Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Sci (Lond) ; 128(5): 321-3, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25394290

RESUMEN

Diabetic cardiovascular complications are reaching epidemic proportions and the risk of HF (heart failure) is increased 2-3-fold by diabetes mellitus. H2S (hydrogen sulfide) is emerging as a new gaseous signalling molecule in the cardiovascular system which possesses multifactorial effects on various intracellular signalling pathways. The proven cardioprotective and vasodilator activities of H2S warrant a detailed investigation into its role in diabetic cardiomyopathy. In the present issue of Clinical Science, Zhou et al. demonstrate an important therapeutic potential of the H2S pathway in diabetic cardiomyopathy.


Asunto(s)
Cardiomiopatías Diabéticas/tratamiento farmacológico , Sulfuro de Hidrógeno/uso terapéutico , Animales , Masculino
2.
Cell Metab ; 36(1): 130-143.e5, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38113888

RESUMEN

Glucagon-like peptide-1 receptor agonists (GLP-1RAs) exert anti-inflammatory effects relevant to the chronic complications of type 2 diabetes. Although GLP-1RAs attenuate T cell-mediated gut and systemic inflammation directly through the gut intraepithelial lymphocyte GLP-1R, how GLP-1RAs inhibit systemic inflammation in the absence of widespread immune expression of the GLP-1R remains uncertain. Here, we show that GLP-1R activation attenuates the induction of plasma tumor necrosis factor alpha (TNF-α) by multiple Toll-like receptor agonists. These actions are not mediated by hematopoietic or endothelial GLP-1Rs but require central neuronal GLP-1Rs. In a cecal slurry model of polymicrobial sepsis, GLP-1RAs similarly require neuronal GLP-1Rs to attenuate detrimental responses associated with sepsis, including sickness, hypothermia, systemic inflammation, and lung injury. Mechanistically, GLP-1R activation leads to reduced TNF-α via α1-adrenergic, δ-opioid, and κ-opioid receptor signaling. These data extend emerging concepts of brain-immune networks and posit a new gut-brain GLP-1R axis for suppression of peripheral inflammation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Sepsis , Humanos , Exenatida , Péptido 1 Similar al Glucagón/metabolismo , Péptidos/farmacología , Agonistas de los Receptores Toll-Like , Ponzoñas/farmacología , Factor de Necrosis Tumoral alfa , Inflamación , Receptor del Péptido 1 Similar al Glucagón/metabolismo
3.
J Mol Cell Cardiol ; 54: 9-18, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23142539

RESUMEN

Classical ischemia-reperfusion (IR) preconditioning relies on phosphatidylinositol 3-kinase (PI3K) for protective signaling. Surprisingly, inhibition of PI3Kα activity using a dominant negative (DN) strategy protected the murine heart from IR injury. It has been proposed that increased signaling through PI3Kγ may contribute to the improved recovery of PI3KαDN hearts following IR. To investigate the mechanism by which PI3KαDN hearts are protected from IR injury, we created a double mutant (PI3KDM) model by crossing p110γ(-/-) (PI3KγKO) with cardiac-specific PI3KαDN mice. The PI3KDM model has morphological and hemodynamic features that are characteristic of both PI3Kγ(-/-) and PI3KαDN mice. Interestingly, when subjected to IR using ex vivo Langendorff perfusion, PI3KDM hearts showed significantly enhanced functional recovery when compared to wildtype (WT) hearts. However, signaling downstream of PI3K through Akt and GSK3ß, which has been associated with IR protection, was reduced in PI3KDM hearts. Using ex vivo working heart perfusion, we found no difference in functional recovery after IR between PI3KDM and PI3KαDN; also, glucose oxidation rates were significantly increased in PI3KαDN hearts when compared to WT, and this metabolic shift has been associated with enhanced IR recovery. However, we found that PI3KαDN hearts still had enhanced recovery when perfused exclusively with fatty acids (FA). We then investigated parallel signaling pathways, and found that mitogen-activated protein kinase signaling was increased in PI3KαDN hearts, possibly through the inhibition of negative feedback loops downstream of PI3Kα.


Asunto(s)
Glucosa/metabolismo , Sistema de Señalización de MAP Quinasas , Daño por Reperfusión Miocárdica/enzimología , Fosfatidilinositol 3-Quinasas/genética , Animales , Fosfatidilinositol 3-Quinasa Clase I , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , AMP Cíclico/metabolismo , Femenino , Genes Dominantes , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Frecuencia Cardíaca , Técnicas In Vitro , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/enzimología , Oxidación-Reducción , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sistemas de Mensajero Secundario , Presión Ventricular
4.
J Card Fail ; 19(4): 268-82, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23582093

RESUMEN

BACKGROUND: The phosphatidylinositol 3-kinase (PI3K) signaling cascade has fundamental roles in cell growth, survival, and motility; and increased PI3K activity is an important and common contributor to tumorigenesis and cancer progression. This pathway also has a significant role in physiologic hypertrophy, myocardial contractility, and metabolism in the heart and is a central determinant of pathologic remodeling in the cardiovascular system. METHODS AND RESULTS: PI3K inhibitors are a promising class of anticancer drugs, although systemic inhibition of the PI3K pathway demands careful attention to possible adverse side effects of inhibiting these ubiquitously expressed proteins. Here we review the growing body of basic research on the role of PI3K signaling in the heart and give an overview of the different therapeutic strategies being developed for cancer using PI3K inhibitors, including pan and isoform-selective inhibitors, combination PI3K/mammalian target of rapamycin inhibitors and the use of PI3K inhibitors in combination therapies with other anticancer therapies. We focus on the clinical implications for treating patients with preexisting cardiac risk factors or comorbidities with PI3K inhibitors. CONCLUSIONS: PI3K inhibitors are novel cancer drugs that are likely to lead to considerable toxicity to the cardiovascular system, especially in elderly patients and those with preexisting cardiovascular disease.


Asunto(s)
Antineoplásicos/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/enzimología , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Animales , Antineoplásicos/farmacología , Humanos , Fosfatidilinositol 3-Quinasa/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
6.
Mol Metab ; 66: 101641, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36396031

RESUMEN

OBJECTIVES: Glucagon-like peptide-1 receptor (GLP-1R) agonists reduce the rates of major cardiovascular events, including myocardial infarction in people with type 2 diabetes, and decrease infarct size while preserving ventricular function in preclinical studies. Nevertheless, the precise cellular sites of GLP-1R expression that mediate the cardioprotective actions of GLP-1 in the setting of ischemic cardiac injury are uncertain. METHODS: Publicly available single cell RNA sequencing (scRNA-seq) datasets on mouse and human heart cells were analyzed for Glp1r/GLP1R expression. Fluorescent activated cell sorting was used to localize Glp1r expression in cell populations from the mouse heart. The importance of endothelial and hematopoietic cells for the cardioprotective response to liraglutide in the setting of acute myocardial infarction (MI) was determined by inactivating the Glp1r in Tie2+ cell populations. Cardiac gene expression profiles regulated by liraglutide were examined using RNA-seq to interrogate mouse atria and both infarcted and non-infarcted ventricular tissue after acute coronary artery ligation. RESULTS: In mice, cardiac Glp1r mRNA transcripts were exclusively detected in endocardial cells by scRNA-seq. In contrast, analysis of human heart by scRNA-seq localized GLP1R mRNA transcripts to populations of atrial and ventricular cardiomyocytes. Moreover, very low levels of GIPR, GCGR and GLP2R mRNA transcripts were detected in the human heart. Cell sorting and RNA analyses detected cardiac Glp1r expression in endothelial cells (ECs) within the atria and ventricle in the ischemic and non-ischemic mouse heart. Transcriptional responses to liraglutide administration were not evident in wild type mouse ventricles following acute MI, however liraglutide differentially regulated genes important for inflammation, cardiac repair, cell proliferation, and angiogenesis in the left atrium, while reducing circulating levels of IL-6 and KC/GRO within hours of acute MI. Inactivation of the Glp1r within the Tie2+ cell expression domain encompassing ECs revealed normal cardiac structure and function, glucose homeostasis and body weight in Glp1rTie2-/- mice. Nevertheless, the cardioprotective actions of liraglutide to reduce infarct size, augment ejection fraction, and improve survival after experimental myocardial infarction (MI), were attenuated in Glp1rTie2-/- mice. CONCLUSIONS: These findings identify the importance of the murine Tie2+ endothelial cell GLP-1R as a target for the cardioprotective actions of GLP-1R agonists and support the importance of the atrial and ventricular endocardial GLP-1R as key sites of GLP-1 action in the ischemic mouse heart. Hitherto unexplored species-specific differences in cardiac GLP-1R expression challenge the exclusive use of mouse models for understanding the mechanisms of GLP-1 action in the normal and ischemic human heart.


Asunto(s)
Fibrilación Atrial , Receptor del Péptido 1 Similar al Glucagón , Liraglutida , Infarto del Miocardio , Animales , Humanos , Ratones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Células Endoteliales/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/efectos de los fármacos , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Liraglutida/farmacología , Infarto del Miocardio/tratamiento farmacológico , ARN Mensajero , Modelos Animales de Enfermedad , Receptor TIE-2/metabolismo
7.
Mol Metab ; 65: 101586, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36055579

RESUMEN

OBJECTIVE: The gut hormone glucose-dependent insulinotropic polypeptide (GIP) stimulates beta cell function and improves glycemia through its incretin actions. GIP also regulates endothelial function and suppresses adipose tissue inflammation through control of macrophage activity. Activation of the GIP receptor (GIPR) attenuates experimental atherosclerosis and inflammation in mice, however whether loss of GIPR signaling impacts the development of atherosclerosis is uncertain. METHODS: Atherosclerosis and related metabolic phenotypes were studied in Apoe-/-:Gipr-/- mice and in Gipr+/+ and Gipr-/- mice treated with an adeno-associated virus expressing PCSK9 (AAV-PCSK9). Bone marrow transplantation (BMT) studies were carried out using donor marrow from Apoe-/-:Gipr-/-and Apoe-/-:Gipr+/+mice transplanted into Apoe-/-:Gipr-/- recipient mice. Experimental endpoints included the extent of aortic atherosclerosis and inflammation, body weight, glucose tolerance, and circulating lipid levels, the proportions and subsets of circulating leukocytes, and tissue gene expression profiles informing lipid and glucose metabolism, and inflammation. RESULTS: Body weight was lower, circulating myeloid cells were reduced, and glucose tolerance was not different, however, aortic atherosclerosis was increased in Apoe-/-:Gipr-/- mice and trended higher in Gipr-/- mice with atherosclerosis induced by AAV-PCSK9. Levels of mRNA transcripts for genes contributing to inflammation were increased in the aortae of Apoe-/-:Gipr-/- mice and expression of a subset of inflammation-related hepatic genes were increased in Gipr-/- mice treated with AAV-PCSK9. BMT experiments did not reveal marked atherosclerosis, failing to implicate bone marrow derived GIPR + cells in the control of atherosclerosis or aortic inflammation. CONCLUSIONS: Loss of the Gipr in mice results in increased aortic atherosclerosis and enhanced inflammation in aorta and liver, despite reduced weight gain and preserved glucose homeostasis. These findings extend concepts of GIPR in the suppression of inflammation-related pathophysiology beyond its classical incretin role in the control of metabolism.


Asunto(s)
Aterosclerosis , Proproteína Convertasa 9 , Animales , Ratones , Apolipoproteínas E/genética , Aterosclerosis/genética , Glucemia , Peso Corporal , Polipéptido Inhibidor Gástrico/metabolismo , Incretinas , Inflamación/metabolismo , Receptores Acoplados a Proteínas G , Receptores de la Hormona Gastrointestinal , ARN Mensajero
8.
Cell Metab ; 34(10): 1514-1531.e7, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36027914

RESUMEN

Gut intraepithelial lymphocytes (IELs) are thought to calibrate glucagon-like peptide 1 (GLP-1) bioavailability, thereby regulating systemic glucose and lipid metabolism. Here, we show that the gut IEL GLP-1 receptor (GLP-1R) is not required for enteroendocrine L cell GLP-1 secretion and glucose homeostasis nor for the metabolic benefits of GLP-1R agonists (GLP-1RAs). Instead, the gut IEL GLP-1R is essential for the full effects of GLP-1RAs on gut microbiota. Moreover, independent of glucose control or weight loss, the anti-inflammatory actions of GLP-1RAs require the gut IEL GLP-1R to selectively restrain local and systemic T cell-induced, but not lipopolysaccharide-induced, inflammation. Such effects are mediated by the suppression of gut IEL effector functions linked to the dampening of proximal T cell receptor signaling in a protein-kinase-A-dependent manner. These data reposition key roles of the L cell-gut IEL GLP-1R axis, revealing mechanisms linking GLP-1R activation in gut IELs to modulation of microbiota composition and control of intestinal and systemic inflammation.


Asunto(s)
Microbioma Gastrointestinal , Linfocitos Intraepiteliales , Glucemia , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón , Glucosa/metabolismo , Humanos , Inflamación , Intestinos , Linfocitos Intraepiteliales/metabolismo , Receptores de Antígenos de Linfocitos T
9.
JCI Insight ; 6(22)2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34673572

RESUMEN

Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are used to treat diabetes and obesity and reduce rates of major cardiovascular events, such as stroke and myocardial infarction. Nevertheless, the identity of GLP-1R-expressing cell types mediating the cardiovascular benefits of GLP-1RA remains incompletely characterized. Herein, we investigated the importance of murine Glp1r expression within endothelial and hematopoietic cells. Mice with targeted inactivation of Glp1r in Tie2+ cells exhibited reduced levels of Glp1r mRNA transcripts in aorta, liver, spleen, blood, and gut. Glp1r expression in bone marrow cells was very low and not further reduced in Glp1rTie2-/- mice. The GLP-1RA semaglutide reduced the development of atherosclerosis induced by viral PCSK9 expression in both Glp1rTie2+/+ and Glp1rTie2-/- mice. Hepatic Glp1r mRNA transcripts were reduced in Glp1rTie2-/- mice, and liver Glp1r expression was localized to γδ T cells. Moreover, semaglutide reduced hepatic Tnf, Abcg1, Tgfb1, Cd3g, Ccl2, and Il2 expression; triglyceride content; and collagen accumulation in high-fat, high-cholesterol diet-fed Glp1rTie2+/+ mice but not Glp1rTie2-/- mice. Collectively, these findings demonstrate that Tie2+ endothelial or hematopoietic cell GLP-1Rs are dispensable for the antiatherogenic actions of GLP-1RA, whereas Tie2-targeted GLP-1R+ cells are required for a subset of the antiinflammatory actions of semaglutide in the liver.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Células Endoteliales/metabolismo , Péptidos Similares al Glucagón/uso terapéutico , Células Madre Hematopoyéticas/metabolismo , Hígado/efectos de los fármacos , Síndrome Metabólico/tratamiento farmacológico , Animales , Péptido 1 Similar al Glucagón/metabolismo , Péptidos Similares al Glucagón/farmacología , Humanos , Masculino , Ratones
10.
Endocr Rev ; 42(2): 101-132, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33320179

RESUMEN

Glucagon-like peptide-1 (GLP-1) is produced in gut endocrine cells and in the brain, and acts through hormonal and neural pathways to regulate islet function, satiety, and gut motility, supporting development of GLP-1 receptor (GLP-1R) agonists for the treatment of diabetes and obesity. Classic notions of GLP-1 acting as a meal-stimulated hormone from the distal gut are challenged by data supporting production of GLP-1 in the endocrine pancreas, and by the importance of brain-derived GLP-1 in the control of neural activity. Moreover, attribution of direct vs indirect actions of GLP-1 is difficult, as many tissue and cellular targets of GLP-1 action do not exhibit robust or detectable GLP-1R expression. Furthermore, reliable detection of the GLP-1R is technically challenging, highly method dependent, and subject to misinterpretation. Here we revisit the actions of GLP-1, scrutinizing key concepts supporting gut vs extra-intestinal GLP-1 synthesis and secretion. We discuss new insights refining cellular localization of GLP-1R expression and integrate recent data to refine our understanding of how and where GLP-1 acts to control inflammation, cardiovascular function, islet hormone secretion, gastric emptying, appetite, and body weight. These findings update our knowledge of cell types and mechanisms linking endogenous vs pharmacological GLP-1 action to activation of the canonical GLP-1R, and the control of metabolic activity in multiple organs.


Asunto(s)
Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Humanos , Obesidad
11.
Can J Diabetes ; 44(1): 68-77, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31699625

RESUMEN

People with type 2 diabetes are at heightened risk for developing cardiovascular (CV) events. CV disease is the leading cause of premature death among adults with type 2 diabetes. Unfortunately, historically, some antidiabetes agents were implicated in worsening CV function, despite improving glycemic and metabolic control. Accordingly, over a decade ago, health regulatory bodies modified approval requirements for novel antidiabetes pharmacotherapies, requiring prospective evaluation of CV safety through cardiovascular outcome trials (CVOTs). To meet regulatory requirements, CVOTs were primarily designed around establishing CV safety by demonstrating noninferiority to placebo in addition to standard of care, without significant differences in blood glucose. If appropriately designed and powered, however, these CVOTs could also determine superiority, and hence CV protection. Although many of these CVOTs were initiated several years ago, the recent reporting of the results for these CVOTs has been pivotal and practice-changing. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are one such class of antidiabetes therapies, wherein multiple GLP-1RA CVOTs, but interestingly, not all, have demonstrated CV benefits. In this review, we provide a comprehensive summary of all the reported CVOTs completed with GLP-1RAs to date. Although it remains unclear why some GLP-1RAs are associated with reducing CV events, whereas others have been consistent with CV safety alone, we highlight and provide an overview of some key differences between the various GLP-1RAs and their respective CVOTs and possible implications of study design differences. We also speculate on potential mechanisms of action for glucagon-like peptide-1 receptor signalling in the CV system.


Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Complicaciones de la Diabetes/prevención & control , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Receptor del Péptido 1 Similar al Glucagón/agonistas , Hipoglucemiantes/uso terapéutico , Adulto , Enfermedades Cardiovasculares/etiología , Ensayos Clínicos como Asunto , Complicaciones de la Diabetes/etiología , Humanos , Pronóstico
12.
J Am Heart Assoc ; 8(9): e010961, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31039672

RESUMEN

Background Cancer therapies inhibiting PI 3Kα (phosphoinositide 3-kinase-α)-dependent growth factor signaling, including trastuzumab inhibition of HER 2 (Human Epidermal Growth Factor Receptor 2), can cause adverse effects on the heart. Direct inhibition of PI 3Kα is now in clinical trials, but the effects of PI 3Kα pathway inhibition on heart atrophy, remodeling, and function in the context of cancer therapy are not well understood. Method and Results Pharmacological PI 3Kα inhibition and heart-specific genetic deletion of p110α, the catalytic subunit of PI 3Kα, was characterized in conjunction with anthracycline (doxorubicin) treatment in female murine models. Biventricular changes in heart morphological characteristics and function were analyzed, with molecular characterization of signaling pathways. Both PI 3Kα inhibition and anthracycline therapy promoted heart atrophy and a combined effect of distinct right ventricular dilation, dysfunction, and cardiomyocyte remodeling in the absence of pulmonary arterial hypertension. Congruent findings of right ventricular dilation and dysfunction were seen with pharmacological and genetic suppression of PI 3Kα signaling when combined with doxorubicin treatment. Increased p38 mitogen-activated protein kinase activation was mechanistically linked to heart atrophy and correlated with right ventricular dysfunction in explanted failing human hearts. Conclusions PI 3Kα pathway inhibition promotes heart atrophy in mice. The right ventricle is specifically at risk for dilation and dysfunction in the setting of PI 3K inhibition in conjunction with chemotherapy. Inhibition of p38 mitogen-activated protein kinase is a proposed therapeutic target to minimize this mode of cardiotoxicity.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Corazón/efectos de los fármacos , Miocardio/patología , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Tiazoles/farmacología , Disfunción Ventricular Derecha/fisiopatología , Remodelación Ventricular/efectos de los fármacos , Animales , Atrofia , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasa Clase I/genética , Femenino , Corazón/fisiopatología , Ratones , Disfunción Ventricular Derecha/inducido químicamente , Disfunción Ventricular Derecha/patología , Proteínas Quinasas p38 Activadas por Mitógenos/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
13.
Nat Commun ; 9(1): 5390, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30568254

RESUMEN

Biomechanical stress and cytoskeletal remodeling are key determinants of cellular homeostasis and tissue responses to mechanical stimuli and injury. Here we document the increased activity of gelsolin, an actin filament severing and capping protein, in failing human hearts. Deletion of gelsolin prevents biomechanical stress-induced adverse cytoskeletal remodeling and heart failure in mice. We show that phosphatidylinositol (3,4,5)-triphosphate (PIP3) lipid suppresses gelsolin actin-severing and capping activities. Accordingly, loss of PI3Kα, the key PIP3-producing enzyme in the heart, increases gelsolin-mediated actin-severing activities in the myocardium in vivo, resulting in dilated cardiomyopathy in response to pressure-overload. Mechanical stretching of adult PI3Kα-deficient cardiomyocytes disrupts the actin cytoskeleton, which is prevented by reconstituting cells with PIP3. The actin severing and capping activities of recombinant gelsolin are effectively suppressed by PIP3. Our data identify the role of gelsolin-driven cytoskeletal remodeling in heart failure in which PI3Kα/PIP3 act as negative regulators of gelsolin activity.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Gelsolina/metabolismo , Insuficiencia Cardíaca/etiología , Mecanotransducción Celular , Miocardio/metabolismo , Animales , Perros , Femenino , Gelsolina/genética , Humanos , Masculino , Ratones Noqueados , Persona de Mediana Edad , Modelos Cardiovasculares , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Remodelación Ventricular
14.
Cell Metab ; 27(2): 450-460.e6, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29275960

RESUMEN

Incretin hormones exert pleiotropic metabolic actions beyond the pancreas. Although the heart expresses both incretin receptors, the cardiac biology of GIP receptor (GIPR) action remains incompletely understood. Here we show that GIPR agonism did not impair the response to cardiac ischemia. In contrast, genetic elimination of the Gipr reduced myocardial infarction (MI)-induced ventricular injury and enhanced survival associated with reduced hormone sensitive lipase (HSL) phosphorylation; it also increased myocardial triacylglycerol (TAG) stores. Conversely, direct GIPR agonism in the isolated heart reduced myocardial TAG stores and increased fatty acid oxidation. The cardioprotective phenotype in Gipr-/- mice was partially reversed by pharmacological activation or genetic overexpression of HSL. Selective Gipr inactivation in cardiomyocytes phenocopied Gipr-/- mice, resulting in improved survival and reduced adverse remodeling following experimental MI. Hence, the cardiomyocyte GIPR regulates fatty acid metabolism and the adaptive response to ischemic cardiac injury. These findings have translational relevance for developing GIPR-based therapeutics.


Asunto(s)
Infarto del Miocardio/patología , Receptores de la Hormona Gastrointestinal/metabolismo , Adenilil Ciclasas/metabolismo , Animales , Activación Enzimática , Polipéptido Inhibidor Gástrico/metabolismo , Células HEK293 , Insuficiencia Cardíaca/patología , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/prevención & control , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de la Hormona Gastrointestinal/deficiencia , Receptores de la Hormona Gastrointestinal/genética , Transducción de Señal , Esterol Esterasa/metabolismo , Triglicéridos/metabolismo , Remodelación Ventricular
15.
Mol Metab ; 6(11): 1339-1349, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29107282

RESUMEN

OBJECTIVES: Glucagon-like peptide-1 (GLP-1) is secreted from enteroendocrine cells and exerts a broad number of metabolic actions through activation of a single GLP-1 receptor (GLP-1R). The cardiovascular actions of GLP-1 have garnered increasing attention as GLP-1R agonists are used to treat human subjects with diabetes and obesity that may be at increased risk for development of heart disease. Here we studied mechanisms linking GLP-1R activation to control of heart rate (HR) in mice. METHODS: The actions of GLP-1R agonists were examined on the control of HR in wild type mice (WT) and in mice with cardiomyocyte-selective disruption of the GLP-1R (Glp1rCM-/-). Complimentary studies examined the effects of GLP-1R agonists in mice co-administered propranolol or atropine. The direct effects of GLP-1R agonism on HR and ventricular developed pressure were examined in isolated perfused mouse hearts ex vivo, and atrial depolarization was quantified in mouse hearts following direct application of liraglutide to perfused atrial preparations ex vivo. RESULTS: Doses of liraglutide and lixisenatide that were equipotent for acute glucose control rapidly increased HR in WT and Glp1rCM-/- mice in vivo. The actions of liraglutide to increase HR were more sustained relative to lixisenatide, and diminished in Glp1rCM-/- mice. The acute chronotropic actions of GLP-1R agonists were attenuated by propranolol but not atropine. Neither native GLP-1 nor lixisenatide increased HR or developed pressure in perfused hearts ex vivo. Moreover, liraglutide had no direct effect on sinoatrial node firing rate in mouse atrial preparations ex vivo. Despite co-localization of HCN4 and GLP-1R in primate hearts, HCN4-directed Cre expression did not attenuate levels of Glp1r mRNA transcripts, but did reduce atrial Gcgr expression in the mouse heart. CONCLUSIONS: GLP-1R agonists increase HR through multiple mechanisms, including regulation of autonomic nervous system function, and activation of the atrial GLP-1R. Surprisingly, the isolated atrial GLP-1R does not transduce a direct chronotropic effect following exposure to GLP-1R agonists in the intact heart, or isolated atrium, ex vivo. Hence, cardiac GLP-1R circuits controlling HR require neural inputs and do not function in a heart-autonomous manner.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón/fisiología , Frecuencia Cardíaca/fisiología , Animales , Sistema Nervioso Autónomo/fisiología , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Liraglutida/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Péptidos/farmacología
16.
Diabetes ; 65(1): 85-95, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26224885

RESUMEN

Obesity is increasing in prevalence and is strongly associated with metabolic and cardiovascular disorders. The renin-angiotensin system (RAS) has emerged as a key pathogenic mechanism for these disorders; angiotensin (Ang)-converting enzyme 2 (ACE2) negatively regulates RAS by metabolizing Ang II into Ang 1-7. We studied the role of ACE2 in obesity-mediated cardiac dysfunction. ACE2 null (ACE2KO) and wild-type (WT) mice were fed a high-fat diet (HFD) or a control diet and studied at 6 months of age. Loss of ACE2 resulted in decreased weight gain but increased glucose intolerance, epicardial adipose tissue (EAT) inflammation, and polarization of macrophages into a proinflammatory phenotype in response to HFD. Similarly, human EAT in patients with obesity and heart failure displayed a proinflammatory macrophage phenotype. Exacerbated EAT inflammation in ACE2KO-HFD mice was associated with decreased myocardial adiponectin, decreased phosphorylation of AMPK, increased cardiac steatosis and lipotoxicity, and myocardial insulin resistance, which worsened heart function. Ang 1-7 (24 µg/kg/h) administered to ACE2KO-HFD mice resulted in ameliorated EAT inflammation and reduced cardiac steatosis and lipotoxicity, resulting in normalization of heart failure. In conclusion, ACE2 plays a novel role in heart disease associated with obesity wherein ACE2 negatively regulates obesity-induced EAT inflammation and cardiac insulin resistance.


Asunto(s)
Tejido Adiposo/inmunología , Dieta Alta en Grasa , Insuficiencia Cardíaca/genética , Macrófagos/inmunología , Miocardio/metabolismo , Obesidad/genética , Peptidil-Dipeptidasa A/deficiencia , Pericardio/inmunología , Proteínas Quinasas Activadas por AMP/metabolismo , Adiponectina/metabolismo , Angiotensina I/farmacología , Enzima Convertidora de Angiotensina 2 , Animales , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Corazón/fisiopatología , Insuficiencia Cardíaca/inmunología , Insuficiencia Cardíaca/fisiopatología , Humanos , Inflamación/genética , Inflamación/inmunología , Resistencia a la Insulina/genética , Ratones , Ratones Noqueados , Obesidad/inmunología , Obesidad/fisiopatología , Estrés Oxidativo , Fragmentos de Péptidos/farmacología , Peptidil-Dipeptidasa A/genética , Fosforilación , Reacción en Cadena en Tiempo Real de la Polimerasa , Volumen Sistólico , Factor de Necrosis Tumoral alfa/inmunología , Vasodilatadores/farmacología , Aumento de Peso/genética
17.
Cardiovasc Res ; 105(3): 292-303, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25618408

RESUMEN

AIMS: Genetic mouse models have yielded conflicting conclusions about the role of PI3Kα in heart physiology: specifically, the question of whether PI3Kα has a direct role in regulating myocardial contractility. This has led to concerns that PI3K inhibitors currently in clinical trials for cancer may potentiate cardiotoxicity. Here we seek to clarify the role of PI3Kα in normal heart physiology and investigate changes in related signalling pathways. METHODS AND RESULTS: Targeted deletion of PI3Kα and PI3Kß in the heart with a tamoxifen-dependent Cre recombinase transgene caused transient heart dysfunction in all genotypes, but only PI3Kα deletion prevented functional recovery. Reduction in tamoxifen dosing allowed for maintained gene deletion without any cardiomyopathy, possibly through activation of survival signalling through the related ERK pathway. Similarly, mice with PI3Kα deletion induced by constitutively active Cre recombinase had normal heart function. Insulin-mediated activation of Akt, a marker of PI3Kα activity, was impaired with increased ERK1/2 activation in PI3Kα mutant hearts. Pharmacological inhibition of PI3Kα with BYL-719 also caused impaired insulin signalling in murine and human cardiomyocytes as well as in vivo in mice, with increased fasting blood glucose levels, but did not affect myocardial contractility as determined by echocardiography and invasive pressure-volume loop analysis. CONCLUSION: Our results show that PI3Kα does not directly regulate myocardial contractility, but is required for recovery from tamoxifen/Cre toxicity. The important role for PI3Kα in insulin signalling and recovery from tamoxifen/Cre toxicity justifies caution when using PI3Kα inhibitors in combination with other cardiovascular comorbidities and cardiotoxic compounds in cancer patients.


Asunto(s)
Cardiopatías/enzimología , Insulina/metabolismo , Integrasas/metabolismo , Contracción Miocárdica , Miocardio/enzimología , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Tamoxifeno/farmacología , Animales , Fosfatidilinositol 3-Quinasa Clase I , Modelos Animales de Enfermedad , Genotipo , Cardiopatías/genética , Cardiopatías/fisiopatología , Integrasas/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Contracción Miocárdica/efectos de los fármacos , Fenotipo , Fosfatidilinositol 3-Quinasas/deficiencia , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
19.
Circ Heart Fail ; 5(4): 493-503, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22705769

RESUMEN

BACKGROUND: Activation of the renin-angiotensin and sympathetic nervous systems may alter the cardiac energy substrate preference, thereby contributing to the progression of heart failure with normal ejection fraction. We assessed the qualitative and quantitative effects of angiotensin II (Ang II) and the α-adrenergic agonist, phenylephrine (PE), on cardiac energy metabolism in experimental models of hypertrophy and diastolic dysfunction and the role of the Ang II type 1 receptor. METHODS AND RESULTS: Ang II (1.5 mg·kg(-1)·day(-1)) or PE (40 mg·kg(-1)·day(-1)) was administered to 9-week-old male C57/BL6 wild-type mice for 14 days via implanted microosmotic pumps. Echocardiography showed concentric hypertrophy and diastolic dysfunction, with preserved systolic function in Ang II- and PE-treated mice. Ang II induced marked reduction in cardiac glucose oxidation and lactate oxidation, with no change in glycolysis and fatty acid ß-oxidation. Tricarboxylic acid acetyl coenzyme A production and ATP production were reduced in response to Ang II. Cardiac pyruvate dehydrogenase kinase 4 expression was upregulated by Ang II and PE, resulting in a reduction in the pyruvate dehydrogenase activity, the rate-limiting step for carbohydrate oxidation. Pyruvate dehydrogenase kinase 4 upregulation correlated with the activation of the cyclin/cyclin-dependent kinase-retinoblastoma protein-E2F pathway in response to Ang II. Ang II type 1 receptor blockade normalized the activation of the cyclin/cyclin-dependent kinase-retinoblastoma protein-E2F pathway and prevented the reduction in glucose oxidation but increased fatty acid oxidation. CONCLUSIONS: Ang II- and PE-induced hypertrophy and diastolic dysfunction is associated with reduced glucose oxidation because of the cyclin/cyclin-dependent kinase-retinoblastoma protein-E2F-induced upregulation of pyruvate dehydrogenase kinase 4, and targeting these pathways may provide novel therapy for heart failure with normal ejection fraction.


Asunto(s)
Cardiomegalia/metabolismo , Metabolismo Energético , Glucosa/metabolismo , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismo , Volumen Sistólico , Función Ventricular , Angiotensina II , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Cardiomegalia/inducido químicamente , Cardiomegalia/diagnóstico por imagen , Cardiomegalia/fisiopatología , Quinasas Ciclina-Dependientes/metabolismo , Factores de Transcripción E2F/metabolismo , Metabolismo Energético/efectos de los fármacos , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , Fenilefrina , Proteínas Serina-Treonina Quinasas/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Receptor de Angiotensina Tipo 1/efectos de los fármacos , Receptor de Angiotensina Tipo 1/metabolismo , Receptores Adrenérgicos alfa/metabolismo , Proteína de Retinoblastoma/metabolismo , Transducción de Señal , Volumen Sistólico/efectos de los fármacos , Factores de Tiempo , Ultrasonografía , Función Ventricular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA