletion display profound achondroplasia, dwarfism and early death. Recent pharmacological therapies to treat short stature are utilizing long-acting CNP analogues, but the effects of manipulating CNP expression during development remain unknown. Here, we use Danio rerio (zebrafish) as a model for vertebrate development, employing both pharmacological and reverse genetics approaches to alter expression of genes encoding CNP in zebrafish. Four orthologues of CNP were identified in zebrafish, and spatiotemporal expression profiling confirmed their presence during development. Bioinformatic analyses suggested that nppcl is the most likely the orthologue of mammalian CNP. Exogenous CNP treatment of developing zebrafish embryos resulted in impaired growth characteristics, such as body length, head width and eye diameter. This reduced growth was potentially caused by increased apoptosis following CNP treatment. Expression of endogenous nppcl was downregulated in these CNP-treated embryos, suggesting that negative feedback of the CNP system might influence growth during development. CRISPR knock-down of endogenous nppcl in developing zebrafish embryos also resulted in impaired growth characteristics. Collectively, these data suggest that CNP in zebrafish is crucial for normal embryonic development, specifically with regard to growth.


Asunto(s)
Acondroplasia , Péptido Natriurético Tipo-C , Femenino , Embarazo , Humanos , Animales , Ratones , Péptido Natriurético Tipo-C/genética , Pez Cebra/genética , Trastornos del Crecimiento , Mamíferos
3.
Diabetologia ; 64(7): 1690-1702, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33758952

RESUMEN

AIMS/HYPOTHESIS: Podocyte loss or injury is one of the earliest features observed in the pathogenesis of diabetic kidney disease (DKD), which is the leading cause of end-stage renal failure worldwide. Dysfunction in the IGF axis, including in IGF binding proteins (IGFBPs), is associated with DKD, particularly in the early stages of disease progression. The aim of this study was to investigate the potential roles of IGFBPs in the development of type 2 DKD, focusing on podocytes. METHODS: IGFBP expression was analysed in the Pima DKD cohort, alongside data from the Nephroseq database, and in ex vivo human glomeruli. Conditionally immortalised human podocytes and glomerular endothelial cells were studied in vitro, where IGFBP-1 expression was analysed using quantitative PCR and ELISAs. Cell responses to IGFBPs were investigated using migration, cell survival and adhesion assays; electrical cell-substrate impedance sensing; western blotting; and high-content automated imaging. RESULTS: Data from the Pima DKD cohort and from the Nephroseq database demonstrated a significant reduction in glomerular IGFBP-1 in the early stages of human type 2 DKD. In the glomerulus, IGFBP-1 was predominantly expressed in podocytes and controlled by phosphoinositide 3-kinase (PI3K)-forkhead box O1 (FoxO1) activity. In vitro, IGFBP-1 signalled to podocytes via ß1-integrins, resulting in increased phosphorylation of focal-adhesion kinase (FAK), increasing podocyte motility, adhesion, electrical resistance across the adhesive cell layer and cell viability. CONCLUSIONS/INTERPRETATION: This work identifies a novel role for IGFBP-1 in the regulation of podocyte function and that the glomerular expression of IGFBP-1 is reduced in the early stages of type 2 DKD, via reduced FoxO1 activity. Thus, we hypothesise that strategies to maintain glomerular IGFBP-1 levels may be beneficial in maintaining podocyte function early in DKD.


Asunto(s)
Diabetes Mellitus Tipo 2/patología , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Glomérulos Renales/metabolismo , Podocitos/metabolismo , Biopsia , Células Cultivadas , Estudios de Cohortes , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Integrina beta1/metabolismo , Riñón/metabolismo , Riñón/patología , Glomérulos Renales/patología , Podocitos/patología , Transducción de Señal/genética
4.
Int J Mol Sci ; 22(3)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499110

RESUMEN

Patients harbouring mutations in genes encoding C-type natriuretic peptide (CNP; NPPC) or its receptor guanylyl cyclase B (GC-B, NPR2) suffer from severe growth phenotypes; loss-of-function mutations cause achondroplasia, whereas gain-of-function mutations cause skeletal overgrowth. Although most of the effects of CNP/GC-B on growth are mediated directly on bone, evidence suggests the natriuretic peptides may also affect anterior pituitary control of growth. Our previous studies described the expression of NPPC and NPR2 in a range of human pituitary tumours, normal human pituitary, and normal fetal human pituitary. However, the natriuretic peptide system in somatotropes has not been extensively explored. Here, we examine the expression and function of the CNP/GC-B system in rat GH3 somatolactotrope cell line and pituitary tumours from a cohort of feline hypersomatotropism (HST; acromegaly) patients. Using multiplex RT-qPCR, all three natriuretic peptides and their receptors were detected in GH3 cells. The expression of Nppc was significantly enhanced following treatment with either 100 nM TRH or 10 µM forskolin, yet only Npr1 expression was sensitive to forskolin stimulation; the effects of forskolin and TRH on Nppc expression were PKA- and MAPK-dependent, respectively. CNP stimulation of GH3 somatolactotropes significantly inhibited Esr1, Insr and Lepr expression, but dramatically enhanced cFos expression at the same time point. Oestrogen treatment significantly enhanced expression of Nppa, Nppc, Npr1, and Npr2 in GH3 somatolactotropes, but inhibited CNP-stimulated cGMP accumulation. Finally, transcripts for all three natriuretic peptides and receptors were expressed in feline pituitary tumours from patients with HST. NPPC expression was negatively correlated with pituitary tumour volume and SSTR5 expression, but positively correlated with D2R and GHR expression. Collectively, these data provide mechanisms that control expression and function of CNP in somatolactotrope cells, and identify putative transcriptional targets for CNP action in somatotropes.


Asunto(s)
Mutación , Péptido Natriurético Tipo-C/metabolismo , Neoplasias Hipofisarias/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Acromegalia/metabolismo , Animales , Gatos , Línea Celular , Colforsina/farmacología , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Estrógenos/metabolismo , Femenino , Masculino , Fenotipo , Hipófisis/metabolismo , Ratas , Ratas Wistar , Hormona Liberadora de Tirotropina/farmacología
5.
Mol Cell Neurosci ; 78: 35-40, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27913310

RESUMEN

BACKGROUND: Gpr151 is an orphan GPCR whose function is unknown. The restricted pattern of neuronal expression in the habenula, dorsal horn of the spinal cord and dorsal root ganglion plus homology with the galanin family of receptors imply a role in nociception. RESULTS: Real-time quantitative RT-PCR demonstrated a 49.9±2.9 fold highly significant (P<0.001) increase in Gpr151 mRNA expression in the dorsal root ganglion 7days after the spared nerve injury model of neuropathic pain. Measures of acute, inflammatory and neuropathic pain behaviours were not significantly different using separate groups of Gpr151 loss-of-function mutant mice and wild-type controls. Galanin at concentrations between 100nM and 10µM did not induce calcium signalling responses in ND7/23 cells transfected with Gpr151. CONCLUSIONS: Our results indicate that despite the very large upregulation in the DRG after a nerve injury model of neuropathic pain, the Gpr151 orphan receptor does not appear to be involved in the modulation of pain-related behaviours. Further, galanin is unlikely to be an endogenous ligand for Gpr151.


Asunto(s)
Ganglios Espinales/metabolismo , Neuralgia/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Señalización del Calcio , Línea Celular Tumoral , Galanina/metabolismo , Ganglios Espinales/fisiología , Ratones , Mutación , Unión Proteica , Receptores Acoplados a Proteínas G/genética
6.
J Biol Chem ; 291(5): 2246-59, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26644469

RESUMEN

Cell signaling pathways are noisy communication channels, and statistical measures derived from information theory can be used to quantify the information they transfer. Here we use single cell signaling measures to calculate mutual information as a measure of information transfer via gonadotropin-releasing hormone (GnRH) receptors (GnRHR) to extracellular signal-regulated kinase (ERK) or nuclear factor of activated T-cells (NFAT). This revealed mutual information values <1 bit, implying that individual GnRH-responsive cells cannot unambiguously differentiate even two equally probable input concentrations. Addressing possible mechanisms for mitigation of information loss, we focused on the ERK pathway and developed a stochastic activation model incorporating negative feedback and constitutive activity. Model simulations revealed interplay between fast (min) and slow (min-h) negative feedback loops with maximal information transfer at intermediate feedback levels. Consistent with this, experiments revealed that reducing negative feedback (by expressing catalytically inactive ERK2) and increasing negative feedback (by Egr1-driven expression of dual-specificity phosphatase 5 (DUSP5)) both reduced information transfer from GnRHR to ERK. It was also reduced by blocking protein synthesis (to prevent GnRH from increasing DUSP expression) but did not differ for different GnRHRs that do or do not undergo rapid homologous desensitization. Thus, the first statistical measures of information transfer via these receptors reveals that individual cells are unreliable sensors of GnRH concentration and that this reliability is maximal at intermediate levels of ERK-mediated negative feedback but is not influenced by receptor desensitization.


Asunto(s)
Retroalimentación Fisiológica , Regulación Enzimológica de la Expresión Génica , Hormona Liberadora de Gonadotropina/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Factores de Transcripción NFATC/metabolismo , Receptores LHRH/metabolismo , Catálisis , Simulación por Computador , Cicloheximida/química , Fosfatasas de Especificidad Dual/metabolismo , Células HeLa , Humanos , Modelos Teóricos , Inhibidores de la Síntesis de la Proteína/química , Transducción de Señal , Procesos Estocásticos
7.
Cell Tissue Res ; 369(3): 567-578, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28451751

RESUMEN

The natriuretic peptides, Atrial-, B-type and C-type natriuretric peptides (ANP, BNP, CNP), are regulators of many endocrine tissues and exert their effects predominantly through the activation of their specific guanylyl cyclase receptors (GC-A and GC-B) to generate cGMP. Whereas cGMP-independent signalling has been reported in response to natriuretic peptides, this is mediated via either the clearance receptor (Npr-C) or a renal-specific NPR-Bi isoform, which both lack intrinsic guanylyl cyclase activity. Here, we report evidence of GC-B-dependent cGMP-independent signalling in pituitary GH3 cells. Stimulation of GH3 cells with CNP resulted in a rapid and sustained enhancement of ERK1/2 phosphorylation (P-ERK1/2), an effect that was not mimicked by dibutryl-cGMP. Furthermore, CNP-stimulated P-ERK1/2 occurred at concentrations below that required for cGMP accumulation. The effect of CNP on P-ERK1/2 was sensitive to pharmacological blockade of MEK (U0126) and Src kinases (PP2). Silencing of the GC-B1 and GC-B2 splice variants of the GC-B receptor by using targeted short interfering RNAs completely blocked the CNP effects on P-ERK1/2. CNP failed to alter GH3 cell proliferation or cell cycle distribution but caused a concentration-dependent increase in the activity of the human glycoprotein α-subunit promoter (αGSU) in a MEK-dependent manner. Finally, CNP also activated the p38 and JNK MAPK pathways in GH3 cells. These findings reveal an additional mechanism of GC-B signalling and suggest additional biological roles for CNP in its target tissues.


Asunto(s)
Guanilato Ciclasa/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Péptido Natriurético Tipo-C/farmacología , Somatotrofos/metabolismo , Animales , Línea Celular , GMP Cíclico/metabolismo , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Receptores Acoplados a la Guanilato-Ciclasa/metabolismo , Somatotrofos/efectos de los fármacos
8.
Proc Natl Acad Sci U S A ; 111(3): E326-33, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24395805

RESUMEN

Cells must sense extracellular signals and transfer the information contained about their environment reliably to make appropriate decisions. To perform these tasks, cells use signal transduction networks that are subject to various sources of noise. Here, we study the effects on information transfer of two particular types of noise: basal (leaky) network activity and cell-to-cell variability in the componentry of the network. Basal activity is the propensity for activation of the network output in the absence of the signal of interest. We show, using theoretical models of protein kinase signaling, that the combined effect of the two types of noise makes information transfer by such networks highly vulnerable to the loss of negative feedback. In an experimental study of ERK signaling by single cells with heterogeneous ERK expression levels, we verify our theoretical prediction: In the presence of basal network activity, negative feedback substantially increases information transfer to the nucleus by both preventing a near-flat average response curve and reducing sensitivity to variation in substrate expression levels. The interplay between basal network activity, heterogeneity in network componentry, and feedback is thus critical for the effectiveness of protein kinase signaling. Basal activity is widespread in signaling systems under physiological conditions, has phenotypic consequences, and is often raised in disease. Our results reveal an important role for negative feedback mechanisms in protecting the information transfer function of saturable, heterogeneous cell signaling systems from basal activity.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Enzimológica de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Teorema de Bayes , Núcleo Celular/metabolismo , Retroalimentación Fisiológica , Células HeLa , Humanos , Ligandos , Modelos Biológicos , Análisis Multivariante , Fenotipo , Fosforilación
9.
Mol Hum Reprod ; 22(7): 512-25, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27161844

RESUMEN

STUDY HYPOTHESIS: Steroid receptor coactivator interacting protein (SIP/KANK2) is involved in regulating the expression of the prostaglandin (PG)-endoperoxide synthase 2 (PTGS2; also known as cyclo-oxygenase 2, COX2) and PG release in human myometrium. STUDY FINDING: SIP is phosphorylated in myometrial cells in response to epidermal growth factor (EGF)-stimulation and is required for EGF-stimulated increases in COX2 expression, PGE2 and PGF2α release, and expression of interleukins (IL) 6 and IL8. WHAT IS KNOWN ALREADY: Human parturition involves inflammatory and non-inflammatory pathways and requires activation of the intrauterine PG cascade. A key mediator of uterine PG production is the highly inducible enzyme COX2. Regulation of COX2 expression is complex, and novel factors involved in its induction may play an important role during labour. The expression and function of SIP in uterine tissues has never been investigated. STUDY DESIGN, SAMPLES/MATERIALS, METHODS: Mass spectrometry was used to identify SIP from cultured primary myometrial cells, and its expression in fresh placenta, fetal membranes, decidua and myometrium from pregnant and non-pregnant women was determined by western blotting. SIP expression in myometrial cells was reduced using small interfering RNA (siRNA), and COX2 expression was stimulated with EGF. COX2, IL6 and IL8 mRNA and COX2 protein expression were measured using quantitative RT-PCR (RT-qPCR) and western blotting respectively, and release of PGE2 and PGF2α by enzyme immunoassay. The time course and dose response of SIP phosphorylation in response to EGF were determined, and phosphorylation was measured in the presence of the mitogen-activated protein kinase kinase 1(MEK1) inhibitor PD-184352. Fresh myometrial tissue was used to confirm effects of EGF and MEK1 inhibition on SIP phosphorylation and COX2 expression. A profile of transcription factor (TF) activity after SIP knockdown was carried out using a commercially available array. MAIN RESULTS AND THE ROLE OF CHANCE: We have demonstrated expression of SIP in human myometrium. siRNA-mediated knockdown of SIP resulted in decreased EGF-stimulated COX2 protein expression (P < 0.001), and decreased release of PGE2 (P < 0.001) and PGF2α (P < 0.01). EGF stimulation resulted in rapid and transient phosphorylation of SIP, which was blocked by pharmacological inhibition of the MEK1/ERK (extracellular signal-regulated kinase) signalling pathway with PD-184352 (P < 0.001). Moreover inhibition of ERK signalling significantly decreased EGF-stimulated COX2 expression (P < 0.001). EGF phosphorylated SIP and increased COX2 expression in a MEK1/ERK-dependent manner in freshly isolated pregnant myometrium. Our data have uncovered a pathway mediating EGF-stimulated COX2 expression that is ERK and SIP dependent, providing a novel function for SIP in the pregnant uterus. Furthermore, EGF stimulated the expression of IL6 and IL8 mRNA in a SIP-dependent manner (both P < 0.05), and SIP expression was positively associated with activation of serum response factor (SRF) and YY1 TF (P < 0.001 and P < 0.05, respectively), suggesting additional important roles for myometrial SIP. LIMITATIONS, REASONS FOR CAUTION: While we describe a new role for myometrial SIP, we are yet to determine whether SIP phosphorylation is required for its effects on regulating COX2 expression and PG release. Our data are from in vitro studies using fresh tissue and cultured myometrial cells therefore may not fully reflect the conditions in vivo. WIDER IMPLICATIONS OF THE FINDINGS: Our group has previously described increases in myometrial COX2 expression with labour at term and preterm. EGF levels rise in the amniotic fluid near term suggesting it may participate in paracrine signalling events, altering gene expression in the myometrium. Our novel data describe a role for SIP in regulating EGF-stimulated expression of myometrial COX2 and PG release. Moreover, our profile of SIP-dependent TF activation provides a platform for further investigations into additional roles for SIP in uterine function. These findings may facilitate the development of new, targeted drugs for the management of labour. LARGE SCALE DATA: Not applicable. STUDY FUNDING AND COMPETING INTERESTS: This work was supported by an Action Medical Research grant (SP4612). The authors have no competing interests to declare.


Asunto(s)
Proteínas Portadoras/metabolismo , Ciclooxigenasa 2/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Miometrio/efectos de los fármacos , Miometrio/metabolismo , Prostaglandinas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Reguladoras de la Apoptosis , Proteínas Portadoras/genética , Ciclooxigenasa 2/genética , Dinoprost/metabolismo , Dinoprostona/metabolismo , Femenino , Humanos , Proteínas Supresoras de Tumor/genética
10.
J Biol Chem ; 289(11): 7873-83, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24482225

RESUMEN

Gonadotropin-releasing hormone (GnRH) is secreted in brief pulses that stimulate synthesis and secretion of pituitary gonadotropin hormones and thereby mediate control of reproduction. It acts via G-protein-coupled receptors to stimulate effectors, including ERK. Information could be encoded in GnRH pulse frequency, width, amplitude, or other features of pulse shape, but the relative importance of these features is unknown. Here we examine this using automated fluorescence microscopy and mathematical modeling, focusing on ERK signaling. The simplest scenario is one in which the system is linear, and response dynamics are relatively fast (compared with the signal dynamics). In this case integrated system output (ERK activation or ERK-driven transcription) will be roughly proportional to integrated input, but we find that this is not the case. Notably, we find that relatively slow response kinetics lead to ERK activity beyond the GnRH pulse, and this reduces sensitivity to pulse width. More generally, we show that the slowing of response kinetics through the signaling cascade creates a system that is robust to pulse width. We, therefore, show how various levels of response kinetics synergize to dictate system sensitivity to different features of pulsatile hormone input. We reveal the mathematical and biochemical basis of a dynamic GnRH signaling system that is robust to changes in pulse amplitude and width but is sensitive to changes in receptor occupancy and frequency, precisely the features that are tightly regulated and exploited to exert physiological control in vivo.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Transporte Activo de Núcleo Celular , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Hormonas/metabolismo , Humanos , Cinética , Luciferasas/metabolismo , Modelos Teóricos , Regiones Promotoras Genéticas , Transducción de Señal , Transcriptoma
11.
J Biol Chem ; 288(29): 21001-21014, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23754287

RESUMEN

Many extracellular signals act via the Raf/MEK/ERK cascade in which kinetics, cell-cell variability, and sensitivity of the ERK response can all influence cell fate. Here we used automated microscopy to explore the effects of ERK-mediated negative feedback on these attributes in cells expressing endogenous ERK or ERK2-GFP reporters. We studied acute rather than chronic stimulation with either epidermal growth factor (ErbB1 activation) or phorbol 12,13-dibutyrate (PKC activation). In unstimulated cells, ERK-mediated negative feedback reduced the population-average and cell-cell variability of the level of activated ppERK and increased its robustness to changes in ERK expression. In stimulated cells, negative feedback (evident between 5 min and 4 h) also reduced average levels and variability of phosphorylated ERK (ppERK) without altering the "gradedness" or sensitivity of the response. Binning cells according to total ERK expression revealed, strikingly, that maximal ppERK responses initially occur at submaximal ERK levels and that this non-monotonic relationship changes to an increasing, monotonic one within 15 min. These phenomena occur in HeLa cells and MCF7 breast cancer cells and in the presence and absence of ERK-mediated negative feedback. They were best modeled assuming distributive (rather than processive) activation. Thus, we have uncovered a novel, time-dependent change in the relationship between total ERK and ppERK levels that persists without negative feedback. This change makes acute response kinetics dependent on ERK level and provides a "gating" or control mechanism in which the interplay between stimulus duration and the distribution of ERK expression across cells could modulate the proportion of cells that respond to stimulation.


Asunto(s)
Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Retroalimentación Fisiológica , Sistema de Señalización de MAP Quinasas , Proteína Quinasa C/metabolismo , Activación Enzimática/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Retroalimentación Fisiológica/efectos de los fármacos , Células HeLa , Humanos , Cinética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células MCF-7 , Microscopía Fluorescente , Modelos Biológicos , Forbol 12,13-Dibutirato/farmacología , Fosforilación/efectos de los fármacos , Factores de Tiempo
12.
Cell Tissue Res ; 355(2): 425-36, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24352806

RESUMEN

The guanylyl cyclases, GC-A and GC-B, are selective receptors for atrial and C-type natriuretic peptides (ANP and CNP, respectively). In the anterior pituitary, CNP and GC-B are major regulators of cGMP production in gonadotropes and yet mouse models of disrupted CNP and GC-B indicate a potential role in growth hormone secretion. In the current study, we investigate the molecular and pharmacological properties of the CNP/GC-B system in somatotrope lineage cells. Primary rat pituitary and GH3 somatolactotropes expressed functional GC-A and GC-B receptors that had similar EC50 properties in terms of cGMP production. Interestingly, GC-B signaling underwent rapid homologous desensitization in a protein phosphatase 2A (PP2A)-dependent manner. Chronic exposure to either CNP or ANP caused a significant down-regulation of both GC-A- and GC-B-dependent cGMP accumulation in a ligand-specific manner. However, this down-regulation was not accompanied by alterations in the sub-cellular localization of these receptors. Heterologous desensitization of GC-B signaling occurred in GH3 cells following exposure to either sphingosine-1-phosphate or thyrotrophin-releasing hormone (TRH). This heterologous desensitization was protein kinase C (PKC)-dependent, as pre-treatment with GF109203X prevented the effect of TRH on CNP/GC-B signaling. Collectively, these data indicate common and distinct properties of particulate guanylyl cyclase receptors in somatotropes and reveal that independent mechanisms of homologous and heterologous desensitization occur involving either PP2A or PKC. Guanylyl cyclase receptors thus represent potential novel therapeutic targets for treating growth-hormone-associated disorders.


Asunto(s)
Lactotrofos/enzimología , Receptores del Factor Natriurético Atrial/metabolismo , Transducción de Señal , Animales , Factor Natriurético Atrial/farmacología , Señalización del Calcio/efectos de los fármacos , Línea Celular , AMP Cíclico/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Endocitosis/efectos de los fármacos , Lactotrofos/efectos de los fármacos , Ligandos , Ratones , Péptido Natriurético Tipo-C/farmacología , Proteína Quinasa C/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Esfingolípidos/metabolismo , Hormona Liberadora de Tirotropina/metabolismo
13.
Proc Natl Acad Sci U S A ; 108(17): 7172-6, 2011 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-21482767

RESUMEN

Naturally occurring mutations of G protein-coupled receptors (GPCRs) causing misfolding and failure to traffic to the cell surface can result in disease states. Some small-molecule orthosteric ligands can rescue such misfolded receptors, presumably by facilitating their correct folding and shuttling to the plasma membrane. Here we show that a cell-permeant, allosterically binding small-molecule agonist (Org 42599) rescues the folding and cell surface expression, and therefore target cell signaling, of mutant human luteinizing hormone (LH) receptors (A593P and S616Y) that cause Leydig cell hypoplasia in man. Both mutant receptors were retained in the cytoplasm whereas WT receptor localized at the cell membrane, and binding of LH to cells expressing the mutant receptors was markedly lower than to those expressing the WT receptor. Incubation with Org 42599 increased mutant receptor expression, cell surface localization, and the proportion of mutant receptor in the mature glycosylated form. Importantly, although LH stimulated little (S616Y) or no (A593P) activation of cells expressing mutant receptors, incubation of cells with Org 42599 facilitated rescue of expression and stimulation by the native ligand, LH. Although Org 42599 could activate these receptors, it could not displace (125)I-labeled human LH binding to the WT receptor, indicating that it acts in an allosteric manner. Here we demonstrate a small-molecule GPCR allosteric agonist that functionally rescues intracellularly retained mutant LH receptors by facilitating their cell surface expression. This approach may have application for treatment of infertile patients bearing such mutations and, more broadly, for other misfolded GPCR mutants resulting in human pathologic processes.


Asunto(s)
Fármacos para la Fertilidad/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Mutación Missense , Receptores de HL/agonistas , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/genética , Sustitución de Aminoácidos , Membrana Celular/genética , Membrana Celular/metabolismo , Femenino , Regulación de la Expresión Génica/genética , Glicosilación/efectos de los fármacos , Células HEK293 , Humanos , Infertilidad/tratamiento farmacológico , Infertilidad/genética , Infertilidad/metabolismo , Hormona Luteinizante/farmacología , Masculino , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Receptores de HL/biosíntesis , Receptores de HL/genética
14.
Mol Pharmacol ; 82(2): 178-88, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22553358

RESUMEN

Previously we correlated the efficacy for G protein activation with that for arrestin recruitment for a number of agonists at the µ-opioid receptor (MOPr) stably expressed in HEK293 cells. We suggested that the endomorphins (endomorphin-1 and -2) might be biased toward arrestin recruitment. In the present study, we investigated this phenomenon in more detail for endomorphin-2, using endogenous MOPr in rat brain as well as MOPr stably expressed in HEK293 cells. For MOPr in neurons in brainstem locus ceruleus slices, the peptide agonists [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) and endomorphin-2 activated inwardly rectifying K(+) current in a concentration-dependent manner. Analysis of these responses with the operational model of pharmacological agonism confirmed that endomorphin-2 had a much lower operational efficacy for G protein-mediated responses than did DAMGO at native MOPr in mature neurons. However, endomorphin-2 induced faster desensitization of the K(+) current than did DAMGO. In addition, in HEK293 cells stably expressing MOPr, the ability of endomorphin-2 to induce phosphorylation of Ser375 in the COOH terminus of the receptor, to induce association of arrestin with the receptor, and to induce cell surface loss of receptors was much more efficient than would be predicted from its efficacy for G protein-mediated signaling. Together, these results indicate that endomorphin-2 is an arrestin-biased agonist at MOPr and the reason for this is likely to be the ability of endomorphin-2 to induce greater phosphorylation of MOPr than would be expected from its ability to activate MOPr and to induce activation of G proteins.


Asunto(s)
Analgésicos Opioides/farmacología , Oligopéptidos/fisiología , Receptores Opioides mu/agonistas , Receptores Opioides mu/fisiología , Analgésicos Opioides/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Encefalina Ala(2)-MeFe(4)-Gli(5)/metabolismo , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Células HEK293 , Humanos , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar
15.
J Cell Sci ; 123(Pt 24): 4310-20, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21123621

RESUMEN

Many stimuli activate the extracellular signal-regulated kinase (ERK) by phosphorylation on the TEY motif. Activated ERK characteristically accumulates in the nucleus, but the underlying mechanisms involved are unclear. Using automated microscopy to explore ERK regulation in single intact cells, we find that, when protein kinase C or epidermal growth factor receptors are activated, a substantial fraction of the ERK nuclear localization response is uncoupled from TEY phosphorylation. This phosphorylation-unattributable nuclear localization response occurs in the presence of inhibitors of tyrosine phosphatases and protein synthesis. It was also evident with a catalytically inactive ERK2-GFP mutant, and with a mutant incapable of binding the DEF (docking site for ERK, F/Y-X-F/Y-P) domains found in many ERK binding partners. It was, however, reduced by MEK inhibition and by mutations preventing either TEY phosphorylation or D (docking)-domain-dependent ERK binding (D319N). Thus, we show that MEK-catalysed ERK phosphorylation is necessary but not sufficient for the full nuclear localization response: there is an additional phosphorylation-unattributable component of the response that does not reflect induced expression of nuclear anchors and is independent of ERK catalytic activity or DEF-domain binding. It is, however, dependent upon D-domain binding, highlighting distinct roles of ERK motifs during nuclear targeting.


Asunto(s)
Núcleo Celular/enzimología , Quinasas MAP Reguladas por Señal Extracelular/química , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Núcleo Celular/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Mutantes/metabolismo , Forbol 12,13-Dibutirato/farmacología , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Transporte de Proteínas/efectos de los fármacos , Proteínas Recombinantes de Fusión/metabolismo , Relación Estructura-Actividad
16.
Biochem Soc Trans ; 40(1): 224-9, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22260695

RESUMEN

Many stimuli mediate activation and nuclear translocation of ERK (extracellular-signal-regulated kinase) by phosphorylation on the TEY (Thr-Glu-Tyr) motif. This is necessary to initiate transcriptional programmes controlling cellular responses, but the mechanisms that govern ERK nuclear targeting are unclear. Single-cell imaging approaches have done much to increase our understanding of input-output relationships in the ERK cascade, but few studies have addressed how the range of ERK phosphorylation responses observed in cell populations influences subcellular localization. Using automated microscopy to explore ERK regulation in single adherent cells, we find that nuclear localization responses increase in proportion to stimulus level, but not the level of TEY phosphorylation. This phosphorylation-unattributable nuclear localization response occurs in the presence of tyrosine phosphatase and protein synthesis inhibitors. It is also seen with a catalytically inactive ERK2-GFP (green fluorescent protein) mutant, and with a mutant incapable of binding the DEF (docking site for ERK, F/Y-X-F/Y-P) domains found in many ERK-binding partners. It is, however, reduced by MEK (mitogen-activated protein kinase/ERK kinase) inhibition and by mutations preventing TEY phosphorylation or in the ERK common docking region. We therefore show that TEY phosphorylation of ERK is necessary, but not sufficient, for the full nuclear accumulation response and that this 'phosphorylation-unattributable' component of stimulus-mediated ERK nuclear localization requires association with partner proteins via the common docking motif.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Análisis de la Célula Individual , Transporte Activo de Núcleo Celular , Secuencias de Aminoácidos , Núcleo Celular/metabolismo , Humanos , Microscopía Fluorescente , Proteína Quinasa 1 Activada por Mitógenos/química , Proteína Quinasa 3 Activada por Mitógenos/química , Fosforilación , Transporte de Proteínas
17.
Biochem Soc Trans ; 40(1): 273-8, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22260704

RESUMEN

GnRH (gonadotropin-releasing hormone) mediates control of reproduction. It is secreted in pulses and acts via intracellular effectors to activate gene expression. Submaximal GnRH pulse frequency can elicit maximal responses, yielding bell-shaped frequency-response curves characteristic of genuine frequency decoders. GnRH frequency decoding is therapeutically important (pulsatile GnRH can drive ovulation in assisted reproduction, whereas sustained activation can treat breast and prostate cancers), but the mechanisms are unknown. In the present paper, we review recent work in this area, placing emphasis on the regulation of transcription, and showing how mathematical modelling of GnRH effects on two effectors [ERK (extracellular-signal-regulated kinase) and NFAT (nuclear factor of activated T-cells)] reveals the potential for genuine frequency decoding as an emergent feature of the GnRH signalling network, rather than an intrinsic feature of a given protein or pathway within it.


Asunto(s)
Señalización del Calcio , Hormona Liberadora de Gonadotropina/fisiología , Sistema de Señalización de MAP Quinasas , Algoritmos , Animales , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Humanos , Modelos Biológicos , Factores de Transcripción NFATC/metabolismo , Transporte de Proteínas
18.
Curr Opin Endocr Metab Res ; 27: 100407, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36632147

RESUMEN

The pulsatile release of gonadotropin-releasing hormone (GnRH) and its frequency are crucial for healthy reproductive function. To understand what drives GnRH pulses, a combination of experimental and mathematical modelling approaches has been used. Early work focussed on the possibility that GnRH pulse generation is an intrinsic feature of GnRH neurons, with autocrine feedback generating pulsatility. However, there is now ample evidence suggesting that a network of upstream neurons secreting kisspeptin, neurokinin-B and dynorphin are the source of this GnRH pulse generator. The interplay of slow positive and negative feedback via neurokinin-B and dynorphin, respectively, allows the network to act as a relaxation oscillator, driving pulsatile secretion of kisspeptin, and consequently, of GnRH and LH. Here, we review the mathematical modelling approaches exploring both scenarios and suggest that with pulsatile GnRH secretion driven by the KNDy pulse generator, autocrine feedback still has the potential to modulate GnRH output.

19.
J Neuroendocrinol ; 34(5): e13085, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35080068

RESUMEN

Mathematical modelling is an indispensable tool in modern biosciences, enabling quantitative analysis and integration of biological data, transparent formulation of our understanding of complex biological systems, and efficient experimental design based on model predictions. This review article provides an overview of the impact that mathematical models had on GnRH research. Indeed, over the last 20 years mathematical modelling has been used to describe and explore the physiology of the GnRH neuron, the mechanisms underlying GnRH pulsatile secretion, and GnRH signalling to the pituitary. Importantly, these models have contributed to GnRH research via novel hypotheses and predictions regarding the bursting behaviour of the GnRH neuron, the role of kisspeptin neurons in the emergence of pulsatile GnRH dynamics, and the decoding of GnRH signals by biochemical signalling networks. We envisage that with the advent of novel experimental technologies, mathematical modelling will have an even greater role to play in our endeavour to understand the complex spatiotemporal dynamics underlying the reproductive neuroendocrine system.


Asunto(s)
Hormona Liberadora de Gonadotropina , Kisspeptinas , Hormona Liberadora de Gonadotropina/fisiología , Kisspeptinas/fisiología , Modelos Teóricos , Neuronas/fisiología , Reproducción/fisiología
20.
J Biol Chem ; 285(32): 24360-71, 2010 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-20507982

RESUMEN

Gonadotropin-releasing hormone (GnRH) acts via G-protein-coupled receptors on gonadotrophs to stimulate synthesis and secretion of luteinizing hormone and follicle-stimulating hormone. It is secreted in pulses, and its effects depend on pulse frequency, but decoding mechanisms are unknown. Here we have used an extracellular signal regulated kinase-green fluorescent protein (ERK2-GFP) reporter to monitor GnRH signaling. GnRH caused dose-dependent ERK2-GFP translocation to the nucleus, providing a live-cell readout for activation. Pulsatile GnRH caused dose- and frequency-dependent ERK2-GFP translocation. These responses were rapid and transient, showed only digital tracking, and did not desensitize under any condition tested (dose, frequency, and receptor number varied). We also tested for the effects of cycloheximide (to prevent induction of nuclear-inducible MAPK phosphatases) and used GFP fusions containing ERK mutations (D319N, which prevents docking domain-dependent binding to MAPK phosphatases, and K52R, which prevents catalytic activity). These manipulations had little or no effect on the translocation responses, arguing against a role for MAPK phosphatases or ERK-mediated feedback in shaping ERK activation during pulsatile stimulation. GnRH also caused dose- and frequency-dependent activation of the alpha-gonadotropin subunit-, luteinizing hormone beta-, and follicle-stimulating hormone beta- luciferase reporters, and the latter response was inhibited by ERK1/2 knockdown. Moreover, GnRH caused frequency-dependent activation of an Egr1-luciferase reporter, but the response was proportional to cumulative pulse duration. Our data suggest that frequency decoding is not due to negative feedback shaping ERK signaling in this model.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Receptores LHRH/metabolismo , Catálisis , Cicloheximida/farmacología , Relación Dosis-Respuesta a Droga , Hormona Liberadora de Gonadotropina/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Procesamiento de Imagen Asistido por Computador , Hormona Luteinizante/metabolismo , Sistema de Señalización de MAP Quinasas , Modelos Biológicos , Mutación , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA