Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(51): e2211193119, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36520670

RESUMEN

An interplay of geometrical frustration and strong quantum fluctuations in a spin-1/2 triangular-lattice antiferromagnet (TAF) can lead to exotic quantum states. Here, we report the neutron-scattering, magnetization, specific heat, and magnetocaloric studies of the recently discovered spin-1/2 TAF Na2BaCo(PO4)2, which can be described by a spin-1/2 easy axis XXZ model. The zero-field neutron diffraction experiment reveals an incommensurate antiferromagnetic ground state with a significantly reduced ordered moment of about 0.54(2) µB/Co. Different magnetic phase diagrams with magnetic fields in the ab plane and along the easy c-axis were extracted based on the magnetic susceptibility, specific heat, and elastic neutron-scattering results. In addition, two-dimensional (2D) spin dispersion in the triangular plane was observed in the high-field polarized state, and microscopic exchange parameters of the spin Hamiltonian have been determined through the linear spin wave theory. Consistently, quantum critical behaviors with the universality class of d = 2 and νz = 1 were established in the vicinity of the saturation field, where a Bose-Einstein condensation (BEC) of diluted magnons occurs. The newly discovered quantum criticality and fractional magnetization phase in this ideal spin-1/2 TAF present exciting opportunities for exploring exotic quantum phenomena.

2.
Drug Resist Updat ; 67: 100917, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36608472

RESUMEN

Bacterial biofilm-associated infection is a life-threatening emergency contributing from drug resistance and immune escape. Herein, a novel non-antibiotic strategy based on the synergy of bionanocatalysts-driven heat-amplified chemodynamic therapy (CDT) and innate immunomodulation is proposed for specific biofilm elimination by the smart design of a biofilm microenvironment (BME)-responsive double-layered metal-organic framework (MOF) bionanocatalysts (MACG) composed of MIL-100 and CuBTC. Once reaching the acidic BME, the acidity-triggered degradation of CuBTC allows the sequential release of glucose oxidase (GOx) and an activable photothermal agent, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). GOx converts glucose into H2O2 and gluconic acid, which can further acidify the BME to accelerate the CuBTC degradation and GOx/ABTS release. The in vitro and in vivo results show that horseradish peroxidase (HRP)-mimicking MIL-100 in the presence of self-supplied H2O2 can catalyze the oxidation of ABTS into oxABTS to yield a photothermal effect that breaks the biofilm structure via eDNA damage. Simultaneously, the Cu ion released from the degraded CuBTC can deplete glutathione and catalyze the splitting of H2O2 into •OH, which can effectively penetrate the heat-induced loose biofilms and kill sessile bacteria (up to 98.64%), such as E. coli and MRSA. Particularly, MACG-stimulated M1-macrophage polarization suppresses the biofilm regeneration by secreting pro-inflammatory cytokines (e.g., IL-6, TNF-α, etc.) and forming a continuous pro-inflammatory microenvironment in peri-implant biofilm infection animals for at least 14 days. Such BME-responsive strategy has the promise to precisely eliminate refractory peri-implant biofilm infections with extremely few adverse effects.


Asunto(s)
Calor , Neoplasias , Animales , Escherichia coli , Peróxido de Hidrógeno/farmacología , Biopelículas , Línea Celular Tumoral , Microambiente Tumoral
3.
Small ; 19(22): e2300592, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36850031

RESUMEN

The recurrence of biofilm-associated infections (BAIs) remains high after implant-associated surgery. Biofilms on the implant surface reportedly shelter bacteria from antibiotics and evade innate immune defenses. Moreover, little is currently known about eliminating residual bacteria that can induce biofilm reinfection. Herein, novel "interference-regulation strategy" based on bovine serum albumin-iridium oxide nanoparticles (BIONPs) as biofilm homeostasis interrupter and immunomodulator via singlet oxygen (1 O2 )-sensitized mild hyperthermia for combating BAIs is reported. The catalase-like BIONPs convert abundant H2 O2 inside the biofilm-microenvironment (BME) to sufficient oxygen gas (O2 ), which can efficiently enhance the generation of 1 O2 under near-infrared irradiation. The 1 O2 -induced biofilm homeostasis disturbance (e.g., sigB, groEL, agr-A, icaD, eDNA) can disrupt the sophisticated defense system of biofilm, further enhancing the sensitivity of biofilms to mild hyperthermia. Moreover, the mild hyperthermia-induced bacterial membrane disintegration results in protein leakage and 1 O2 penetration to kill bacteria inside the biofilm. Subsequently, BIONPs-induced immunosuppressive microenvironment re-rousing successfully re-polarizes macrophages to pro-inflammatory M1 phenotype in vivo to devour residual biofilm and prevent biofilm reconstruction. Collectively, this 1 O2 -sensitized mild hyperthermia can yield great refractory BAIs treatment via biofilm homeostasis interference, mild-hyperthermia, and immunotherapy, providing a novel and effective anti-biofilm strategy.


Asunto(s)
Biopelículas , Hipertermia Inducida , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Fototerapia , Prótesis e Implantes , Hipertermia Inducida/métodos
4.
Phys Rev Lett ; 131(23): 236002, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38134785

RESUMEN

Recently, the bilayer perovskite nickelate La_{3}Ni_{2}O_{7} has been reported to show evidence of high-temperature superconductivity (SC) under a moderate pressure of about 14 GPa. To investigate the superconducting mechanism, pairing symmetry, and the role of apical-oxygen deficiencies in this material, we perform a random-phase approximation based study on a bilayer model consisting of the d_{x^{2}-y^{2}} and d_{3z^{2}-r^{2}} orbitals of Ni atoms in both the pristine crystal and the crystal with apical-oxygen deficiencies. Our analysis reveals an s^{±}-wave pairing symmetry driven by spin fluctuations. The crucial role of pressure lies in that it induces the emergence of the γ pocket, which is involved in the strongest Fermi-surface nesting. We further found the emergence of local moments in the vicinity of apical-oxygen deficiencies, which significantly suppresses the T_{c}. Therefore, it is possible to significantly enhance the T_{c} by eliminating oxygen deficiencies during the synthesis of the samples.

5.
Nano Lett ; 22(24): 9891-9899, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36519735

RESUMEN

Layered ferromagnets with strong magnetic anisotropy energy (MAE) have special applications in nanoscale memory elements in electronic circuits. Here, we report a strain tunability of perpendicular magnetic anisotropy in van der Waals (vdW) ferromagnets VI3 using magnetic circular dichroism measurements. For an unstrained flake, the M-H curve shows a rectangular-shaped hysteresis loop with a large coercivity (1.775 T at 10 K) and remanent magnetization. Furthermore, the coercivity can be enhanced to a maximum of 2.6 T under a 3.8% external in-plane tensile strain. Our DFT calculations show that the increased MAE under strain contributes to the enhancement of coercivity. Meanwhile, the strain tunability on the coercivity of CrI3, with a similar crystal structure, is limited. The main reason is the strong spin-orbit coupling in V3+ in VI6 octahedra in comparison with that in Cr3+. The strain tunability of coercivity in VI3 flakes highlights its potential for integration into vdW heterostructures.

6.
Small ; 18(46): e2204377, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36216771

RESUMEN

The pH-responsive theragnostics exhibit great potential for precision diagnosis and treatment of diseases. Herein, acidity-activatable nanoparticles of GB@P based on glucose oxidase (GO) and polyaniline are developed for treatment of biofilm infection. Catalyzed by GO, GB@P triggers the conversion of glucose into gluconic acid and hydrogen peroxide (H2 O2 ), enabling an acidic microenvironment-activated simultaneously enhanced photothermal (PT) effect/amplified photoacoustic imaging (PAI). The synergistic effects of the enhanced PT efficacy of GB@P and H2 O2 accelerate biofilm eradication because the penetration of H2 O2 into biofilm improves the bacterial sensitivity to heat, and the enhanced PT effect destroys the expressions of extracellular DNA and genomic DNA, resulting in biofilm destruction and bacterial death. Importantly, GB@P facilitates the polarization of proinflammatory M1 macrophages that initiates macrophage-related immunity, which enhances the phagocytosis of macrophages and secretion of proinflammatory cytokines, leading to a sustained bactericidal effect and biofilm eradication by the innate immunomodulatory effect. Accordingly, the nanoplatform of GB@P exhibits the synergistic effects on the biofilm eradication and bacterial residuals clearance through a combination of the enhanced PT effect with immunomodulation. This study provides a promising nanoplatform with enhanced PT efficacy and amplified PAI for diagnosis and treatment of biofilm infection.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Técnicas Fotoacústicas , Glucosa Oxidasa , Hipertermia Inducida/métodos , Biopelículas , Macrófagos , Inmunomodulación
7.
J Nanobiotechnology ; 20(1): 232, 2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35568914

RESUMEN

BACKGROUND: The complicated hyperglycaemic and chronic inflammation of diabetic wounds in orthopaedic surgery leads to dysregulated immune cell function and potential infection risk. Immune interventions in diabetic wounds face a possible contradiction between simultaneous establishment of the pro-inflammatory microenvironment in response to potential bacterial invasion and the anti-inflammatory microenvironment required for tissue repair. To study this contradiction and accelerate diabetic-wound healing, we developed a photocurable methacryloxylated silk fibroin hydrogel (Sil-MA) system, co-encapsulated with metformin-loaded mesoporous silica microspheres (MET@MSNs) and silver nanoparticles (Ag NPs). RESULTS: The hydrogel system (M@M-Ag-Sil-MA) enhanced diabetic-wound healing via spatiotemporal immunomodulation. Sil-MA imparts a hydrogel system with rapid in situ Ultra-Violet-photocurable capability and allows preliminary controlled release of Ag NPs, which can inhibit bacterial aggregation and create a stable, sterile microenvironment. The results confirmed the involvement of Met in the immunomodulatory effects following spatiotemporal dual-controlled release via the mesoporous silica and Sil-MA. Hysteresis-released from Met shifts the M1 phenotype of macrophages in regions of diabetic trauma to an anti-inflammatory M2 phenotype. Simultaneously, the M@M-Ag-Sil-MA system inhibited the formation of neutrophil extracellular traps (NETs) and decreased the release of neutrophil elastase, myeloperoxidase, and NETs-induced pro-inflammatory factors. As a result of modulating the immune microenvironmental, the M@M-Ag-Sil-MA system promoted fibroblast migration and endothelial cell angiogenesis in vivo, with verification of enhanced diabetic-wound healing accompanied with the spatiotemporal immunoregulation of macrophages and NETs in a diabetic mouse model. CONCLUSIONS: Our findings demonstrated that the M@M-Ag-Sil-MA hydrogel system resolved the immune contradiction in diabetic wounds through spatiotemporal immunomodulation of macrophages and NETs, suggesting its potential as a promising engineered nano-dressing for the treatment of diabetic wounds in orthopaedic surgery.


Asunto(s)
Diabetes Mellitus , Nanopartículas del Metal , Procedimientos Ortopédicos , Animales , Preparaciones de Acción Retardada/farmacología , Hidrogeles , Inmunomodulación , Ratones , Dióxido de Silicio/farmacología , Seda , Plata/farmacología , Cicatrización de Heridas
8.
Nano Lett ; 21(19): 7946-7952, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34533027

RESUMEN

Despite recent advances in layered ferromagnets, ferromagnetic interactions in these materials are rather weak. Here, we report pressure-enhanced ferromagnetism in layered CrSiTe3 flakes revealed by high-pressure magnetic circular dichroism measurements. Below ∼3 GPa, CrSiTe3 undergoes a paramagnetic-to-ferromagnetic phase transition at ∼32 K, and the field-induced spin-flip in the ferromagnetic phase produces nearly zero hysteresis loops, demonstrating soft ferromagnetism. Above ∼4 GPa, a soft-to-hard ferromagnetic transition occurs, signaled by rectangular-shaped hysteresis loops with finite coercivity and remanent magnetization. Interestingly, as pressure increases, the Curie temperature and coercivity dramatically increase up to ∼138 K and 0.17 T at 7.8 GPa, respectively, in contrast to ∼36 K and 0.02 T at 4.6 GPa. It indicates a remarkable influence of pressure on exchange interactions, which is consistent with DFT calculations. The effective interaction between magnetic couplings and external pressure offers new opportunities in pursuit of high-temperature layered ferromagnets.

9.
Nano Lett ; 21(3): 1327-1334, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33513015

RESUMEN

In this work, we demonstrate that the nonsuperconducting single-layer FeTe can become superconducting when its structure is properly tuned by epitaxially growing it on Bi2Te3 thin films. The properties of the single-layer FeTe deviate strongly from its bulk counterpart, as evidenced by the emergence of a large superconductivity gap (3.3 meV) and an apparent 8 × 2 superlattice (SL). Our first-principles calculations indicate that the 8 × 2 SL and the emergence of the novel superconducting phase are essentially the result of the structural change in FeTe due to the presence of the underlying Bi2Te3 layer. The structural change in FeTe likely suppresses the antiferromagnetic order in the FeTe and leads to superconductivity. Our work clearly demonstrates that moiré pattern engineering in a heterostructure is a reachable dimension for investigating novel materials and material properties.

10.
Phys Rev Lett ; 127(12): 126402, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34597091

RESUMEN

The spin polarization in nonmagnetic materials is conventionally attributed to the outcome of spin-orbit coupling when the global inversion symmetry is broken. The recently discovered hidden spin polarization indicates that a specific atomic site asymmetry could also induce measurable spin polarization, leading to a paradigm shift in research on centrosymmetric crystals for potential spintronic applications. Here, combining spin- and angle-resolved photoemission spectroscopy and theoretical calculations, we report distinct spin-momentum-layer locking phenomena in a centrosymmetric, layered material, BiOI. The measured spin is highly polarized along the Brillouin zone boundary, while the same effect almost vanishes around the zone center due to its nonsymmorphic crystal structure. Our work demonstrates the existence of momentum-dependent hidden spin polarization and uncovers the microscopic mechanism of spin, momentum, and layer locking to each other, thus shedding light on the design metrics for future spintronic materials.

11.
Phys Rev Lett ; 127(26): 267202, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35029499

RESUMEN

One favorable situation for spins to enter the long-sought quantum spin liquid (QSL) state is when they sit on a kagome lattice. No consensus has been reached in theory regarding the true ground state of this promising platform. The experimental efforts, relying mostly on one archetypal material ZnCu_{3}(OH)_{6}Cl_{2}, have also led to diverse possibilities. Apart from subtle interactions in the Hamiltonian, there is the additional degree of complexity associated with disorder in the real material ZnCu_{3}(OH)_{6}Cl_{2} that haunts most experimental probes. Here we resort to heat transport measurement, a cleaner probe in which instead of contributing directly, the disorder only impacts the signal from the kagome spins. For ZnCu_{3}(OH)_{6}Cl_{2}, we observed no contribution by any spin excitation nor obvious field-induced change to the thermal conductivity. These results impose strong constraints on various scenarios about the ground state of this kagome compound: while certain quantum paramagnetic states other than a QSL may serve as natural candidates, a QSL state, gapless or gapped, must be dramatically modified by the disorder so that the kagome spin excitations are localized.

12.
Nano Lett ; 20(8): 6024-6031, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32628483

RESUMEN

Circularly polarized light carries light spin angular momentum, which may lead helicity-resolved Raman scattering to be sensitive to the electronic spin configuration in magnetic materials. Here, we demonstrate that all Raman modes in the 2D ferromagnet VI3 show different scattering intensities to left and right circularly polarized light at low temperatures, which gives direct evidence of the time-reversal symmetry breaking. By measuring the circular polarization of the dominant Raman mode with respect to the temperature and magnetic field, the ferromagnetic (FM) phase transition and hysteresis behavior can be clearly resolved. Besides the lattice excitations, quasielastic scattering is detected in the paramagnetic phase, and it gradually evolves into the acoustic magnon mode at 18.5 cm-1 in the FM state, which gives the spin wave gap that results from large magnetic anisotropy. Our findings demonstrate that helicity-resolved Raman spectroscopy is an effective tool to directly probe the ferromagnetism in 2D magnets.

13.
Nano Lett ; 20(5): 3160-3168, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32207627

RESUMEN

How an interfacial superconductivity emerges during the nucleation and epitaxy is of great importance not only for unveiling the physical insights but also for finding a feasible way to tune the superconductivity via interfacial engineering. In this work, we report the nanoscale creation of a robust and relatively homogeneous interfacial superconductivity (TC ≈ 13 K) on the epitaxial FeTe surface, by van der Waals epitaxy of single-quintuple-layer topological insulator Bi2Te3. Our study suggests that the superconductivity in the Bi2Te3/FeTe heterostructure is generated at the interface and that the superconductivity at the interface does not enhance or weaken with the increase of the Bi2Te3 thickness beyond 1 quintuple layer (QL). The observation of the topological surface states crossing Fermi energy in the Bi2Te3/FeTe heterostructure with the average Bi2Te3 thickness of about 20 QL provides further evidence that this heterostructure may potentially host Majorana zero modes.

14.
Nano Lett ; 20(1): 729-734, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31842543

RESUMEN

The recent discovery of 2D magnets has revealed various intriguing phenomena due to the coupling between spin and other degrees of freedoms (such as helical photoluminescence, nonreciprocal SHG). Previous research on the spin-phonon coupling effect mainly focuses on the renormalization of phonon frequency. Here we demonstrate that the Raman polarization selection rules of optical phonons can be greatly modified by the magnetic ordering in 2D magnet CrI3. For monolayer samples, the dominant A1g peak shows an abnormally high intensity in the cross-polarization channel at low temperatures, which is forbidden by the selection rule based on the lattice symmetry. For the bilayer, this peak is absent in the cross-polarization channel for the layered antiferromagnetic (AFM) state and reappears when it is tuned to the ferromagnetic (FM) state by an external magnetic field. Our findings shed light on exploring the emergent magneto-optical effects in 2D magnets.

15.
J Integr Plant Biol ; 63(12): 2123-2135, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34655280

RESUMEN

Pear has an S-RNase-based gametophytic self-incompatibility (SI) system. Nuclear DNA degradation is a typical feature of incompatible pollen tube death, and is among the many physiological functions of vacuoles. However, the specific changes that occur in vacuoles, as well as the associated regulatory mechanism in pear SI, are currently unclear. Although research in tobacco has shown that decreased activity of diacylglycerol kinase (DGK) results in the morphological change of pollen tube vacuole, whether DGK regulates the pollen tube vacuole of tree plants and whether it occurs in SI response, is currently unclear. We found that DGK activity is essential for pear pollen tube growth, and DGK4 regulates pollen tube vacuole morphology following its high expression and deposition at the tip and shank edge of the pollen tube of pear. Specifically, incompatible S-RNase may induce cytoplasmic acidification of the pollen tube by inhibiting V-ATPase V0 domain a1 subunit gene expression as early as 30 min after treatment, when the pollen tube is still alive. Cytoplasmic acidification induced by incompatible S-RNase results in reduced DGK4 abundance and deposition, leading to morphological change of the vacuole and fragmentation of nuclear DNA, which indicates that DGK4 is a key factor in pear SI response.


Asunto(s)
Pyrus , ADN/metabolismo , Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/metabolismo , Concentración de Iones de Hidrógeno , Tubo Polínico/metabolismo , Pyrus/genética , Pyrus/metabolismo , Vacuolas/metabolismo
16.
Nano Lett ; 19(9): 6144-6151, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31438678

RESUMEN

The heterostructures of the ferromagnet (Cr2Te3) and topological insulator (Bi2Te3) have been grown by molecular beam epitaxy. The topological Hall effect as evidence of the existence of magnetic skyrmions has been observed in the samples in which Cr2Te3 was grown on top of Bi2Te3. Detailed structural characterizations have unambiguously revealed the presence of intercalated Bi bilayer nanosheets right at the interface of those samples. The atomistic spin-dynamics simulations have further confirmed the existence of magnetic skyrmions in such systems. The heterostructures of ferromagnet and topological insulator that host magnetic skyrmions may provide an important building block for next generation of spintronics devices.

17.
BMC Cancer ; 19(1): 740, 2019 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-31357957

RESUMEN

BACKGROUND: Emerging evidence has shown that miR-1275 plays a critical role in tumour metastasis and the progression of various types of cancer. In this study, we analysed the role and mechanism of miR-1275 in the progression and prognosis of gastric cancer (GC). METHODS: Target genes of miR-1275 were identified and verified by luciferase assay and Western blotting. The function of miR-1275 in invasion and metastasis was analysed in vitro and in vivo in nude mice. The signal pathway regulated by miR-1275 was examined by qRT-PCR, Western blotting and chromatin immunoprecipitation analyses. The expression of miR-1275and JAZF1 were measured in specimens of GC and adjacent non cancerous tissues. RESULTS: We identified JAZF1 as a direct miR-1275 target. miR-1275 supresses migration and invasion of GC cells in vitro and in vivo, which was restored by JAZF1 overexpression. Moreover, JAZF1 was recognized as a direct regulator of Vimentin. Knocking-down miR-1275 or overexpressing JAZF1 resulted in upregulation of Vimentin but downregulation of E-cadherin. Meanwhile, we validated in 120 GC patients specimens that low miR-1275expression and high JAZF1 mRNA expression levels were closely associated with lymph node metastasis and poor prognosis. The expression of JAZF1 in protein level displayed the correlations with Vimentin but inversely with E-cadherin. CONCLUSIONS: Increased miR-1275 expression inhibited GC metastasis by regulating vimentin/E-cadherin via direct suppression of JAZF1expression, suggesting that miR-1275 is a tumour-suppressor miRNA with the potential as a prognostic biomarker or therapeutic target in GC.


Asunto(s)
Antígenos CD/metabolismo , Cadherinas/metabolismo , Movimiento Celular , Proteínas Co-Represoras/metabolismo , Proteínas de Unión al ADN/metabolismo , MicroARNs/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Vimentina/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Proteínas Co-Represoras/genética , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Estimación de Kaplan-Meier , Ganglios Linfáticos/patología , Metástasis Linfática , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Invasividad Neoplásica , Pronóstico , Neoplasias Gástricas/cirugía , Transfección
18.
Phys Rev Lett ; 120(3): 037204, 2018 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-29400534

RESUMEN

We describe electron spin resonance in a quantum spin liquid with significant spin-orbit coupling. We find that the resonance directly probes spinon continuum, which makes it an efficient and informative probe of exotic excitations of the spin liquid. Specifically, we consider spinon resonance of three different spinon mean-field Hamiltonians, obtained with the help of projective symmetry group analysis, which model a putative quantum spin liquid state of the triangular rare-earth antiferromagnet YbMgGaO_{4}. The band of absorption is found to be very broad and exhibit strong van Hove singularities of single spinon spectrum as well as pronounced polarization dependence.

19.
Phys Chem Chem Phys ; 20(33): 21693-21698, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-30101264

RESUMEN

Herbertsmithite and Zn-doped barlowite are two compounds for experimental realization of two-dimensional kagome spin liquids. Theoretically, it has been proposed that charge doping a quantum spin liquid gives rise to exotic metallic states, such as high-temperature superconductivity. However, one recent experiment on herbertsmithite with successful Li-doping surprisingly showed an insulating state even under a heavily doped scenario, which cannot be explained by previous theories. Using first-principles calculations, we performed a comprehensive study on the Li intercalation doping effect of these two compounds. For the Li-doped herbertsmithite, we identified the optimized Li position at the Cl-(OH)3-Cl pentahedron site instead of the previously speculated Cl-(OH)3 tetrahedral site. With increasing Li doping concentration, saturation magnetization decreases linearly due to charge transfer from Li to Cu ions. Moreover, we found that Li forms chemical bonds with nearby (OH)- and Cl- ions, which lowers the surrounding chemical potential and traps electrons, as evidenced by the localized charge distribution, explaining the insulating behavior measured experimentally. Though a different structure from herbertsmithite, Zn-doped barlowite shows the same features upon Li doping. We conclude that Li doping this family of kagome spin liquids cannot realize exotic metallic states, and other methods should be further explored, such as element substitution with those having different valence electrons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA