Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
New Phytol ; 240(1): 92-104, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37430467

RESUMEN

Shifts in the age or turnover time of non-structural carbohydrates (NSC) may underlie changes in tree growth under long-term increases in drought stress associated with climate change. But NSC responses to drought are challenging to quantify, due in part to large NSC stores in trees and subsequently long response times of NSC to climate variation. We measured NSC age (Δ14 C) along with a suite of ecophysiological metrics in Pinus edulis trees experiencing either extreme short-term drought (-90% ambient precipitation plot, 2020-2021) or a decade of severe drought (-45% plot, 2010-2021). We tested the hypothesis that carbon starvation - consumption exceeding synthesis and storage - increases the age of sapwood NSC. One year of extreme drought had no impact on NSC pool size or age, despite significant reductions in predawn water potential, photosynthetic rates/capacity, and twig and needle growth. By contrast, long-term drought halved the age of the sapwood NSC pool, coupled with reductions in sapwood starch concentrations (-75%), basal area increment (-39%), and bole respiration rates (-28%). Our results suggest carbon starvation takes time, as tree carbon reserves appear resilient to extreme disturbance in the short term. However, after a decade of drought, trees apparently consumed old stored NSC to support metabolism.


Asunto(s)
Carbono , Pinus , Carbono/metabolismo , Pinus/fisiología , Sequías , Carbohidratos/química , Almidón/metabolismo , Árboles/fisiología , Metabolismo de los Hidratos de Carbono
2.
Remote Sens Ecol Conserv ; 8(1): 57-71, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35873085

RESUMEN

Non-forest ecosystems, dominated by shrubs, grasses and herbaceous plants, provide ecosystem services including carbon sequestration and forage for grazing, and are highly sensitive to climatic changes. Yet these ecosystems are poorly represented in remotely sensed biomass products and are undersampled by in situ monitoring. Current global change threats emphasize the need for new tools to capture biomass change in non-forest ecosystems at appropriate scales. Here we developed and deployed a new protocol for photogrammetric height using unoccupied aerial vehicle (UAV) images to test its capability for delivering standardized measurements of biomass across a globally distributed field experiment. We assessed whether canopy height inferred from UAV photogrammetry allows the prediction of aboveground biomass (AGB) across low-stature plant species by conducting 38 photogrammetric surveys over 741 harvested plots to sample 50 species. We found mean canopy height was strongly predictive of AGB across species, with a median adjusted R 2 of 0.87 (ranging from 0.46 to 0.99) and median prediction error from leave-one-out cross-validation of 3.9%. Biomass per-unit-of-height was similar within but different among, plant functional types. We found that photogrammetric reconstructions of canopy height were sensitive to wind speed but not sun elevation during surveys. We demonstrated that our photogrammetric approach produced generalizable measurements across growth forms and environmental settings and yielded accuracies as good as those obtained from in situ approaches. We demonstrate that using a standardized approach for UAV photogrammetry can deliver accurate AGB estimates across a wide range of dynamic and heterogeneous ecosystems. Many academic and land management institutions have the technical capacity to deploy these approaches over extents of 1-10 ha-1. Photogrammetric approaches could provide much-needed information required to calibrate and validate the vegetation models and satellite-derived biomass products that are essential to understand vulnerable and understudied non-forested ecosystems around the globe.

3.
Tree Physiol ; 41(10): 1819-1835, 2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-33904579

RESUMEN

Increased drought frequency and severity are a pervasive global threat, yet the capacity of mesic temperate forests to maintain resilience in response to drought remains poorly understood. We deployed a throughfall removal experiment to simulate a once in a century drought in New Hampshire, USA, which coupled with the region-wide 2016 drought, intensified moisture stress beyond that experienced in the lifetimes of our study trees. To assess the sensitivity and threshold dynamics of two dominant northeastern tree genera (Quercus and Pinus), we monitored sap flux density (Js), leaf water potential and gas exchange, growth and intrinsic water-use efficiency (iWUE) for one pretreatment year (2015) and two treatment years (2016-17). Results showed that Js in pine (Pinus strobus L.) declined abruptly at a soil moisture threshold of 0.15 m3 m-3, whereas oak's (Quercus rubra L. and Quercus velutina Lam.) threshold was 0.11 m3 m-3-a finding consistent with pine's more isohydric strategy. Nevertheless, once oaks' moisture threshold was surpassed, Js declined abruptly, suggesting that while oaks are well adapted to moderate drought, they are highly susceptible to extreme drought. The radial growth reduction in response to the 2016 drought was more than twice as great for pine as for oaks (50 vs 18%, respectively). Despite relatively high precipitation in 2017, the oaks' growth continued to decline (low recovery), whereas pine showed neutral (treatment) or improved (control) growth. The iWUE increased in 2016 for both treatment and control pines, but only in treatment oaks. Notably, pines exhibited a significant linear relationship between iWUE and precipitation across years, whereas the oaks only showed a response during the driest conditions, further underscoring the different sensitivity thresholds for these species. Our results provide new insights into how interactions between temperate forest tree species' contrasting physiologies and soil moisture thresholds influence their responses and resilience to extreme drought.


Asunto(s)
Pinus , Quercus , Sequías , Bosques , Árboles , Agua
4.
Front Plant Sci ; 11: 94, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32174930

RESUMEN

Across the semiarid ecosystems of the southwestern USA, there has been widespread encroachment of woody shrubs and trees including Juniperus species into former grasslands. Quantifying vegetation biomass in such ecosystems is important because semiarid ecosystems are thought to play an important role in the global land carbon (C) sink, and changes in plant biomass also have implications for primary consumers and potential bioenergy feedstock. Oneseed juniper (Juniperus monosperma) is common in desert grasslands and pinyon-juniper rangelands across the intermountain region of southwestern North America; however, there is limited information about the aboveground biomass (AGB) and sapwood area (SWA) for this species, causing uncertainties in estimates of C stock and transpiration fluxes. In this study, we report on canopy area (CA), stem diameter, maximum height, and biomass measurements from J. monosperma trees sampled from central New Mexico. Dry biomass ranged between 0.4 kg and 625 kg, and cross-sectional SWA was measured on n = 200 stems using image analysis. We found a strong linear relationship between CA and AGB (r2 = 0.96), with a similar slope to that observed in other juniper species, suggesting that this readily measured attribute is well suited for upscaling studies. There was a 9% bias between different approaches to measuring CA, indicating care should be taken to account for these differences to avoid systematic biases. We found equivalent stem diameter (ESD) was a strong predictor of biomass, but that existing allometric models underpredicted biomass in larger trees. We found SWA could be predicted from individual stem diameter with a power relationship, and that tree-level SWA should be estimated by summing the SWA predictions from individual stems rather than ESD. Our improved allometric models for J. monosperma support more accurate and robust measurements of C storage and transpiration fluxes in Juniperus-dominated ecosystems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA