Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Infect Immun ; 89(10): e0007221, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34125599

RESUMEN

Genital infections with Chlamydia trachomatis can lead to uterine and oviduct tissue damage in the female reproductive tract. Neutrophils are strongly associated with tissue damage during chlamydial infection, while an adaptive CD4 T cell response is necessary to combat infection. Activation of triggering receptor expressed on myeloid cells-1 (TREM-1) on neutrophils has previously been shown to induce and/or enhance degranulation synergistically with Toll-like receptor (TLR) signaling. Additionally, TREM-1 can promote neutrophil transepithelial migration. In this study, we sought to determine the contribution of TREM-1,3 to immunopathology in the female mouse genital tract during Chlamydia muridarum infection. Relative to control mice, trem1,3-/- mice had no difference in chlamydial burden or duration of lower-genital-tract infection. We also observed a similar incidence of hydrosalpinx 45 days postinfection in trem1,3-/- compared to wild-type (WT) mice. However, compared to WT mice, trem1,3-/- mice developed significantly fewer hydrometra in uterine horns. Early in infection, trem1,3-/- mice displayed a notable decrease in the number of uterine glands containing polymorphonuclear cells and uterine horn lumens had fewer neutrophils, with increased granulocyte colony-stimulating factor (G-CSF). trem1,3-/- mice also had reduced erosion of the luminal epithelium. These data indicate that TREM-1,3 contributes to transepithelial neutrophil migration in the uterus and uterine glands, promoting the occurrence of hydrometra in infected mice.


Asunto(s)
Infecciones por Chlamydia/inmunología , Chlamydia muridarum/inmunología , Receptores Inmunológicos/inmunología , Receptor Activador Expresado en Células Mieloides 1/inmunología , Útero/inmunología , Inmunidad Adaptativa/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/microbiología , Movimiento Celular/inmunología , Infecciones por Chlamydia/metabolismo , Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/inmunología , Modelos Animales de Enfermedad , Epitelio/inmunología , Epitelio/metabolismo , Epitelio/microbiología , Femenino , Genitales Femeninos/inmunología , Genitales Femeninos/metabolismo , Genitales Femeninos/microbiología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/microbiología , Oviductos/inmunología , Oviductos/metabolismo , Oviductos/microbiología , Receptores Inmunológicos/metabolismo , Infecciones del Sistema Genital/inmunología , Infecciones del Sistema Genital/metabolismo , Infecciones del Sistema Genital/microbiología , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Útero/metabolismo , Útero/microbiología
2.
Infect Immun ; 88(9)2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32601108

RESUMEN

Chlamydia trachomatis infection of the human fallopian tubes can lead to damaging inflammation and scarring, ultimately resulting in infertility. To study the human cellular responses to chlamydial infection, researchers have frequently used transformed cell lines that can have limited translational relevance. We developed a primary human fallopian tube epithelial cell model based on a method previously established for culture of primary human bronchial epithelial cells. After protease digestion and physical dissociation of excised fallopian tubes, epithelial cell precursors were expanded in growth factor-containing medium. Expanded cells were cryopreserved to generate a biobank of cells from multiple donors and cultured at an air-liquid interface. Culture conditions stimulated cellular differentiation into polarized mucin-secreting and multiciliated cells, recapitulating the architecture of human fallopian tube epithelium. The polarized and differentiated cells were infected with a clinical isolate of C. trachomatis, and inclusions containing chlamydial developmental forms were visualized by fluorescence and electron microscopy. Apical secretions from infected cells contained increased amounts of proteins associated with chlamydial growth and replication, including transferrin receptor protein 1, the amino acid transporters SLC3A2 and SLC1A5, and the T-cell chemoattractants CXCL10, CXCL11, and RANTES. Flow cytometry revealed that chlamydial infection induced cell surface expression of T-cell homing and activation proteins, including ICAM-1, VCAM-1, HLA class I and II, and interferon gamma receptor. This human fallopian tube epithelial cell culture model is an important tool with translational potential for studying cellular responses to Chlamydia and other sexually transmitted pathogens.


Asunto(s)
Células Epiteliales/inmunología , Regulación de la Expresión Génica/inmunología , Interacciones Microbiota-Huesped/inmunología , Linfocitos T/inmunología , Adulto , Sistema de Transporte de Aminoácidos ASC/genética , Sistema de Transporte de Aminoácidos ASC/inmunología , Antígenos CD/genética , Antígenos CD/inmunología , Biomarcadores/metabolismo , Quimiocina CCL5/genética , Quimiocina CCL5/inmunología , Quimiocina CXCL10/genética , Quimiocina CXCL10/inmunología , Quimiocina CXCL11/genética , Quimiocina CXCL11/inmunología , Infecciones por Chlamydia/genética , Infecciones por Chlamydia/inmunología , Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/crecimiento & desarrollo , Chlamydia trachomatis/inmunología , Células Epiteliales/microbiología , Trompas Uterinas/citología , Trompas Uterinas/cirugía , Femenino , Cadena Pesada de la Proteína-1 Reguladora de Fusión/genética , Cadena Pesada de la Proteína-1 Reguladora de Fusión/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/inmunología , Interacciones Microbiota-Huesped/genética , Humanos , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/inmunología , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/inmunología , Modelos Biológicos , Cultivo Primario de Células , Receptores de Interferón/genética , Receptores de Interferón/inmunología , Receptores de Transferrina/genética , Receptores de Transferrina/inmunología , Salpingectomía , Linfocitos T/microbiología , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/inmunología , Receptor de Interferón gamma
3.
ALTEX ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38641922

RESUMEN

Animal models have historically been poor preclinical predictors of gastrointestinal (GI) directed therapeutic efficacy and drug-induced GI toxicity. Human stem and primary cell-derived culture systems are a major focus of efforts to create biologically relevant models that enhance preclinical predictive value of intestinal efficacy and toxicity. The inherent variability in stem-cell-based cultures makes development of useful models a challenge; the stochastic nature of stem-cell differentiation interferes with the ability to build and validate reproducible assays that query drug responses and pharmacokinetics. In this study, we aimed to characterize and reduce sources of variability in a complex stem cell-derived intestinal epithelium model, termed RepliGut® Planar, across cells from multiple human donors, cell lots, and passage numbers. Assessment criteria included barrier formation and integrity, gene expression, and cytokine responses. Gene expression and culture metric analyses revealed that controlling cell passage number reduces variability and maximizes physiological relevance of the model. In a case study where passage number was optimized, distinct cytokine responses were observed among four human donors, indicating that biological variability can be detected in cell cultures originating from diverse human sources. These findings highlight key considerations for designing assays that can be applied to additional primary-cell derived systems, as well as establish utility of the RepliGut® Planar platform for robust development of human-predictive drug-response assays.


Animal models are frequently used as tools for studying gastrointestinal (GI) disease, but they poorly replicate the complexities of the human gut limiting the clinical translation of new therapeutics in development. Human stem cell derived models can better recapitulate human GI physiology, but the inherent dynamic nature of stem cells introduces variability in culture performance. We identified sources of variability in the primary stem-cell derived RepliGut® Planar model to develop robust and reliable assays that can improve preclinical therapeutic development for GI disease. Analysis of barrier formation, gene expression, and cytokine responses demonstrated that controlling cell passage number reduces variability and maximizes physiological relevance of the model. These findings highlight key assay design considerations that can be applied to additional primary-cell derived systems. Availability of reliable and physiologically relevant cell-based models can reduce animal testing, improve research accuracy, and make new treatments more relevant and effective for patients.

4.
bioRxiv ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37790345

RESUMEN

Animal models have historically been poor preclinical predictors of gastrointestinal (GI) directed therapeutic efficacy and drug-induced GI toxicity. Human stem and primary cell-derived culture systems are a major focus of efforts to create biologically relevant models that enhance preclinical predictive value of intestinal efficacy and toxicity. The inherent variability in stem-cell-based complex cultures makes development of useful models a challenge; the stochastic nature of stem-cell differentiation interferes with the ability to build and validate robust, reproducible assays that query drug responses and pharmacokinetics. In this study, we aimed to characterize and reduce potential sources of variability in a complex stem cell-derived intestinal epithelium model, termed RepliGut® Planar, across cells from multiple human donors, cell lots, and passage numbers. Assessment criteria included barrier formation and integrity, gene expression, and cytokine responses. Gene expression and culture metric analyses revealed that controlling for stem/progenitor-cell passage number reduces variability and maximizes physiological relevance of the model. After optimizing passage number, donor-specific differences in cytokine responses were observed in a case study, suggesting biologic variability is observable in cell cultures derived from multiple human sources. Our findings highlight key considerations for designing assays that can be applied to additional primary-cell derived systems, as well as establish utility of the RepliGut® Planar platform for robust development of human-predictive drug-response assays.

5.
Pathogens ; 10(10)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34684219

RESUMEN

Chlamydia trachomatis (Ct) causes the most prevalent bacterial sexually transmitted disease leading to ectopic pregnancy and infertility. Swine not only have many similarities to humans, but they are also susceptible to Ct. Despite these benefits and the ease of access to primary tissue from this food animal, in vitro research in swine has been underutilized. This study will provide basic understanding of the Ct host-pathogen interactions in porcine oviduct epithelial cells (pOECs)-the counterparts of human Fallopian tube epithelial cells. Using NanoString technology, flow cytometry, and confocal and transmission-electron microscopy, we studied the Ct developmental cycle in pOECs, the cellular immune response, and the expression and location of the tight junction protein claudin-4. We show that Ct productively completes its developmental cycle in pOECs and induces an immune response to Ct similar to human cells: Ct mainly induced the upregulation of interferon regulated genes and T-cell attracting chemokines. Furthermore, Ct infection induced an accumulation of claudin-4 in the Ct inclusion with a coinciding reduction of membrane-bound claudin-4. Downstream effects of the reduced membrane-bound claudin-4 expression could potentially include a reduction in tight-junction expression, impaired epithelial barrier function as well as increased susceptibility to co-infections. Thereby, this study justifies the investigation of the effect of Ct on tight junctions and the mucosal epithelial barrier function. Taken together, this study demonstrates that primary pOECs represent an excellent in vitro model for research into Ct pathogenesis, cell biology and immunity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA