Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Bioessays ; 44(2): e2100152, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34889471

RESUMEN

Rho GTPases are critically important and are centrally positioned regulators of the actomyosin cytoskeleton. By influencing the organization and architecture of the cytoskeleton, Rho proteins play prominent roles in many cellular processes including adhesion, migration, intra-cellular transportation, and proliferation. The most important method of Rho GTPase regulation is via the GTPase cycle; however, post-translational modifications (PTMs) also play critical roles in Rho protein regulation. Relative to other PTMs such as lipidation or phosphorylation that have been extensively characterized, protein oxidation is a regulatory PTM that has been poorly studied. Protein oxidation primarily occurs from the reaction of reactive oxygen species (ROS), such as hydrogen peroxide (H2 O2 ), with amino acid side chain thiols on cysteine (Cys) and methionine (Met) residues. The versatile redox modifications of cysteine residues exemplify their integral role in cell signalling processes. Here we review prominent members of the Rho GTPase family and discuss how lipidation, phosphorylation, and oxidation on conserved cysteine residues affects their regulation and function.


Asunto(s)
Cisteína , Proteínas de Unión al GTP rho , Cisteína/metabolismo , Oxidación-Reducción , Procesamiento Proteico-Postraduccional , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Unión al GTP rho/genética
2.
Exp Cell Res ; 401(2): 112527, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33675807

RESUMEN

Metastasis is the leading cause of mortality in cancer patients. To migrate to distant sites, cancer cells would need to adapt their behaviour in response to different tissue environments. Thus, it is essential to study this process in models that can closely replicate the tumour microenvironment. Here, we evaluate the use of organotypic liver and brain slices to study cancer metastasis. Morphological and viability parameters of the slices were monitored daily over 3 days in culture to assess their stability as a realistic 3D tissue platform for in vitro metastatic assays. Using these slices, we evaluated the invasion of MDA-MB-231 breast cancer cells and of a subpopulation that was selected for increased motility. We show that the more aggressive invasion of the selected cells likely resulted not only from their lower stiffness, but also from their lower adhesion to the surrounding tissue. Different invasion patterns in the brain and liver slices were observed for both subpopulations. Cells migrated faster in the brain slices (with an amoeboid-like mode) compared to in the liver slices (where they migrated with mesenchymal or collective migration-like modes). Inhibition of the Ras/MAPK/ERK pathway increased cell stiffness and adhesion forces, which resulted in reduced invasiveness. These results illustrate the potential for organotypic tissue slices to more closely mimic in vivo conditions during cancer cell metastasis than most in vitro models.


Asunto(s)
Neoplasias de la Mama/genética , Invasividad Neoplásica/genética , Metástasis de la Neoplasia/genética , Microambiente Tumoral/genética , Encéfalo/patología , Neoplasias de la Mama/patología , Movimiento Celular/genética , Proliferación Celular/genética , Supervivencia Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Hígado/patología , Sistema de Señalización de MAP Quinasas/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Invasividad Neoplásica/patología , Metástasis de la Neoplasia/patología , Proteínas ras/genética
3.
J Cell Sci ; 132(11)2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31152052

RESUMEN

Cancer cells are softer than the normal cells, and metastatic cells are even softer. These changes in biomechanical properties contribute to cancer progression by facilitating cell movement through physically constraining environments. To identify properties that enabled passage through physical constraints, cells that were more efficient at moving through narrow membrane micropores were selected from established cell lines. By examining micropore-selected human MDA MB 231 breast cancer and MDA MB 435 melanoma cancer cells, membrane fluidity and nuclear elasticity were excluded as primary contributors. Instead, reduced actin cytoskeleton anisotropy, focal adhesion density and cell stiffness were characteristics associated with efficient passage through constraints. By comparing transcriptomic profiles between the parental and selected populations, increased Ras/MAPK signalling was linked with cytoskeleton rearrangements and cell softening. MEK inhibitor treatment reversed the transcriptional, cytoskeleton, focal adhesion and elasticity changes. Conversely, expression of oncogenic KRas in parental MDA MB 231 cells, or oncogenic BRaf in parental MDA MB 435 cells, significantly reduced cell stiffness. These results reveal that MAPK signalling, in addition to tumour cell proliferation, has a significant role in regulating cell biomechanics.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Citoesqueleto de Actina/fisiología , Fenómenos Biomecánicos/fisiología , Movimiento Celular/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Melanoma/fisiopatología , Anisotropía , Línea Celular Tumoral , Plasticidad de la Célula/fisiología , Proliferación Celular , Adhesiones Focales/fisiología , Humanos , Filtros Microporos , Invasividad Neoplásica/patología , Metástasis de la Neoplasia/patología , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
4.
Biochem J ; 469(1): 25-32, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25891661

RESUMEN

Protein S-glutathionylation is a reversible post-translational modification regulating sulfhydryl homeostasis. However, little is known about the proteins and pathways regulated by S-glutathionylation in whole organisms and current approaches lack the sensitivity to examine this modification under basal conditions. We now report the quantification and identification of S-glutathionylated proteins from animal tissue, using a highly sensitive methodology combining high-accuracy proteomics with tandem mass tagging to provide precise, extensive coverage of S-glutathionylated targets in mouse liver. Critically, we show significant enrichment of S-glutathionylated mitochondrial and Krebs cycle proteins, identifying that S-glutathionylation is heavily involved in energy metabolism processes in vivo. Furthermore, using mice nulled for GST Pi (GSTP) we address the potential for S-glutathionylation to be mediated enzymatically. The data demonstrate the impact of S-glutathionylation in cellular homeostasis, particularly in relation to energy regulation and is of significant interest for those wishing to examine S-glutathionylation in an animal model.


Asunto(s)
Glutatión Transferasa/metabolismo , Glutatión/metabolismo , Hígado/metabolismo , Proteínas Mitocondriales/metabolismo , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Animales , Glutatión/genética , Glutatión Transferasa/genética , Ratones , Ratones Noqueados , Proteínas Mitocondriales/genética , Proteoma/genética
5.
J Pharmacol Exp Ther ; 355(2): 137-44, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26311813

RESUMEN

Acetaminophen (APAP) is the most commonly used over-the-counter analgesic. However, hepatotoxicity induced by APAP is a major clinical issue, and the factors that define sensitivity to APAP remain unclear. We have previously demonstrated that mice nulled for glutathione S-transferase Pi (GSTP) are resistant to APAP-induced hepatotoxicity. This study aims to exploit this difference to delineate pathways of importance in APAP toxicity. We used mice nulled for GSTP and heme oxygenase-1 oxidative stress reporter mice, together with a novel nanoflow liquid chromatography-tandem mass spectrometry methodology to investigate the role of oxidative stress, cell signaling, and protein S-glutathionylation in APAP hepatotoxicity. We provide evidence that the sensitivity difference between wild-type and Gstp1/2(-/-) mice is unrelated to the ability of APAP to induce oxidative stress, despite observing significant increases in c-Jun N-terminal kinase and extracellular signal-regulated kinase phosphorylation in wild-type mice. The major difference in response to APAP was in the levels of protein S-glutathionylation: Gstp1/2(-/-) mice exhibited a significant increase in the number of S-glutathionylated proteins compared with wild-type animals. Remarkably, these S-glutathionylated proteins are involved in oxidative phosphorylation, respiratory complexes, drug metabolism, and mitochondrial apoptosis. Furthermore, we found that S-glutathionylation of the rate-limiting glutathione-synthesizing enzyme, glutamate cysteine ligase, was markedly increased in Gstp1/2(-/-) mice in response to APAP. The data demonstrate that S-glutathionylation provides an adaptive response to APAP and, as a consequence, suggest that this is an important determinant in APAP hepatotoxicity. This work identifies potential novel avenues associated with cell survival for the treatment of chemical-induced hepatotoxicity.


Asunto(s)
Acetaminofén/toxicidad , Analgésicos/toxicidad , Antipiréticos/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Glutatión Transferasa/metabolismo , Animales , Apoptosis , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glutatión/metabolismo , Glutatión Transferasa/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Fosforilación Oxidativa , Estrés Oxidativo , Procesamiento Proteico-Postraduccional , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
6.
Cell Rep ; 41(1): 111442, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36198272

RESUMEN

The MICAL1 monooxygenase is an important regulator of filamentous actin (F-actin) structures. Although MICAL1 has been shown to be regulated via protein-protein interactions at the autoinhibitory carboxyl terminus, a link between actin-regulatory RHO GTPase signaling pathways and MICAL1 has not been established. We show that the CDC42 GTPase effector PAK1 associates with and phosphorylates MICAL1 on two serine residues, leading to accelerated F-actin disassembly. PAK1 binds to the amino-terminal catalytic monooxygenase and calponin homology domains, distinct from the autoinhibitory carboxyl terminus. Extracellular ligand stimulation leads to PAK-dependent phosphorylation, linking external signals to MICAL1 phosphorylation. Mass spectrometry indicates that MICAL1 co-expression with CDC42 and PAK1 increases MICAL1 association with hundreds of proteins, including the previously described MICAL1-interacting proteins RAB10 and RAB7A. These results provide insights into a redox-mediated pathway linking extracellular signals to cytoskeleton regulation via a RHO GTPase and indicate a means of communication between RHO and RAB GTPases.


Asunto(s)
Actinas , Quinasas p21 Activadas , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Ligandos , Oxigenasas de Función Mixta/metabolismo , Serina/metabolismo , Quinasas p21 Activadas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rho/metabolismo
7.
EMBO Mol Med ; 14(3): e14764, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35014179

RESUMEN

Despite the clinical benefit of androgen-deprivation therapy (ADT), the majority of patients with advanced prostate cancer (PCa) ultimately develop lethal castration-resistant prostate cancer (CRPC). In this study, we identified thioesterase superfamily member 6 (THEM6) as a marker of ADT resistance in PCa. THEM6 deletion reduces in vivo tumour growth and restores castration sensitivity in orthograft models of CRPC. Mechanistically, we show that the ER membrane-associated protein THEM6 regulates intracellular levels of ether lipids and is essential to trigger the induction of the ER stress response (UPR). Consequently, THEM6 loss in CRPC cells significantly alters ER function, reducing de novo sterol biosynthesis and preventing lipid-mediated activation of ATF4. Finally, we demonstrate that high THEM6 expression is associated with poor survival and correlates with high levels of UPR activation in PCa patients. Altogether, our results highlight THEM6 as a novel driver of therapy resistance in PCa as well as a promising target for the treatment of CRPC.


Asunto(s)
Antagonistas de Andrógenos , Neoplasias de la Próstata Resistentes a la Castración , Antagonistas de Andrógenos/farmacología , Antagonistas de Andrógenos/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Humanos , Metabolismo de los Lípidos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/patología
8.
Cancer Lett ; 519: 226-236, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34314753

RESUMEN

The Molecule Interacting with CasL 1 (MICAL1) monooxygenase has emerged as an important regulator of cytoskeleton organization via actin oxidation. Although filamentous actin (F-actin) increases MICAL1 monooxygenase activity, hydrogen peroxide (H2O2) is also generated in the absence of F-actin, suggesting that diffusible H2O2 might have additional functions. MICAL1 gene disruption by CRISPR/Cas9 in MDA MB 231 human breast cancer cells knocked out (KO) protein expression, which affected F-actin organization, cell size and motility. Transcriptomic profiling revealed that MICAL1 deletion significantly affected the expression of over 700 genes, with the majority being reduced in their expression levels. In addition, the absolute magnitudes of reduced gene expression were significantly greater than the magnitudes of increased gene expression. Gene set enrichment analysis (GSEA) identified receptor regulator activity as the most significant negatively enriched molecular function gene set. The prominent influence exerted by MICAL1 on F-actin structures was also associated with changes in the expression of several serum-response factor (SRF) regulated genes in KO cells. Moreover, MICAL1 disruption attenuated breast cancer tumour growth in vivo. Elevated MICAL1 gene expression was observed in invasive breast cancer samples from human patients relative to normal tissue, while MICAL1 amplification or point mutations were associated with reduced progression free survival. Collectively, these results demonstrate that MICAL1 gene disruption altered cytoskeleton organization, cell morphology and migration, gene expression, and impaired tumour growth in an orthotopic in vivo breast cancer model, suggesting that pharmacological MICAL1 inhibition could have therapeutic benefits for cancer patients.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Movimiento Celular/fisiología , Xenoinjertos/metabolismo , Proteínas de Microfilamentos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Actinas/metabolismo , Línea Celular Tumoral , Femenino , Perfilación de la Expresión Génica/métodos , Xenoinjertos/patología , Humanos , Factor de Respuesta Sérica/metabolismo , Trasplante Heterólogo/métodos
9.
Dev Cell ; 39(1): 3-4, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27728780

RESUMEN

Unravelling the role of cytoskeleton regulators may be complicated by adaptations to experimental manipulations. In this issue of Developmental Cell, Cerikan et al. (2016) reveal how acute effects of DOCK6 RhoGEF depletion on RAC1 and CDC42 activation are reversed over time by compensatory mechanisms that re-establish cellular homeostasis.


Asunto(s)
Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Citoesqueleto/efectos de los fármacos , Microtúbulos/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho
10.
ACS Chem Biol ; 11(12): 3300-3304, 2016 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-27792307

RESUMEN

Reactive oxygen species act as important second messengers in cell signaling and homeostasis through the oxidation of protein thiols. However, the dynamic nature of protein oxidation and the lack of sensitivity of existing molecular probes have hindered our understanding of such reactions; therefore, new tools are required to address these challenges. We designed a bifunctional variant of the strained bicyclo[6.1.0]nonyne (BCN-E-BCN) that enables the tagging of intracellular protein sulfenic acids for biorthogonal copper-free click chemistry. In validation studies, BCN-E-BCN binds the sulfenylated form of the actin-severing protein cofilin, while mutation of the cognate cysteine residues abrogates its binding. BCN-E-BCN is cell permeable and reacts rapidly with cysteine sulfenic acids in cultured cells. Using different azide-tagged conjugates, we demonstrate that BCN-E-BCN can be used in various applications for the detection of sulfenylated proteins. Remarkably, cycloaddition of an azide-tagged fluorophore to BCN-E-BCN labeled proteins produced in vivo can be visualized by fluorescence microscopy to reveal their localization. These findings demonstrate a novel and multifaceted approach to the detection and trapping of sulfenic acids.


Asunto(s)
Azidas/química , Compuestos Bicíclicos con Puentes/química , Proteínas/química , Ácidos Sulfénicos/análisis , Factores Despolimerizantes de la Actina/química , Western Blotting , Línea Celular Tumoral , Química Clic , Humanos , Indicadores y Reactivos/química , Microscopía Fluorescente , Sondas Moleculares/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA