Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Adv Physiol Educ ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695083

RESUMEN

The COVID-19 pandemic and subsequent policies (e.g., social distancing, travel restrictions) challenged both organizers for and attendees of programs typically held in-person. Many scientific training programs quickly adapted to virtual formats by incorporating digital assets developed for virtual learning and remote social engagement. At the outset, the value of continuing digital elements with future in-person events was unclear. To examine how virtual resources supported heterogeneous professional training programs, we reviewed survey data for a 14-year-old training program for scientific professionals titled Isotope Tracers in Metabolic Research: Principles and Practice of Kinetic Analysis. We found a positive relationship between survey satisfaction and the post-pandemic, in-person program that included digital assets held in 2022 when compared to pre-pandemic in-person programs. To better understand the post-pandemic program satisfaction, we assessed the 2021 virtual course format and survey data. We found that although there was a desire to return to in-person programs, the digital assets and approaches were valued. In examining the individual programmatic elements in the 2022 in-person course, there was better "value and understandability" of lectures over previous in-person years. These findings highlight how incorporating new digital engagement strategies for professional development benefit even the most established programs in supporting heterogeneous learners.

2.
PLoS Biol ; 18(2): e3000622, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32108181

RESUMEN

Circadian (daily) regulation of metabolic pathways implies that food may be metabolized differentially over the daily cycle. To test that hypothesis, we monitored the metabolism of older subjects in a whole-room respiratory chamber over two separate 56-h sessions in a random crossover design. In one session, one of the 3 daily meals was presented as breakfast, whereas in the other session, a nutritionally equivalent meal was presented as a late-evening snack. The duration of the overnight fast was the same for both sessions. Whereas the two sessions did not differ in overall energy expenditure, the respiratory exchange ratio (RER) was different during sleep between the two sessions. Unexpectedly, this difference in RER due to daily meal timing was not due to daily differences in physical activity, sleep disruption, or core body temperature (CBT). Rather, we found that the daily timing of nutrient availability coupled with daily/circadian control of metabolism drives a switch in substrate preference such that the late-evening Snack Session resulted in significantly lower lipid oxidation (LO) compared to the Breakfast Session. Therefore, the timing of meals during the day/night cycle affects how ingested food is oxidized or stored in humans, with important implications for optimal eating habits.


Asunto(s)
Ritmo Circadiano/fisiología , Metabolismo de los Lípidos/fisiología , Comidas/fisiología , Índice de Masa Corporal , Desayuno , Metabolismo de los Hidratos de Carbono/fisiología , Estudios Cruzados , Conducta Alimentaria/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Oxidación-Reducción , Intercambio Gaseoso Pulmonar/fisiología , Sueño/fisiología , Bocadillos
3.
Int J Obes (Lond) ; 45(9): 2016-2027, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34079069

RESUMEN

BACKGROUND/OBJECTIVES: The worldwide prevalence of obesity, metabolic syndrome and type 2 diabetes (T2D) is reaching epidemic proportions that urge the development of new management strategies. Totum-63 is a novel, plant-based polyphenol-rich active principle that has been shown to reduce body weight, fasting glycemia, glucose intolerance, and fatty liver index in obese subjects with prediabetes. Here, we investigated the effects and underlying mechanism(s) of Totum-63 on metabolic homeostasis in insulin-resistant obese mice. METHODS: Male C57Bl6/J mice were fed a high-fat diet for 12 weeks followed by supplementation with Totum-63 for 4 weeks. The effects on whole-body energy and metabolic homeostasis, as well as on tissue-specific inflammation and insulin sensitivity were assessed using a variety of immunometabolic phenotyping tools. RESULTS: Totum-63 decreased body weight and fat mass in obese mice, without affecting lean mass, food intake and locomotor activity, and increased fecal energy excretion and whole-body fatty acid oxidation. Totum-63 reduced fasting plasma glucose, insulin and leptin levels, and improved whole-body insulin sensitivity and peripheral glucose uptake. The expression of insulin receptor ß and the insulin-induced phosphorylation of Akt/PKB were increased in liver, skeletal muscle, white adipose tissue (WAT) and brown adipose tissue (BAT). Hepatic steatosis was also decreased by Totum-63 and associated with a lower expression of genes involved in fatty acid uptake, de novo lipogenesis, inflammation, and fibrosis. Furthermore, a significant reduction in pro-inflammatory macrophages was also observed in epidydimal WAT. Finally, a potent decrease in BAT mass associated with enhanced tissue expression of thermogenic genes was found, suggesting BAT activation by Totum-63. CONCLUSIONS: Our results show that Totum-63 reduces inflammation and improves insulin sensitivity and glucose homeostasis in obese mice through pleiotropic effects on various metabolic organs. Altogether, plant-derived Totum-63 might constitute a promising novel nutritional supplement for alleviating metabolic dysfunctions in obese people with or without T2D.


Asunto(s)
Composición Corporal/efectos de los fármacos , Inflamación/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Extractos Vegetales/farmacología , Polifenoles/farmacología , Animales , Composición Corporal/fisiología , Modelos Animales de Enfermedad , Inflamación/prevención & control , Resistencia a la Insulina/fisiología , Ratones , Ratones Endogámicos C57BL/metabolismo
4.
Am J Physiol Endocrinol Metab ; 316(5): E782-E793, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30779633

RESUMEN

Bile acids are involved in the emulsification and absorption of dietary fats, as well as acting as signaling molecules. Recently, bile acid signaling through farnesoid X receptor and G protein-coupled bile acid receptor (TGR5) has been reported to elicit changes in not only bile acid synthesis but also metabolic processes, including the alteration of gluconeogenic gene expression and energy expenditure. A role for bile acids in glucose metabolism is also supported by a correlation between changes in the metabolic state of patients (i.e., obesity or postbariatric surgery) and altered serum bile acid levels. However, despite evidence for a role for bile acids during metabolically challenging settings, the direct effect of elevated bile acids on insulin action in the absence of metabolic disease has yet to be investigated. The present study examines the impact of acutely elevated plasma bile acid levels on insulin sensitivity using hyperinsulinemic-euglycemic clamps. In wild-type mice, elevated bile acids impair hepatic insulin sensitivity by blunting the insulin suppression of hepatic glucose production. The impaired hepatic insulin sensitivity could not be attributed to TGR5 signaling, as TGR5 knockout mice exhibited a similar inhibition of insulin suppression of hepatic glucose production. Canonical insulin signaling pathways, such as hepatic PKB (or Akt) activation, were not perturbed in these animals. Interestingly, bile acid infusion directly into the portal vein did not result in an impairment in hepatic insulin sensitivity. Overall, the data indicate that acute increases in circulating bile acids in lean mice impair hepatic insulin sensitivity via an indirect mechanism.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Gluconeogénesis/genética , Resistencia a la Insulina/genética , Hígado/metabolismo , Receptores Acoplados a Proteínas G/genética , Animales , Colagogos y Coleréticos/farmacología , Ácidos Cólicos/farmacología , Ácido Desoxicólico/farmacología , Perfilación de la Expresión Génica , Gluconeogénesis/efectos de los fármacos , Técnica de Clampeo de la Glucosa , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hígado/efectos de los fármacos , Ratones , Ratones Noqueados , Obesidad/metabolismo , Cultivo Primario de Células , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Ácido Taurocólico/farmacología
5.
Am J Physiol Endocrinol Metab ; 317(6): E1022-E1036, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31526289

RESUMEN

These studies test, using intravital microscopy (IVM), the hypotheses that perfusion effects on insulin-stimulated muscle glucose uptake (MGU) are 1) capillary recruitment independent and 2) mediated through the dispersion of glucose rather than insulin. For experiment 1, capillary perfusion was visualized before and after intravenous insulin. No capillary recruitment was observed. For experiment 2, mice were treated with vasoactive compounds (sodium nitroprusside, hyaluronidase, and lipopolysaccharide), and dispersion of fluorophores approximating insulin size (10-kDa dextran) and glucose (2-NBDG) was measured using IVM. Subsequently, insulin and 2[14C]deoxyglucose were injected and muscle phospho-2[14C]deoxyglucose (2[C14]DG) accumulation was used as an index of MGU. Flow velocity and 2-NBDG dispersion, but not perfused surface area or 10-kDa dextran dispersion, predicted phospho-2[14C]DG accumulation. For experiment 3, microspheres of the same size and number as are used for contrast-enhanced ultrasound (CEU) studies of capillary recruitment were visualized using IVM. Due to their low concentration, microspheres were present in only a small fraction of blood-perfused capillaries. Microsphere-perfused blood volume correlated to flow velocity. These findings suggest that 1) flow velocity rather than capillary recruitment controls microvascular contributions to MGU, 2) glucose dispersion is more predictive of MGU than dispersion of insulin-sized molecules, and 3) CEU measures regional flow velocity rather than capillary recruitment.


Asunto(s)
Velocidad del Flujo Sanguíneo/fisiología , Glucosa/metabolismo , Microcirculación/fisiología , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/metabolismo , Animales , Velocidad del Flujo Sanguíneo/efectos de los fármacos , Radioisótopos de Carbono , Desoxiglucosa/análogos & derivados , Desoxiglucosa/metabolismo , Dextranos/metabolismo , Hipoglucemiantes/farmacología , Insulina/farmacología , Microscopía Intravital , Ratones , Microcirculación/efectos de los fármacos , Microesferas , Músculo Esquelético/anatomía & histología , Músculo Esquelético/diagnóstico por imagen , Ultrasonografía
6.
Am J Physiol Endocrinol Metab ; 316(6): E1012-E1023, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30860883

RESUMEN

Sepsis costs the healthcare system $23 billion annually and has a mortality rate between 10 and 40%. An early indication of sepsis is the onset of hyperglycemia, which is the result of sepsis-induced insulin resistance in skeletal muscle. Previous investigations have focused on events in the myocyte (e.g., insulin signaling and glucose transport and subsequent metabolism) as the causes for this insulin-resistant state. However, the delivery of insulin to the skeletal muscle is also an important determinant of insulin action. Skeletal muscle microvascular blood flow, which delivers the insulin to the muscle, is known to be decreased during sepsis. Here we test whether the reduced capillary blood flow to skeletal muscle belies the sepsis-induced insulin resistance by reducing insulin delivery to the myocyte. We hypothesize that decreased capillary flow and consequent decrease in insulin delivery is an early event that precedes gross cardiovascular alterations seen with sepsis. This hypothesis was examined in mice treated with either lipopolysaccharide (LPS) or polymicrobial sepsis followed by intravital microscopy of the skeletal muscle microcirculation. We calculated insulin delivery to the myocyte using two independent methods and found that LPS and sepsis rapidly reduce insulin delivery to the skeletal muscle by ~50%; this was driven by decreases in capillary flow velocity and the number of perfused capillaries. Furthermore, the changes in skeletal muscle microcirculation occur before changes in both cardiac output and arterial blood pressure. These data suggest that a rapid reduction in skeletal muscle insulin delivery contributes to the induction of insulin resistance during sepsis.


Asunto(s)
Capilares/metabolismo , Hiperglucemia/metabolismo , Resistencia a la Insulina , Insulina/metabolismo , Microcirculación , Músculo Esquelético/metabolismo , Sepsis/metabolismo , Animales , Permeabilidad Capilar , Modelos Animales de Enfermedad , Ecocardiografía , Lipopolisacáridos , Ratones , Microvasos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/irrigación sanguínea
7.
Am J Physiol Endocrinol Metab ; 316(3): E358-E372, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30576244

RESUMEN

Depletion of macrophages is thought to be a therapeutic option for obesity-induced inflammation and metabolic dysfunction. However, whether the therapeutic effect is a direct result of reduced macrophage-derived inflammation or secondary to decreases in fat mass is controversial, as macrophage depletion has been shown to disrupt energy homeostasis. This study was designed to determine if macrophage depletion via clodronate-liposome (CLD) treatment could serve as an effective intervention to reduce obesity-driven inflammatory and metabolic impairments independent of changes in energy intake. After 16 wk on a high-fat diet (HFD) or the AIN-76A control (low-fat) diet (LFD) ( n = 30/diet treatment), male C57BL/6J mice were assigned to a CLD- or PBS-liposome treatment ( n = 15/group) for 4 wk. Liposomes were administered biweekly via intraperitoneal injections (8 administrations in total). PBS-liposome-treated groups were pair-fed to their CLD-treated dietary counterparts. Metabolic function was assessed before and after liposome treatment. Adipose tissue, as well as the liver, was investigated for macrophage infiltration and the presence of inflammatory mediators. Additionally, a complete blood count was performed. CLD treatment reduced energy intake. When controlling for energy intake, CLD treatment was unable to regress metabolic dysfunction or nonalcoholic fatty liver disease and impaired adipose tissue insulin action. Moreover, repeated CLD treatment induced neutrophilia and anemia, increased adipose tissue mRNA expression of the proinflammatory cytokines IL-6 and IL-1ß, and augmented circulating IL-6 and monocyte chemoattractant protein-1 concentrations ( P < 0.05). This study suggests that repeated intraperitoneal administration of CLD to deplete macrophages attenuates obesity by limiting energy intake. Moreover, after controlling for the benefits of weight loss, the accompanying detrimental side effects limit regular CLD treatment as an effective therapeutic strategy.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Ácido Clodrónico/farmacología , Resistencia a la Insulina , Liposomas/farmacología , Hígado/efectos de los fármacos , Obesidad/inmunología , Tejido Adiposo/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Citocinas/efectos de los fármacos , Citocinas/genética , Dieta con Restricción de Grasas , Dieta Alta en Grasa , Ingestión de Energía/efectos de los fármacos , Metabolismo de los Lípidos , Hígado/metabolismo , Macrófagos/efectos de los fármacos , Masculino , Ratones , Neutrófilos/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico , Obesidad/metabolismo , ARN Mensajero/efectos de los fármacos
8.
Am J Physiol Endocrinol Metab ; 317(2): E200-E211, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31084499

RESUMEN

Given the chemoattractant potential of complement factor 5 (C5) and its increased expression in adipose tissue (AT) of obese mice, we determined whether this protein of the innate immune system impacts insulin action. C5 control (C5cont) and spontaneously C5-deficient (C5def, B10.D2-Hc0 H2d H2-T18c/oSnJ) mice were placed on low- and high-fat diets to investigate their inflammatory and metabolic phenotypes. Adenoviral delivery was used to evaluate the effects of exogenous C5 on systemic metabolism. C5def mice gained less weight than controls while fed a high-fat diet, accompanied by reduced AT inflammation, liver mass, and liver triglyceride content. Despite these beneficial metabolic effects, C5def mice demonstrated severe glucose intolerance and systemic insulin resistance, as well as impaired insulin signaling in liver and AT. C5def mice also exhibited decreased expression of insulin receptor (INSR) gene and protein, as well as improper processing of pro-INSR. These changes were not due to the C5 deficiency alone as other C5-deficient models did not recapitulate the INSR processing defect; rather, in addition to the mutation in the C5 gene, whole genome sequencing revealed an intronic 31-bp deletion in the Insr gene in the B10.D2-Hc0 H2d H2-T18c/oSnJ model. Irrespective of the genetic defect, adenoviral delivery of C5 improved insulin sensitivity in both C5cont and C5def mice, indicating an insulin-sensitizing function of C5.


Asunto(s)
Complemento C5/deficiencia , Complemento C5/genética , Intolerancia a la Glucosa/genética , Enfermedades por Deficiencia de Complemento Hereditario/patología , Adenoviridae/genética , Animales , Complemento C5/fisiología , Modelos Animales de Enfermedad , Metabolismo Energético/genética , Metabolismo Energético/inmunología , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/patología , Enfermedades por Deficiencia de Complemento Hereditario/genética , Resistencia a la Insulina/genética , Ratones , Ratones Endogámicos AKR , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Endogámicos DBA , Ratones Endogámicos NOD , Ratones Transgénicos , Transducción de Señal/genética , Transducción Genética
9.
Microcirculation ; 25(6): e12482, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29908041

RESUMEN

OBJECTIVE: Changes in microvascular perfusion have been reported in many diseases, yet the functional significance of altered perfusion is often difficult to determine. This is partly because commonly used techniques for perfusion measurement often rely on either indirect or by-hand approaches. METHODS: We developed and validated a fully automated software technique to measure microvascular perfusion in videos acquired by fluorescence microscopy in the mouse gastrocnemius. Acute perfusion responses were recorded following intravenous injections with phenylephrine, SNP, or saline. RESULTS: Software-measured capillary flow velocity closely correlated with by-hand measured flow velocity (R2  = 0.91, P < 0.0001). Software estimates of capillary hematocrit also generally agreed with by-hand measurements (R2  = 0.64, P < 0.0001). Detection limits range from 0 to 2000 µm/s, as compared to an average flow velocity of 326 ± 102 µm/s (mean ± SD) at rest. SNP injection transiently increased capillary flow velocity and hematocrit and made capillary perfusion more steady and homogenous. Phenylephrine injection had the opposite effect in all metrics. Saline injection transiently decreased capillary flow velocity and hematocrit without influencing flow distribution or stability. All perfusion metrics were temporally stable without intervention. CONCLUSIONS: These results demonstrate a novel and sensitive technique for reproducible, user-independent quantification of microvascular perfusion.


Asunto(s)
Automatización , Microscopía por Video , Microvasos/fisiología , Perfusión , Programas Informáticos , Animales , Velocidad del Flujo Sanguíneo , Hematócrito , Ratones , Microcirculación , Microscopía Fluorescente , Fenilefrina/farmacología , Reproducibilidad de los Resultados , Solución Salina/farmacología
10.
J Biol Chem ; 289(30): 20462-9, 2014 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-24907277

RESUMEN

Hepatic glucose and lipid metabolism are altered in metabolic disease (e.g. obesity, metabolic syndrome, and Type 2 diabetes). Insulin-dependent regulation of glucose metabolism is impaired. In contrast, lipogenesis, hypertriglyceridemia, and hepatic steatosis are increased. Because insulin promotes lipogenesis and liver fat accumulation, to explain the elevation in plasma and tissue lipids, investigators have suggested the presence of pathway-selective insulin resistance. In this model, insulin signaling to glucose metabolism is impaired, but insulin signaling to lipid metabolism is intact. We discuss the evidence for the differential regulation of hepatic lipid and glucose metabolism. We suggest that the primary phenotypic driver is altered substrate delivery to the liver, as well as the repartitioning of hepatic nutrient handling. Specific alterations in insulin signaling serve to amplify the alterations in hepatic substrate metabolism. Thus, hyperinsulinemia and its resultant increased signaling may facilitate lipogenesis, but are not the major drivers of the phenotype of pathway-selective insulin resistance.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Hígado Graso/metabolismo , Hipertrigliceridemia/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Síndrome Metabólico/metabolismo , Animales , Diabetes Mellitus Tipo 2/patología , Hígado Graso/patología , Glucosa/metabolismo , Humanos , Hipertrigliceridemia/patología , Insulina/metabolismo , Lipogénesis , Hígado/patología , Síndrome Metabólico/patología , Transducción de Señal
12.
Am J Physiol Regul Integr Comp Physiol ; 309(9): R1144-52, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26377563

RESUMEN

Inflammatory lung diseases (e.g., pneumonia and acute respiratory distress syndrome) are associated with hyperglycemia, even in patients without a prior diagnosis of Type 2 diabetes. It is unknown whether the lung inflammation itself or the accompanying comorbidities contribute to the increased risk of hyperglycemia and insulin resistance. To investigate whether inflammatory signaling by airway epithelial cells can induce systemic insulin resistance, we used a line of doxycycline-inducible transgenic mice that express a constitutive activator of the NF-κB in airway epithelial cells. Airway inflammation with accompanying neutrophilic infiltration was induced with doxycycline over 5 days. Then, hyperinsulinemic-euglycemic clamps were performed in chronically catheterized, conscious mice to assess insulin action. Lung inflammation decreased the whole body glucose requirements and was associated with secondary activation of inflammation in multiple tissues. Metabolic changes occurred in the absence of hypoxemia. Lung inflammation markedly attenuated insulin-induced suppression of hepatic glucose production and moderately impaired insulin action in peripheral tissues. The hepatic Akt signaling pathway was intact, while hepatic markers of inflammation and plasma lactate were increased. As insulin signaling was intact, the inability of insulin to suppress glucose production in the liver could have been driven by the increase in lactate, which is a substrate for gluconeogenesis, or due to an inflammation-driven signal that is independent of Akt. Thus, localized airway inflammation that is observed during inflammatory lung diseases can contribute to systemic inflammation and insulin resistance.


Asunto(s)
Glucemia/metabolismo , Resistencia a la Insulina , Insulina/sangre , Pulmón/metabolismo , FN-kappa B/metabolismo , Neumonía/metabolismo , Animales , Asma , Citocinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
13.
Cardiovasc Diabetol ; 14: 56, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25986700

RESUMEN

BACKGROUND: Endotoxin (i.e. LPS) administration induces a robust inflammatory response with accompanying cardiovascular dysfunction and insulin resistance. Overabundance of nitric oxide (NO) contributes to the vascular dysfunction. However, inflammation itself also induces insulin resistance in skeletal muscle. We sought to investigate whether the cardiovascular dysfunction induced by increased NO availability without inflammatory stress can promote insulin resistance. Additionally, we examined the role of inducible nitric oxide synthase (iNOS or NOS2), the source of the increase in NO availability, in modulating LPS-induced decrease in insulin-stimulated muscle glucose uptake (MGU). METHODS: The impact of NO donor infusion on insulin-stimulated whole-body and muscle glucose uptake (hyperinsulinemic-euglycemic clamps), and the cardiovascular system was assessed in chronically catheterized, conscious mice wild-type (WT) mice. The impact of LPS on insulin action and the cardiovascular system were assessed in WT and global iNOS knockout (KO) mice. Tissue blood flow and cardiac function were assessed using microspheres and echocardiography, respectively. Insulin signaling activity, and gene expression of pro-inflammatory markers were also measured. RESULTS: NO donor infusion decreased mean arterial blood pressure, whole-body glucose requirements, and MGU in the absence of changes in skeletal muscle blood flow. LPS lowered mean arterial blood pressure and glucose requirements in WT mice, but not in iNOS KO mice. Lastly, despite an intact inflammatory response, iNOS KO mice were protected from LPS-mediated deficits in cardiac output. LPS impaired MGU in vivo, regardless of the presence of iNOS. However, ex vivo, insulin action in muscle obtained from LPS treated iNOS KO animals was protected. CONCLUSION: Nitric oxide excess and LPS impairs glycemic control by diminishing MGU. LPS impairs MGU by both the direct effect of inflammation on the myocyte, as well as by the indirect NO-driven cardiovascular dysfunction.


Asunto(s)
Factores Relajantes Endotelio-Dependientes/farmacología , Glucosa/metabolismo , Corazón/efectos de los fármacos , Resistencia a la Insulina , Lipopolisacáridos/farmacología , Músculo Esquelético/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico/farmacología , Animales , Presión Arterial/efectos de los fármacos , Gasto Cardíaco/efectos de los fármacos , Quimiocina CCL2/genética , Ecocardiografía , Expresión Génica , Técnica de Clampeo de la Glucosa , Inflamación , Interleucina-6/genética , Ratones , Ratones Noqueados , Microesferas , Células Musculares/efectos de los fármacos , Células Musculares/inmunología , Células Musculares/metabolismo , Músculo Esquelético/inmunología , Músculo Esquelético/metabolismo , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Flujo Sanguíneo Regional/efectos de los fármacos , Serpina E2/genética , Factor de Necrosis Tumoral alfa/genética
14.
Proc Natl Acad Sci U S A ; 109(17): 6739-44, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22493257

RESUMEN

The ability of skeletal muscle to enhance lipid utilization during exercise is a form of metabolic plasticity essential for survival. Conversely, metabolic inflexibility in muscle can cause organ dysfunction and disease. Although the transcription factor Kruppel-like factor 15 (KLF15) is an important regulator of glucose and amino acid metabolism, its endogenous role in lipid homeostasis and muscle physiology is unknown. Here we demonstrate that KLF15 is essential for skeletal muscle lipid utilization and physiologic performance. KLF15 directly regulates a broad transcriptional program spanning all major segments of the lipid-flux pathway in muscle. Consequently, Klf15-deficient mice have abnormal lipid and energy flux, excessive reliance on carbohydrate fuels, exaggerated muscle fatigue, and impaired endurance exercise capacity. Elucidation of this heretofore unrecognized role for KLF15 now implicates this factor as a central component of the transcriptional circuitry that coordinates physiologic flux of all three basic cellular nutrients: glucose, amino acids, and lipids.


Asunto(s)
Ejercicio Físico , Factores de Transcripción de Tipo Kruppel/fisiología , Metabolismo de los Lípidos , Músculo Esquelético/metabolismo , Proteínas Nucleares/fisiología , Aminoácidos/metabolismo , Glucosa/metabolismo , Homeostasis , Humanos
15.
Am J Physiol Endocrinol Metab ; 307(10): E928-34, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25269484

RESUMEN

A reciprocal relationship between insulin sensitivity and glucose tolerance has been reported in some mouse models and humans with isolated changes in growth hormone (GH) production and signaling. To determine if this could be explained in part by tissue-specific changes in insulin sensitivity, hyperinsulinemic-euglycemic clamps were performed in mice with adult-onset, isolated GH deficiency and in mice with elevated endogenous GH levels due to somatotrope-specific loss of IGF-I and insulin receptors. Our results demonstrate that circulating GH levels are negatively correlated with insulin-mediated glucose uptake in muscle but positively correlated with insulin-mediated suppression of hepatic glucose production. A positive relationship was also observed between GH levels and endpoints of hepatic lipid metabolism known to be regulated by insulin. These results suggest hepatic insulin resistance could represent an early metabolic defect in GH deficiency.


Asunto(s)
Acromegalia/metabolismo , Glucosa/metabolismo , Hormona del Crecimiento/metabolismo , Resistencia a la Insulina , Insulina/metabolismo , Hígado/metabolismo , Músculo Esquelético/metabolismo , Animales , Técnica de Clampeo de la Glucosa , Hormona del Crecimiento/deficiencia , Masculino , Ratones , Ratones Transgénicos
16.
Am J Physiol Endocrinol Metab ; 307(10): E896-905, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25205821

RESUMEN

Inappropriate glucagon secretion contributes to hyperglycemia in inflammatory disease. Previous work implicates the proinflammatory cytokine interleukin-6 (IL-6) in glucagon secretion. IL-6-KO mice have a blunted glucagon response to lipopolysaccharide (LPS) that is restored by intravenous replacement of IL-6. Given that IL-6 has previously been demonstrated to have a transcriptional (i.e., slow) effect on glucagon secretion from islets, we hypothesized that the rapid increase in glucagon following LPS occurred by a faster mechanism, such as by action within the brain. Using chronically catheterized conscious mice, we have demonstrated that central IL-6 stimulates glucagon secretion uniquely in the presence of an accompanying stressor (hypoglycemia or LPS). Contrary to our hypothesis, however, we found that IL-6 amplifies glucagon secretion in two ways; IL-6 not only stimulates glucagon secretion via the brain but also by direct action on islets. Interestingly, IL-6 augments glucagon secretion from both sites only in the presence of an accompanying stressor (such as epinephrine). Given that both adrenergic tone and plasma IL-6 are elevated in multiple inflammatory diseases, the interactions of the IL-6 and catecholaminergic signaling pathways in regulating GCG secretion may contribute to our present understanding of these diseases.


Asunto(s)
Encéfalo/metabolismo , Células Secretoras de Glucagón/metabolismo , Glucagón/metabolismo , Interleucina-6/genética , Animales , Encéfalo/efectos de los fármacos , Epinefrina/farmacología , Glucagón/efectos de los fármacos , Técnica de Clampeo de la Glucosa , Hipoglucemia/metabolismo , Interleucina-6/metabolismo , Islotes Pancreáticos/metabolismo , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Fisiológico , Simpatomiméticos/farmacología
17.
Mol Metab ; 81: 101901, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354854

RESUMEN

Mammals are protected from changes in environmental temperature by altering energetic processes that modify heat production. Insulin is the dominant stimulus of glucose uptake and metabolism, which are fundamental for thermogenic processes. The purpose of this work was to determine the interaction of ambient temperature induced changes in energy expenditure (EE) on the insulin sensitivity of glucose fluxes. Short-term and adaptive responses to thermoneutral temperature (TN, ∼28 °C) and room (laboratory) temperature (RT, ∼22 °C) were studied in mice. This range of temperature does not cause detectable changes in circulating catecholamines or shivering and postabsorptive glucose homeostasis is maintained. We tested the hypothesis that a decrease in EE that occurs with TN causes insulin resistance and that this reduction in insulin action and EE is reversed upon short term (<12h) transition to RT. Insulin-stimulated glucose disposal (Rd) and tissue-specific glucose metabolic index were assessed combining isotopic tracers with hyperinsulinemic-euglycemic clamps. EE and insulin-stimulated Rd are both decreased (∼50%) in TN-adapted vs RT-adapted mice. When RT-adapted mice are switched to TN, EE rapidly decreases and Rd is reduced by ∼50%. TN-adapted mice switched to RT exhibit a rapid increase in EE, but whole-body insulin-stimulated Rd remains at the low rates of TN-adapted mice. In contrast, whole body glycolytic flux rose with EE. This higher EE occurs without increasing glucose uptake from the blood, but rather by diverting glucose from glucose storage to glycolysis. In addition to adaptations in insulin action, 'insulin-independent' glucose uptake in brown fat is exquisitely sensitive to thermoregulation. These results show that insulin action adjusts to non-stressful changes in ambient temperature to contribute to the support of body temperature homeostasis without compromising glucose homeostasis.


Asunto(s)
Resistencia a la Insulina , Insulina , Ratones , Animales , Insulina/metabolismo , Regulación de la Temperatura Corporal , Glucosa/metabolismo , Metabolismo Energético/fisiología , Insulina Regular Humana/metabolismo , Mamíferos/metabolismo
18.
Cell Metab ; 36(1): 90-102.e7, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38171340

RESUMEN

Interactions between lineage-determining and activity-dependent transcription factors determine single-cell identity and function within multicellular tissues through incompletely known mechanisms. By assembling a single-cell atlas of chromatin state within human islets, we identified ß cell subtypes governed by either high or low activity of the lineage-determining factor pancreatic duodenal homeobox-1 (PDX1). ß cells with reduced PDX1 activity displayed increased chromatin accessibility at latent nuclear factor κB (NF-κB) enhancers. Pdx1 hypomorphic mice exhibited de-repression of NF-κB and impaired glucose tolerance at night. Three-dimensional analyses in tandem with chromatin immunoprecipitation (ChIP) sequencing revealed that PDX1 silences NF-κB at circadian and inflammatory enhancers through long-range chromatin contacts involving SIN3A. Conversely, Bmal1 ablation in ß cells disrupted genome-wide PDX1 and NF-κB DNA binding. Finally, antagonizing the interleukin (IL)-1ß receptor, an NF-κB target, improved insulin secretion in Pdx1 hypomorphic islets. Our studies reveal functional subtypes of single ß cells defined by a gradient in PDX1 activity and identify NF-κB as a target for insulinotropic therapy.


Asunto(s)
Células Secretoras de Insulina , FN-kappa B , Animales , Humanos , Ratones , Cromatina/metabolismo , Genes Homeobox , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/metabolismo , FN-kappa B/metabolismo
19.
Am J Physiol Endocrinol Metab ; 304(5): E466-77, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23269411

RESUMEN

Chronic inflammation is a characteristic of obesity and is associated with accompanying insulin resistance, a hallmark of type 2 diabetes mellitus (T2DM). Although proinflammatory cytokines are known for their detrimental effects on adipose tissue function and insulin sensitivity, their beneficial effects in the regulation of metabolism have not drawn sufficient attention. In obesity, inflammation is initiated by a local hypoxia to augment angiogenesis and improve adipose tissue blood supply. A growing body of evidence suggests that macrophages and proinflammatory cytokines are essential for adipose remodeling and adipocyte differentiation. Phenotypes of multiple lines of transgenic mice consistently suggest that proinflammatory cytokines increase energy expenditure and act to prevent obesity. Removal of proinflammatory cytokines by gene knockout decreases energy expenditure and induces adult-onset obesity. In contrast, elevation of proinflammatory cytokines augments energy expenditure and decreases the risk for obesity. Anti-inflammatory therapies have been tested in more than a dozen clinical trials to improve insulin sensitivity and glucose homeostasis in patients with T2DM, and the results are not encouraging. One possible explanation is that anti-inflammatory therapies also attenuate the beneficial effects of inflammation in stimulating energy expenditure, which may have limited the efficacy of the treatment by promoting energy accumulation. Thus, the positive effects of proinflammatory events should be considered in evaluating the impact of inflammation in obesity and type 2 diabetes.


Asunto(s)
Inflamación/fisiopatología , Obesidad/fisiopatología , Tejido Adiposo/fisiopatología , Animales , Antiinflamatorios/uso terapéutico , Glucemia/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Metabolismo Energético/fisiología , Homeostasis/fisiología , Hormonas/metabolismo , Humanos , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Resistencia a la Insulina , Obesidad/complicaciones
20.
bioRxiv ; 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38014310

RESUMEN

Mammals are protected from changes in environmental temperature by altering energetic processes that modify heat production. Insulin is the dominant stimulus of glucose uptake and metabolism, which are fundamental for thermogenic processes. The purpose of this work was to determine the interaction of ambient temperature induced changes in energy expenditure (EE) on the insulin sensitivity of glucose fluxes. Short-term and adaptive responses to thermoneutral temperature (TN, ~28°C) and room (laboratory) temperature (RT, ~22°C) were studied in mice. This range of temperature does not cause detectable changes in circulating catecholamines or shivering and postabsorptive glucose homeostasis is maintained. We tested the hypothesis that a decrease in EE that occurs with TN causes insulin resistance and that this reduction in insulin action and EE is reversed upon short term (<12h) transition to RT. Insulin-stimulated glucose disposal (Rd) and tissue specific glucose uptake were assessed combining isotopic tracers with hyperinsulinemic-euglycemic clamps. EE and insulin-stimulated Rd are both decreased (~50%) in TN-adapted vs RT-adapted mice. When RT-adapted mice are switched to TN, EE rapidly decreases and Rd is reduced by ~50%. TN-adapted mice switched to RT exhibit a rapid increase in EE, but whole body insulin-stimulated Rd remains at the low rates of TN-adapted mice. In contrast, whole body glycolytic flux rose with EE. This higher EE occurs without increasing glucose uptake from the blood, but rather by diverting glucose from glucose storage to glycolysis. In addition to adaptations in insulin action, 'insulin-independent' glucose uptake in brown fat is exquisitely sensitive to thermoregulation. These results show that insulin action adjusts to non-stressful changes in ambient temperature to contribute to the support of body temperature homeostasis without compromising glucose homeostasis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA