Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ther ; 31(4): 1017-1032, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36698311

RESUMEN

Sepsis, a critical condition resulting from the systemic inflammatory response to a severe microbial infection, represents a global public health challenge. However, effective treatment or intervention to prevent and combat sepsis is still lacking. Here, we report that hyodeoxycholic acid (HDCA) has excellent anti-inflammatory properties in sepsis. We discovered that the plasma concentration of HDCA was remarkably lower in patients with sepsis and negatively correlated with the severity of the disease. Similar changes in HDCA levels in plasma and cecal content samples were observed in a mouse model of sepsis, and these changes were associated with a reduced abundance of HDCA-producing strains. Interestingly, HDCA administration significantly decreased systemic inflammatory responses, prevented organ injury, and prolonged the survival of septic mice. We demonstrated that HDCA suppressed excessive activation of inflammatory macrophages by competitively blocking lipopolysaccharide binding to the Toll-like receptor 4 (TLR4) and myeloid differentiation factor 2 receptor complex, a unique mechanism that characterizes HDCA as an endogenous inhibitor of inflammatory signaling. Additionally, we verified these findings in TLR4 knockout mice. Our study highlights the potential value of HDCA as a therapeutic molecule for sepsis.


Asunto(s)
Microbioma Gastrointestinal , Sepsis , Animales , Ratones , Inflamación , Lipopolisacáridos , Ratones Endogámicos C57BL , Sepsis/tratamiento farmacológico , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
2.
Cell Host Microbe ; 32(1): 48-62.e9, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38056458

RESUMEN

Acetaminophen overuse is a common cause of acute liver failure (ALF). During ALF, toxins are metabolized by enzymes such as CYP2E1 and transformed into reactive species, leading to oxidative damage and liver failure. Here, we found that oral magnesium (Mg) alleviated acetaminophen-induced ALF through metabolic changes in gut microbiota that inhibit CYP2E1. The gut microbiota from Mg-supplemented humans prevented acetaminophen-induced ALF in mice. Mg exposure modulated Bifidobacterium metabolism and enriched indole-3-carboxylic acid (I3C) levels. Formate C-acetyltransferase (pflB) was identified as a key Bifidobacterium enzyme involved in I3C generation. Accordingly, a Bifidobacterium pflB knockout showed diminished I3C generation and reduced the beneficial effects of Mg. Conversely, treatment with I3C or an engineered bacteria overexpressing Bifidobacterium pflB protected against ALF. Mechanistically, I3C bound and inactivated CYP2E1, thus suppressing formation of harmful reactive intermediates and diminishing hepatocyte oxidative damage. These findings highlight how interactions between Mg and gut microbiota may help combat ALF.


Asunto(s)
Acetaminofén , Fallo Hepático Agudo , Humanos , Ratones , Animales , Acetaminofén/efectos adversos , Acetaminofén/metabolismo , Magnesio/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/farmacología , Hígado/metabolismo , Fallo Hepático Agudo/inducido químicamente , Fallo Hepático Agudo/metabolismo
3.
Cell Mol Immunol ; 20(10): 1156-1170, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37553429

RESUMEN

The gut microbiome is recognized as a key modulator of sepsis development. However, the contribution of the gut mycobiome to sepsis development is still not fully understood. Here, we demonstrated that the level of Candida albicans was markedly decreased in patients with bacterial sepsis, and the supernatant of Candida albicans culture significantly decreased the bacterial load and improved sepsis symptoms in both cecum ligation and puncture (CLP)-challenged mice and Escherichia coli-challenged pigs. Integrative metabolomics and the genetic engineering of fungi revealed that Candida albicans-derived phenylpyruvate (PPA) enhanced the bactericidal activity of macrophages and reduced organ damage during sepsis. Mechanistically, PPA directly binds to sirtuin 2 (SIRT2) and increases reactive oxygen species (ROS) production for eventual bacterial clearance. Importantly, PPA enhanced the bacterial clearance capacity of macrophages in sepsis patients and was inversely correlated with the severity of sepsis in patients. Our findings highlight the crucial contribution of commensal fungi to bacterial disease modulation and expand our understanding of the host-mycobiome interaction during sepsis development.


Asunto(s)
Candida albicans , Sepsis , Humanos , Animales , Ratones , Porcinos , Macrófagos , Ciego , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA