Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Neuroimage ; 205: 116278, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31614221

RESUMEN

Preclinical applications of resting-state functional magnetic resonance imaging (rsfMRI) offer the possibility to non-invasively probe whole-brain network dynamics and to investigate the determinants of altered network signatures observed in human studies. Mouse rsfMRI has been increasingly adopted by numerous laboratories worldwide. Here we describe a multi-centre comparison of 17 mouse rsfMRI datasets via a common image processing and analysis pipeline. Despite prominent cross-laboratory differences in equipment and imaging procedures, we report the reproducible identification of several large-scale resting-state networks (RSN), including a mouse default-mode network, in the majority of datasets. A combination of factors was associated with enhanced reproducibility in functional connectivity parameter estimation, including animal handling procedures and equipment performance. RSN spatial specificity was enhanced in datasets acquired at higher field strength, with cryoprobes, in ventilated animals, and under medetomidine-isoflurane combination sedation. Our work describes a set of representative RSNs in the mouse brain and highlights key experimental parameters that can critically guide the design and analysis of future rodent rsfMRI investigations.


Asunto(s)
Encéfalo/fisiología , Conectoma/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Red Nerviosa/fisiología , Animales , Encéfalo/diagnóstico por imagen , Conectoma/normas , Femenino , Procesamiento de Imagen Asistido por Computador/normas , Imagen por Resonancia Magnética/normas , Masculino , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/diagnóstico por imagen , Reproducibilidad de los Resultados
2.
Proc Natl Acad Sci U S A ; 113(41): 11603-11608, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27671662

RESUMEN

Connectome genetics seeks to uncover how genetic factors shape brain functional connectivity; however, the causal impact of a single gene's activity on whole-brain networks remains unknown. We tested whether the sole targeted deletion of the mu opioid receptor gene (Oprm1) alters the brain connectome in living mice. Hypothesis-free analysis of combined resting-state fMRI diffusion tractography showed pronounced modifications of functional connectivity with only minor changes in structural pathways. Fine-grained resting-state fMRI mapping, graph theory, and intergroup comparison revealed Oprm1-specific hubs and captured a unique Oprm1 gene-to-network signature. Strongest perturbations occurred in connectional patterns of pain/aversion-related nodes, including the mu receptor-enriched habenula node. Our data demonstrate that the main receptor for morphine predominantly shapes the so-called reward/aversion circuitry, with major influence on negative affect centers.


Asunto(s)
Encéfalo/fisiología , Conectoma , Eliminación de Gen , Receptores Opioides mu/genética , Recompensa , Animales , Mapeo Encefálico/métodos , Conectoma/métodos , Imagen de Difusión Tensora , Genotipo , Imagen por Resonancia Magnética , Masculino , Ratones , Modelos Neurológicos , Receptores Opioides mu/metabolismo
3.
Neuroimage ; 146: 1-18, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27845252

RESUMEN

Connectomics of brain disorders seeks to reveal how altered brain function emerges from the architecture of cerebral networks; however the causal impact of targeted cellular damage on the whole brain functional and structural connectivity remains unknown. In the central nervous system, demyelination is typically the consequence of an insult targeted at the oligodendrocytes, the cells forming and maintaining the myelin. This triggered perturbation generates cascades of pathological events that most likely alter the brain connectome. Here we induced oligodendrocyte death and subsequent demyelinating pathology via cuprizone treatment in mice and combining mouse brain resting state functional Magnetic Resonance Imaging and diffusion tractography we established functional and structural pathology-to-network signatures. We demonstrated that demyelinated brain fundamentally reorganizes its intrinsic functional connectivity paralleled by widespread damage of the structural scaffolding. We evidenced default mode-like network as core target of demyelination-induced connectivity modulations and hippocampus as the area with strongest connectional perturbations.


Asunto(s)
Encéfalo/patología , Encéfalo/fisiopatología , Conectoma , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/fisiopatología , Animales , Cuprizona , Enfermedades Desmielinizantes/inducido químicamente , Imagen de Difusión Tensora , Modelos Animales de Enfermedad , Femenino , Imagen por Resonancia Magnética , Ratones Endogámicos C57BL , Vías Nerviosas/patología , Vías Nerviosas/fisiopatología
4.
Neuroimage ; 96: 203-15, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24718287

RESUMEN

Understanding the intrinsic circuit-level functional organization of the brain has benefited tremendously from the advent of resting-state fMRI (rsfMRI). In humans, resting-state functional network has been consistently mapped and its alterations have been shown to correlate with symptomatology of various neurological or psychiatric disorders. To date, deciphering the mouse brain functional connectivity (MBFC) with rsfMRI remains a largely underexplored research area, despite the plethora of human brain disorders that can be modeled in this specie. To pave the way from pre-clinical to clinical investigations we characterized here the intrinsic architecture of mouse brain functional circuitry, based on rsfMRI data acquired at 7T using the Cryoprobe technology. High-dimensional spatial group independent component analysis demonstrated fine-grained segregation of cortical and subcortical networks into functional clusters, overlapping with high specificity onto anatomical structures, down to single gray matter nuclei. These clusters, showing a high level of stability and reliability in their patterning, formed the input elements for computing the MBFC network using partial correlation and graph theory. Its topological architecture conserved the fundamental characteristics described for the human and rat brain, such as small-worldness and partitioning into functional modules. Our results additionally showed inter-modular interactions via "network hubs". Each major functional system (motor, somatosensory, limbic, visual, autonomic) was found to have representative hubs that might play an important input/output role and form a functional core for information integration. Moreover, the rostro-dorsal hippocampus formed the highest number of relevant connections with other brain areas, highlighting its importance as core structure for MBFC.


Asunto(s)
Encéfalo/fisiología , Conectoma/métodos , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Red Nerviosa/fisiología , Descanso/fisiología , Animales , Encéfalo/anatomía & histología , Femenino , Interpretación de Imagen Asistida por Computador/métodos , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/anatomía & histología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
5.
Front Psychiatry ; 9: 643, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30559685

RESUMEN

Mu opioid receptor (MOR) activation facilitates reward processing and reduces pain, and brain networks underlying these effects are under intense investigation. Mice lacking the MOR gene (MOR KO mice) show lower drug and social reward, enhanced pain sensitivity and altered emotional responses. Our previous neuroimaging analysis using Resting-state (Rs) functional Magnetic Resonance Imaging (fMRI) showed significant alterations of functional connectivity (FC) within reward/aversion networks in these mice, in agreement with their behavioral deficits. Here we further used a structural MRI approach to determine whether volumetric alterations also occur in MOR KO mice. We acquired anatomical images using a 7-Tesla MRI scanner and measured deformation-based morphometry (DBM) for each voxel in subjects from MOR KO and control groups. Our analysis shows marked anatomical differences in mutant animals. We observed both local volumetric contraction (striatum, nucleus accumbens, bed nucleus of the stria terminalis, hippocampus, hypothalamus and periacqueducal gray) and expansion (prefrontal cortex, amygdala, habenula, and periacqueducal gray) at voxel level. Volumetric modifications occurred mainly in MOR-enriched regions and across reward/aversion centers, consistent with our prior FC findings. Specifically, several regions with volume differences corresponded to components showing highest FC changes in our previous Rs-fMRI study, suggesting a possible function-structure relationship in MOR KO-related brain differences. In conclusion, both Rs-fMRI and volumetric MRI in live MOR KO mice concur to disclose functional and structural whole-brain level mechanisms that likely drive MOR-controlled behaviors in animals, and may translate to MOR-associated endophenotypes or disease in humans.

6.
Dis Model Mech ; 11(9)2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-30115750

RESUMEN

Growing evidence supports the implication of DYRK1A in the development of cognitive deficits seen in Down syndrome (DS) and Alzheimer's disease (AD). We here demonstrate that pharmacological inhibition of brain DYRK1A is able to correct recognition memory deficits in three DS mouse models with increasing genetic complexity [Tg(Dyrk1a), Ts65Dn, Dp1Yey], all expressing an extra copy of Dyrk1a Overexpressed DYRK1A accumulates in the cytoplasm and at the synapse. Treatment of the three DS models with the pharmacological DYRK1A inhibitor leucettine L41 leads to normalization of DYRK1A activity and corrects the novel object cognitive impairment observed in these models. Brain functional magnetic resonance imaging reveals that this cognitive improvement is paralleled by functional connectivity remodelling of core brain areas involved in learning/memory processes. The impact of Dyrk1a trisomy and L41 treatment on brain phosphoproteins was investigated by a quantitative phosphoproteomics method, revealing the implication of synaptic (synapsin 1) and cytoskeletal components involved in synaptic response and axonal organization. These results encourage the development of DYRK1A inhibitors as drug candidates to treat cognitive deficits associated with DS and AD.


Asunto(s)
Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/tratamiento farmacológico , Dioxoles/farmacología , Dioxoles/uso terapéutico , Síndrome de Down/complicaciones , Imidazoles/farmacología , Imidazoles/uso terapéutico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Biocatálisis , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/fisiopatología , Disfunción Cognitiva/patología , Citoplasma/metabolismo , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Dioxoles/química , Modelos Animales de Enfermedad , Síndrome de Down/patología , Imidazoles/química , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiopatología , Fosforilación , Unión Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsinas/química , Sinapsinas/metabolismo , Quinasas DyrK
7.
Brain Connect ; 7(8): 526-540, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28882062

RESUMEN

Recent studies have demonstrated that orchestrated gene activity and expression support synchronous activity of brain networks. However, there is a paucity of information on the consequences of single gene function on overall brain functional organization and connectivity and how this translates at the behavioral level. In this study, we combined mouse mutagenesis with functional and structural magnetic resonance imaging (MRI) to determine whether targeted inactivation of a single gene would modify whole-brain connectivity in live animals. The targeted gene encodes GPR88 (G protein-coupled receptor 88), an orphan G protein-coupled receptor enriched in the striatum and previously linked to behavioral traits relevant to neuropsychiatric disorders. Connectivity analysis of Gpr88-deficient mice revealed extensive remodeling of intracortical and cortico-subcortical networks. Most prominent modifications were observed at the level of retrosplenial cortex connectivity, central to the default mode network (DMN) whose alteration is considered a hallmark of many psychiatric conditions. Next, somatosensory and motor cortical networks were most affected. These modifications directly relate to sensorimotor gating deficiency reported in mutant animals and also likely underlie their hyperactivity phenotype. Finally, we identified alterations within hippocampal and dorsal striatum functional connectivity, most relevant to a specific learning deficit that we previously reported in Gpr88-/- animals. In addition, amygdala connectivity with cortex and striatum was weakened, perhaps underlying the risk-taking behavior of these animals. This is the first evidence demonstrating that GPR88 activity shapes the mouse brain functional and structural connectome. The concordance between connectivity alterations and behavior deficits observed in Gpr88-deficient mice suggests a role for GPR88 in brain communication.


Asunto(s)
Encéfalo/diagnóstico por imagen , Conectoma , Receptores Acoplados a Proteínas G/deficiencia , Amígdala del Cerebelo/fisiopatología , Animales , Conducta Animal , Encéfalo/fisiopatología , Mapeo Encefálico , Imagen de Difusión Tensora , Hipocampo/fisiopatología , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Noqueados , Corteza Motora/fisiopatología , Receptores Acoplados a Proteínas G/genética , Corteza Somatosensorial/fisiopatología
8.
Biol Psychiatry ; 81(9): 778-788, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28185645

RESUMEN

BACKGROUND: Mu opioid receptors (MORs) are central to pain control, drug reward, and addictive behaviors, but underlying circuit mechanisms have been poorly explored by genetic approaches. Here we investigate the contribution of MORs expressed in gamma-aminobutyric acidergic forebrain neurons to major biological effects of opiates, and also challenge the canonical disinhibition model of opiate reward. METHODS: We used Dlx5/6-mediated recombination to create conditional Oprm1 mice in gamma-aminobutyric acidergic forebrain neurons. We characterized the genetic deletion by histology, electrophysiology, and microdialysis; probed neuronal activation by c-Fos immunohistochemistry and resting-state functional magnetic resonance imaging; and investigated main behavioral responses to opiates, including motivation to obtain heroin and palatable food. RESULTS: Mutant mice showed MOR transcript deletion mainly in the striatum. In the ventral tegmental area, local MOR activity was intact, and reduced activity was only observed at the level of striatonigral afferents. Heroin-induced neuronal activation was modified at both sites, and whole-brain functional networks were altered in live animals. Morphine analgesia was not altered, and neither was physical dependence to chronic morphine. In contrast, locomotor effects of heroin were abolished, and heroin-induced catalepsy was increased. Place preference to heroin was not modified, but remarkably, motivation to obtain heroin and palatable food was enhanced in operant self-administration procedures. CONCLUSIONS: Our study reveals dissociable MOR functions across mesocorticolimbic networks. Thus, beyond a well-established role in reward processing, operating at the level of local ventral tegmental area neurons, MORs also moderate motivation for appetitive stimuli within forebrain circuits that drive motivated behaviors.


Asunto(s)
Conducta Alimentaria/fisiología , Neuronas GABAérgicas/fisiología , Heroína/administración & dosificación , Motivación/fisiología , Narcóticos/administración & dosificación , Prosencéfalo/fisiología , Receptores Opioides mu/fisiología , Animales , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiología , Femenino , Neuronas GABAérgicas/metabolismo , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Morfina/administración & dosificación , Motivación/efectos de los fármacos , Vías Nerviosas/fisiología , Prosencéfalo/efectos de los fármacos , Prosencéfalo/metabolismo , Receptores Opioides mu/genética , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA