Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Genes (Basel) ; 13(12)2022 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-36553493

RESUMEN

The world population is genetically predisposed to metabolic syndrome (MetS) and its components, also known as cardiometabolic risk phenotypes, which can cause severe health complications including coronary heart disease (CHD). Genetic variants in the 9p21 locus have been associated with CHD in a number of populations including Pakistan. However, the role of the 9p21 locus in MetS and cardiometabolic risk phenotypes (such as obesity, hypertension, hyperglycemia, and dyslipidemia) in populations with CHD or no established CHD has not been explored. Therefore, the present study was designed to explore the association of the minor/risk allele (C) of 9p21 locus SNP rs1333049 with MetS or its risk phenotypes regardless of an established CHD, in Pakistani subjects. Genotyping of rs1333049 (G/C) was performed on subjects under a case-control study design; healthy controls and cases, MetS with CHD (MetS-CHD+) and MetS with no CHD (MetS-CHD-), respectively. Genotype and allele frequencies were calculated in all study groups. Anthropometric and clinical variables (Means ± SD) were compared among study groups (i.e., controls, MetS + CHD and MetS-CHD) and minor/risk C allele carriers (GC + CC) vs. non-carriers (Normal GG genotype). Associations of the risk allele of rs1333049 SNP with disease and individual metabolic risk components were explored using adjusted multivariate logistic regression models (OR at 95% CI) with a threshold p-value of ≤0.05. Our results have shown that the minor allele frequency (MAF) was significantly high in the MAF cases (combined = 0.63, MetS-CHD+ = 0.57 and MetS-CHD- = 0.57) compared with controls (MAF = 0.39). The rs1333049 SNP significantly increased the risk of MetS, irrespective of CHD (MetS-CHD+ OR = 2.36, p < 0.05 and MetS-CHD- OR = 4.04, p < 0.05), and cardiometabolic risk phenotypes; general obesity, central obesity, hypertension, and dyslipidemia (OR = 1.56-3.25, p < 0.05) except hyperglycemia, which lacked any significant association (OR = 0.19, p = 0.29) in the present study group. The 9p21 genetic locus/rs1333049 SNP is strongly associated with, and can be a genetic predictor of, MetS and cardiometabolic risks, irrespective of cardiovascular diseases in the Pakistani population.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad Coronaria , Hipertensión , Síndrome Metabólico , Humanos , Síndrome Metabólico/genética , Estudios de Casos y Controles , Polimorfismo de Nucleótido Simple , Enfermedad Coronaria/genética , Enfermedad Coronaria/epidemiología , Fenotipo , Obesidad
2.
PLoS One ; 17(9): e0274904, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36126070

RESUMEN

Obesity is highly polygenic disease where several genetic variants have been reportedly associated with obesity in different ethnicities of the world. In the current study, we identified the obesity risk or protective association and BMI raising effect of the minor allele of adiponectin, C1Q and collagen domain containing (ADIPOQ), cholesteryl ester transfer protein (CEPT), FTO alpha-ketoglutarate dependent dioxygenase (FTO), leptin (LEP), and leptin receptor (LEPR) genes in a large cohort stratified into four BMI-based body weight categories i.e., normal weight, lean, over-weight, and obese. Based on selected candidate genetic markers, the genotyping of all study subjects was performed by PCR assays, and genotypes and allele frequencies were calculated. The minor allele frequencies (MAFs) of all genetic markers were computed for total and BMI-based body weight categories and compared with MAFs of global and South Asian (SAS) populations. Genetic associations of variants with obesity risk were calculated and BMI raising effect per copy of the minor allele were estimated. The genetic variants with higher MAFs in obese BMI group were; rs2241766 (G = 0.43), rs17817449 (G = 0.54), rs9939609 (A = 0.51), rs1421085 (C = 0.53), rs1558902 (A = 0.63), and rs1137101 (G = 0.64) respectively. All these variants were significantly associated with obesity (OR = 1.03-4.42) and showed a high BMI raising effect (ß = 0.239-0.31 Kg/m2) per copy of the risk allele. In contrast, the MAFs of three variants were higher in lean-normal BMI groups; rs3764261 A = 0.38, rs9941349 T = 0.43, and rs7799039 G = 0.40-0.43). These variants showed obesity protective associations (OR = 0.68-0.76), and a BMI lowering effect per copy of the protective allele (ß = -0.103-0.155 Kg/m2). The rs3764261 variant also showed significant and positive association with lean body mass (OR = 2.38, CI = 1.30-4.34). Overall, we report six genetic variants of ADIPOQ, FTO and LEPR genes as obesity-risk markers and a CETP gene variant as lean mass/obesity protective marker in studied Pakistani cohort.


Asunto(s)
Dioxigenasas , Leptina , Adiponectina/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Índice de Masa Corporal , Peso Corporal/genética , Proteínas de Transferencia de Ésteres de Colesterol/genética , Complemento C1q/genética , Dioxigenasas/genética , Marcadores Genéticos , Humanos , Ácidos Cetoglutáricos , Leptina/genética , Obesidad/genética , Polimorfismo de Nucleótido Simple , Receptores de Leptina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA