Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Arthroplasty ; 34(7): 1458-1461, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30935799

RESUMEN

BACKGROUND: Polymethylmethacrylate (PMMA) bone cement is commonly used in orthopedic surgery for implant fixation and local antibiotic delivery following surgical debridement. The incidence of nephrotoxicity necessitates the balance of antiinfective properties with the potential for toxicity. Thus, understanding antibiotic elution characteristics of different PMMA formulations is essential. We sought to address this by assessing elution of vancomycin, daptomycin, and tobramycin from Palacos LV (Palacos), Stryker Surgical Simplex P (Simplex), BIOMET Cobalt HV (Cobalt), and Zimmer Biomet Bone Cement R (Zimmer) radiopaque bone cements. METHODS: Antibiotics were mixed with each cement formulation, and molds were used to produce beads of cement. Beads were incubated in phosphate-buffered saline at 37°C, and antibiotic elution was measured daily for 10 days with vancomycin and 5 days with daptomycin and tobramycin. Active antibiotic was quantified by serial dilution and comparison to the minimum inhibitory concentration. RESULTS: The elution profiles of Simplex were significantly lower than all other cements with all antibiotics (P < .00093). Palacos exhibited a significantly higher vancomycin elution profile than all other cements (P < .00001). The difference in daptomycin elution profiles for Cobalt and Palacos was not significant (P > .43), but both were significantly higher than Zimmer (P < .0006). CONCLUSION: Overall, Stryker Surgical Simplex P exhibits a significantly lower elution profile than all other cements tested. In general, Palacos LV exhibits an increased elution profile compared with other cements. This elution information may assist the surgeon in choosing different cement formulations for the local delivery of antibiotics.


Asunto(s)
Antibacterianos/farmacocinética , Cementos para Huesos , Polimetil Metacrilato , Antibacterianos/administración & dosificación , Humanos , Pruebas de Sensibilidad Microbiana , Prótesis e Implantes/efectos adversos , Tobramicina/administración & dosificación , Tobramicina/farmacocinética , Vancomicina/administración & dosificación , Vancomicina/farmacocinética
2.
Int J Hyperthermia ; 34(2): 209-219, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29025325

RESUMEN

BACKGROUND: We previously demonstrated that a photoactivatable therapeutic approach employing antibiotic-loaded, antibody-conjugated, polydopamine (PDA)-coated gold nanocages (AuNCs) could be used for the synergistic killing of bacterial cells within a biofilm. The approach was validated with a focus on Staphylococcus aureus using an antibody specific for staphylococcal protein A (Spa) and an antibiotic (daptomycin) active against Gram-positive cocci including methicillin-resistant S. aureus (MRSA). However, an important aspect of this approach is its potential therapeutic versatility. METHODS: In this report, we evaluated this versatility by examining the efficacy of AuNC formulations generated with alternative antibodies and antibiotics targeting S. aureus and alternative combinations targeting the Gram-negative pathogen Pseudomonas aeruginosa. RESULTS: The results confirmed that daptomycin-loaded AuNCs conjugated to antibodies targeting two different S. aureus lipoproteins (SACOL0486 and SACOL0688) also effectively kill MRSA in the context of a biofilm. However, our results also demonstrate that antibiotic choice is critical. Specifically, ceftaroline and vancomycin-loaded AuNCs conjugated to anti-Spa antibodies were found to exhibit reduced efficacy relative to daptomycin-loaded AuNCs conjugated to the same antibody. In contrast, gentamicin-loaded AuNCs conjugated to an antibody targeting a conserved outer membrane protein were highly effective against P. aeruginosa biofilms. CONCLUSIONS: These results confirm the therapeutic versatility of our approach. However, to the extent that its synergistic efficacy is dependent on the ability to achieve both a lethal photothermal effect and the thermally controlled release of a sufficient amount of antibiotic, they also demonstrate the importance of carefully designing appropriate antibody and antibiotic combinations to achieve the desired therapeutic synergy.


Asunto(s)
Antibacterianos/uso terapéutico , Infecciones Bacterianas/terapia , Oro/metabolismo , Nanopartículas/metabolismo , Antibacterianos/farmacología , Infecciones Bacterianas/patología , Biopelículas , Humanos
3.
Infect Immun ; 84(4): 1214-1225, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26857575

RESUMEN

We demonstrate that mutation of xerC, which reportedly encodes a homologue of an Escherichia coli recombinase, limits biofilm formation in the methicillin-resistant Staphylococcus aureus strain LAC and the methicillin-sensitive strain UAMS-1. This was not due to the decreased production of the polysaccharide intracellular adhesin (PIA) in either strain because the amount of PIA was increased in a UAMS-1xerC mutant and undetectable in both LAC and its isogenic xerC mutant. Mutation of xerC also resulted in the increased production of extracellular proteases and nucleases in both LAC and UAMS-1, and limiting the production of either class of enzymes increased biofilm formation in the isogenic xerC mutants. More importantly, the limited capacity to form a biofilm was correlated with increased antibiotic susceptibility in both strains in the context of an established biofilm in vivo. Mutation of xerC also attenuated virulence in a murine bacteremia model, as assessed on the basis of the bacterial loads in internal organs and overall lethality. It also resulted in the decreased accumulation of alpha toxin and the increased accumulation of protein A. These findings suggest that xerC may impact the functional status of agr. This was confirmed by demonstrating the reduced accumulation of RNAIII and AgrA in LAC and UAMS-1xerC mutants. However, this cannot account for the biofilm-deficient phenotype of xerC mutants because mutation of agr did not limit biofilm formation in either strain. These results demonstrate that xerC contributes to biofilm-associated infections and acute bacteremia and that this is likely due to agr-independent and -dependent pathways, respectively.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Péptidos Cíclicos/metabolismo , Recombinasas/metabolismo , Staphylococcus aureus/enzimología , Proteínas Bacterianas/genética , Staphylococcus aureus Resistente a Meticilina/enzimología , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/metabolismo , Mutación , Operón , Péptidos Cíclicos/genética , Recombinasas/genética , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
4.
Infect Immun ; 84(9): 2586-94, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27354444

RESUMEN

We used a murine model of acute, posttraumatic osteomyelitis to evaluate the virulence of two divergent Staphylococcus aureus clinical isolates (the USA300 strain LAC and the USA200 strain UAMS-1) and their isogenic sarA mutants. The results confirmed that both strains caused comparable degrees of osteolysis and reactive new bone formation in the acute phase of osteomyelitis. Conditioned medium (CM) from stationary-phase cultures of both strains was cytotoxic to cells of established cell lines (MC3TC-E1 and RAW 264.7 cells), primary murine calvarial osteoblasts, and bone marrow-derived osteoclasts. Both the cytotoxicity of CM and the reactive changes in bone were significantly reduced in the isogenic sarA mutants. These results confirm that sarA is required for the production and/or accumulation of extracellular virulence factors that limit osteoblast and osteoclast viability and that thereby promote bone destruction and reactive bone formation during the acute phase of S. aureus osteomyelitis. Proteomic analysis confirmed the reduced accumulation of multiple extracellular proteins in the LAC and UAMS-1 sarA mutants. Included among these were the alpha class of phenol-soluble modulins (PSMs), which were previously implicated as important determinants of osteoblast cytotoxicity and bone destruction and repair processes in osteomyelitis. Mutation of the corresponding operon reduced the cytotoxicity of CM from both UAMS-1 and LAC cultures for osteoblasts and osteoclasts. It also significantly reduced both reactive bone formation and cortical bone destruction by CM from LAC cultures. However, this was not true for CM from cultures of a UAMS-1 psmα mutant, thereby suggesting the involvement of additional virulence factors in such strains that remain to be identified.


Asunto(s)
Proteínas Bacterianas/genética , Osteomielitis/microbiología , Osteomielitis/patología , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Factores de Virulencia/genética , Virulencia/genética , Animales , Regulación Bacteriana de la Expresión Génica/genética , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Operón/genética , Osteoblastos/microbiología , Osteoblastos/patología , Osteoclastos/microbiología , Osteoclastos/patología , Proteómica/métodos , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología
5.
Antimicrob Agents Chemother ; 60(10): 5688-94, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27401574

RESUMEN

We used in vitro and in vivo models of catheter-associated biofilm formation to compare the relative activity of antibiotics effective against methicillin-resistant Staphylococcus aureus (MRSA) in the specific context of an established biofilm. The results demonstrated that, under in vitro conditions, daptomycin and ceftaroline exhibited comparable activity relative to each other and greater activity than vancomycin, telavancin, oritavancin, dalbavancin, or tigecycline. This was true when assessed using established biofilms formed by the USA300 methicillin-resistant strain LAC and the USA200 methicillin-sensitive strain UAMS-1. Oxacillin exhibited greater activity against UAMS-1 than LAC, as would be expected, since LAC is an MRSA strain. However, the activity of oxacillin was less than that of daptomycin and ceftaroline even against UAMS-1. Among the lipoglycopeptides, telavancin exhibited the greatest overall activity. Specifically, telavancin exhibited greater activity than oritavancin or dalbavancin when tested against biofilms formed by LAC and was the only lipoglycopeptide capable of reducing the number of viable bacteria below the limit of detection. With biofilms formed by UAMS-1, telavancin and dalbavancin exhibited comparable activity relative to each other and greater activity than oritavancin. Importantly, ceftaroline was the only antibiotic that exhibited greater activity than vancomycin when tested in vivo in a murine model of catheter-associated biofilm formation. These results emphasize the need to consider antibiotics other than vancomycin, most notably, ceftaroline, for the treatment of biofilm-associated S. aureus infections, including by the matrix-based antibiotic delivery methods often employed for local antibiotic delivery in the treatment of these infections.


Asunto(s)
Antibacterianos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Aminoglicósidos/farmacología , Animales , Biopelículas/efectos de los fármacos , Infecciones Relacionadas con Catéteres/tratamiento farmacológico , Infecciones Relacionadas con Catéteres/microbiología , Evaluación Preclínica de Medicamentos/métodos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Glicopéptidos/farmacología , Lipoglucopéptidos , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Ratones , Pruebas de Sensibilidad Microbiana , Teicoplanina/análogos & derivados , Teicoplanina/farmacología
6.
Antimicrob Agents Chemother ; 60(3): 1826-9, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26824954

RESUMEN

We previously determined the extent to which mutations of different Staphylococcus aureus regulatory loci impact biofilm formation as assessed under in vitro conditions. Here we extend these studies to determine the extent to which those regulatory loci that had the greatest effect on biofilm formation also impact antibiotic susceptibility. The experiments were done under in vitro and in vivo conditions using two clinical isolates of S. aureus (LAC and UAMS-1) and two functionally diverse antibiotics (daptomycin and ceftaroline). Mutation of the staphylococcal accessory regulator (sarA) or sigB was found to significantly increase susceptibilities to both antibiotics and in both strains in a manner that could not be explained by changes in the MICs. The impact of a mutation in sarA was comparable to that of a mutation in sigB and greater than the impact observed with any other mutant. These results suggest that therapeutic strategies targeting sarA and/or sigB have the greatest potential to facilitate the ability to overcome the intrinsic antibiotic resistance that defines S. aureus biofilm-associated infections.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/genética , Biopelículas/efectos de los fármacos , Cefalosporinas/farmacología , Daptomicina/farmacología , Factor sigma/genética , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Animales , Biopelículas/crecimiento & desarrollo , Infecciones Relacionadas con Catéteres/tratamiento farmacológico , Infecciones Relacionadas con Catéteres/microbiología , Catéteres/microbiología , Farmacorresistencia Bacteriana/genética , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/aislamiento & purificación , Staphylococcus aureus/patogenicidad , Ceftarolina
9.
Clin Shoulder Elb ; 27(2): 169-175, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38556913

RESUMEN

BACKGROUND: Incidental findings are commonly noted in advanced imaging studies. Few data exist regarding the rate of incidental findings on computed tomography (CT) for preoperative shoulder arthroplasty planning. This study aims to identify the incidence of these findings and the rate at which they warrant further work-up to help guide orthopedic surgeons in counseling patients. METHODS: A retrospective review was performed to identify patients with available preoperative shoulder CT who subsequently underwent shoulder arthroplasty procedures at a single institution between 2015 and 2021. Data including age, sex, and smoking status were obtained. Radiology reports for CTs were reviewed for incidental findings and categorized based on location, tissue type, and/or body system. The rate of incidental findings and the rate at which further follow-up was recommended by the radiologist were determined. RESULTS: A total of 617 patients was identified. There were 173 incidental findings noted in 146 of these patients (23.7%). Findings ranged from pulmonary (59%), skin/soft tissue (16%), thyroid (13%), vascular (9%), spinal (2%), and abdominal (1%) areas. Of the pulmonary findings, 50% were pulmonary nodules and 47% were granulomatous disease. Overall, the final radiology report recommended further follow-up for 50% of the patients with incidental findings. CONCLUSIONS: Incidental findings are relatively common in preoperative CTs obtained for shoulder arthroplasty, occurring in nearly one-quarter of patients. Most of these findings are pulmonary in nature. Overall, half of the patients with incidental findings were recommended for further follow-up. These results establish population data to guide orthopedic surgeons in patient counseling. Level of evidence: III.

10.
Sci Rep ; 11(1): 10254, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33986462

RESUMEN

We previously reported the development of an osteogenic bone filler scaffold consisting of degradable polyurethane, hydroxyapatite, and decellularized bovine bone particles. The current study was aimed at evaluating the use of this scaffold as a means of local antibiotic delivery to prevent infection in a bone defect contaminated with Staphylococcus aureus. We evaluated two scaffold formulations with the same component ratios but differing overall porosity and surface area. Studies with vancomycin, daptomycin, and gentamicin confirmed that antibiotic uptake was concentration dependent and that increased porosity correlated with increased uptake and prolonged antibiotic release. We also demonstrate that vancomycin can be passively loaded into either formulation in sufficient concentration to prevent infection in a rabbit model of a contaminated segmental bone defect. Moreover, even in those few cases in which complete eradication was not achieved, the number of viable bacteria in the bone was significantly reduced by treatment and there was no radiographic evidence of osteomyelitis. Radiographs and microcomputed tomography (µCT) analysis from the in vivo studies also suggested that the addition of vancomycin did not have any significant effect on the scaffold itself. These results demonstrate the potential utility of our bone regeneration scaffold for local antibiotic delivery to prevent infection in contaminated bone defects.


Asunto(s)
Antibacterianos/administración & dosificación , Regeneración Ósea/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Animales , Antibacterianos/uso terapéutico , Huesos/metabolismo , Modelos Animales de Enfermedad , Durapatita/farmacología , Gentamicinas/farmacología , Osteogénesis/efectos de los fármacos , Osteomielitis/tratamiento farmacológico , Osteomielitis/microbiología , Conejos , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/prevención & control , Staphylococcus aureus/patogenicidad , Andamios del Tejido/química , Vancomicina/farmacología , Microtomografía por Rayos X/métodos
11.
J Med Chem ; 60(23): 9630-9640, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-29136469

RESUMEN

We report the structure-activity relationship analyses of 17 linear lipopeptide paenipeptin analogues. Analogues 7, 12, and 17 were more potent than the lead compound. Analogue 17 was active against carbapenem-resistant and polymyxin-resistant pathogens. This compound at 40 µg/mL resulted in 3 log and 2.6 log reductions of methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa, respectively, in catheter-associated biofilms in vitro. Analogue 17 showed little hemolysis at 32 µg/mL and lysed 11% of red blood cells at 64 µg/mL. Analogues 9 and 16 were nonhemolytic and retained potent P. aeruginosa-specific antimicrobial activity. These two analogues when used alone lacked activity against Acinetobacter baumannii and Klebsiella pneumoniae; however, analogue 9 and 16 at 4 µg/mL decreased the MIC of rifampicin and clarithromycin against the same pathogens from 16 to 32 µg/mL to nanomolar levels (sensitization factor: 2048-8192). Therefore, paenipeptins, alone or in combination with rifampicin or clarithromycin, are promising candidates for treating bacterial infections.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Claritromicina/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Lipopéptidos/química , Lipopéptidos/farmacología , Rifampin/farmacología , Sinergismo Farmacológico , Bacterias Gramnegativas/fisiología , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Hemólisis/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Paenibacillus/química , Relación Estructura-Actividad
12.
Virulence ; 8(8): 1776-1790, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-28910576

RESUMEN

Staphylococcus aureus causes acute and chronic forms of infection, the latter often associated with formation of a biofilm. It has previously been demonstrated that mutation of atl, codY, rot, sarA, and sigB limits biofilm formation in the USA300 strain LAC while mutation of agr, fur, and mgrA has the opposite effect. Here we used a murine sepsis model to assess the impact of these same loci in acute infection. Mutation of agr, atl, and fur had no impact on virulence, while mutation of mgrA and rot increased virulence. In contrast, mutation of codY, sarA, and sigB significantly attenuated virulence. Mutation of sigB resulted in reduced accumulation of AgrA and SarA, while mutation of sarA resulted in reduced accumulation of AgrA, but this cannot account for the reduced virulence of sarA or sigB mutants because the isogenic agr mutant was not attenuated. Indeed, as assessed by accumulation of alpha toxin and protein A, all of the mutants we examined exhibited unique phenotypes by comparison to an agr mutant and to each other. Attenuation of the sarA, sigB and codY mutants was correlated with increased production of extracellular proteases and global changes in extracellular protein profiles. These results suggest that the inability to repress the production of extracellular proteases plays a key role in attenuating the virulence of S. aureus in acute as well as chronic, biofilm-associated infections, thus opening up the possibility that strategies aimed at the de-repression of protease production could be used to broad therapeutic advantage. They also suggest that the impact of codY, sarA, and sigB on protease production occurs via an agr-independent mechanism.


Asunto(s)
Bacteriemia/microbiología , Biopelículas , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Modelos Animales de Enfermedad , Femenino , Regulación Bacteriana de la Expresión Génica , Humanos , Ratones , Mutación , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/fisiología , Virulencia
13.
World J Orthop ; 7(8): 467-74, 2016 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-27622146

RESUMEN

AIM: To test antibiotic-loaded coating for efficacy in reducing bacterial biofilm and development of osteomyelitis in an orthopaedic model of implant infection. METHODS: Phosphatidylcholine coatings loaded with 25% vancomycin were applied to washed and sterilized titanium wires 20 mm in length. A 10 mm segment was removed from rabbit radius (total = 9; 5 coated, 4 uncoated), and the segment was injected with 1 × 10(6) colony forming units (CFUs) of Staphylococcus aureus (UAMS-1 strain). Titanium wires were inserted through the intramedullary canal of the removed segment and into the proximal radial segment and the segment was placed back into the defect. After 7 d, limbs were removed, X-rayed, swabbed for tissue contamination. Wires were removed and processed to determine attached CFUs. Tissue was swabbed and streaked on agar plates to determine bacteriological score. RESULTS: Antibiotic-loaded coatings resulted in significantly reduced biofilm formation (4.7 fold reduction in CFUs; P < 0.001) on titanium wires and reduced bacteriological score in surrounding tissue (4.0 ± 0 for uncoated, 1.25 ± 0.5 for coated; P = 0.01). Swelling and pus formation was evident in uncoated controls at the 7 d time point both visually and radiographically, but not in antibiotic-loaded coatings. CONCLUSION: Active antibiotic was released from coated implants and significantly reduced signs of osteomyelitic symptoms. Implant coatings were well tolerated in bone. Further studies with additional control groups and longer time periods are warranted. Antibiotic-loaded phosphatidylcholine coatings applied at the point of care could prevent implant-associated infection in orthopaedic defects.

14.
ACS Infect Dis ; 2(4): 241-250, 2016 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-27441208

RESUMEN

Resistance to conventional antibiotics is a growing public health concern that is quickly outpacing the development of new antibiotics. This has led the Infectious Diseases Society of America (IDSA) to designate Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species as "ESKAPE pathogens" on the basis of the rapidly decreasing availability of useful antibiotics. This emphasizes the urgent need for alternative therapeutic strategies to combat infections caused by these and other bacterial pathogens. In this study, we used Staphylococcus aureus (S. aureus) as a proof-of-principle ESKAPE pathogen to demonstrate that an appropriate antibiotic (daptomycin) can be incorporated into polydopamine-coated gold nanocages (AuNC@PDA) and that daptomycin-loaded AuNC@PDA can be conjugated to antibodies targeting a species-specific surface protein (staphylococcal protein A; Spa) as a means of achieving selective delivery of the nanoconstructs directly to the bacterial cell surface. Targeting specificity was confirmed by demonstrating a lack of binding to mammalian cells, reduced photothermal and antibiotic killing of the Spa-negative species Staphylococcus epidermidis, and reduced killing of S. aureus in the presence of unconjugated anti-Spa antibodies. We demonstrate that laser irradiation at levels within the current safety standard for use in humans can be used to achieve both a lethal photothermal effect and controlled release of the antibiotic, thus resulting in a degree of therapeutic synergy capable of eradicating viable S. aureus cells. The system was validated using planktonic bacterial cultures of both methicillin-sensitive and methicillin-resistant S. aureus strains and subsequently shown to be effective in the context of an established biofilm, thus indicating that this approach could be used to facilitate the effective treatment of intrinsically resistant biofilm infections.

15.
Microbiologyopen ; 4(3): 436-51, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25810138

RESUMEN

The relative impact of 23 mutations on biofilm formation was evaluated in the USA300, methicillin-resistant strain LAC. Mutation of sarA, atl, codY, rsbU, and sigB limited biofilm formation in comparison to the parent strain, but the limitation imposed by mutation of sarA was greater than that imposed by mutation of any of these other genes. The reduced biofilm formation of all mutants other than the atl mutant was correlated with increased levels of extracellular proteases. Mutation of fur- and mgrA-enhanced biofilm formation but in LAC had no impact on protease activity, nuclease activity, or accumulation of the polysaccharide intercellular adhesin (PIA). The increased capacity of these mutants to form a biofilm was reversed by mutation of sarA, and this was correlated with increased protease production. Mutation of sarA, mgrA, and sigB had the same phenotypic effect in the methicillin-sensitive strain UAMS-1, but mutation of codY increased rather than decreased biofilm formation. As with the UAMS-1 mgrA mutant, this was correlated with increased production of PIA. Examination of four additional clinical isolates suggests that the differential impact of codY on biofilm formation may be a conserved characteristic of methicillin-resistant versus methicillin-sensitive strains.


Asunto(s)
Biopelículas , Regulación Bacteriana de la Expresión Génica , Sitios Genéticos , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/genética , Desoxirribonucleasas/metabolismo , Espacio Extracelular/metabolismo , Mutación , Péptido Hidrolasas/biosíntesis , Fenotipo , Secuencias Reguladoras de Ácidos Nucleicos , Staphylococcus aureus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA