Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 21(2): e3001922, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36780432

RESUMEN

A universal taxonomy of viruses is essential for a comprehensive view of the virus world and for communicating the complicated evolutionary relationships among viruses. However, there are major differences in the conceptualisation and approaches to virus classification and nomenclature among virologists, clinicians, agronomists, and other interested parties. Here, we provide recommendations to guide the construction of a coherent and comprehensive virus taxonomy, based on expert scientific consensus. Firstly, assignments of viruses should be congruent with the best attainable reconstruction of their evolutionary histories, i.e., taxa should be monophyletic. This fundamental principle for classification of viruses is currently included in the International Committee on Taxonomy of Viruses (ICTV) code only for the rank of species. Secondly, phenotypic and ecological properties of viruses may inform, but not override, evolutionary relatedness in the placement of ranks. Thirdly, alternative classifications that consider phenotypic attributes, such as being vector-borne (e.g., "arboviruses"), infecting a certain type of host (e.g., "mycoviruses," "bacteriophages") or displaying specific pathogenicity (e.g., "human immunodeficiency viruses"), may serve important clinical and regulatory purposes but often create polyphyletic categories that do not reflect evolutionary relationships. Nevertheless, such classifications ought to be maintained if they serve the needs of specific communities or play a practical clinical or regulatory role. However, they should not be considered or called taxonomies. Finally, while an evolution-based framework enables viruses discovered by metagenomics to be incorporated into the ICTV taxonomy, there are essential requirements for quality control of the sequence data used for these assignments. Combined, these four principles will enable future development and expansion of virus taxonomy as the true evolutionary diversity of viruses becomes apparent.


Asunto(s)
Bacteriófagos , Virus , Humanos , Metagenómica , Filogenia , Virus/genética
2.
Nucleic Acids Res ; 50(D1): D801-D807, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34634793

RESUMEN

Microbial systematics is heavily influenced by genome-based methods and challenged by an ever increasing number of taxon names and associated sequences in public data repositories. This poses a challenge for database systems, particularly since it is obviously advantageous if such data are based on a globally recognized approach to manage names, such as the International Code of Nomenclature of Prokaryotes. The amount of data can only be handled if accurate and reliable high-throughput platforms are available that are able to both comply with this demand and to keep track of all changes in an efficient and flexible way. The List of Prokaryotic names with Standing in Nomenclature (LPSN) is an expert-curated authoritative resource for prokaryotic nomenclature and is available at https://lpsn.dsmz.de. The Type (Strain) Genome Server (TYGS) is a high-throughput platform for accurate genome-based taxonomy and is available at https://tygs.dsmz.de. We here present important updates of these two previously introduced, heavily interconnected platforms for taxonomic nomenclature and classification, including new high-level facilities providing access to bioinformatic algorithms, a considerable expansion of the database content, and new ways to easily access the data.


Asunto(s)
Algoritmos , Bases de Datos Genéticas , Células Procariotas/clasificación , Programas Informáticos , Biología Computacional/métodos , Humanos , Internet , Células Procariotas/citología , Células Procariotas/metabolismo , Terminología como Asunto
3.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34908520

RESUMEN

An obligately anaerobic strain, designated as A2931T, was isolated from oropharyngeal abscess puncture fluid of a patient sampled during routine care at a hospital and further characterized both phenotypically, biochemically and genotypically. This Gram-negative rod-shaped bacterium was moderately saccharolytic and proteolytic. Phylogenetic analyses of full-length 16S rRNA gene and whole-genome sequences revealed it to be best placed in the genus Prevotella, but to be only comparatively distantly related to recognized species, with the closest relationship to Prevotella baroniae (average nucleotide identity and digital DNA-DNA hybridization values both well below the generally accepted thresholds). Strain A2931T had a genomic DNA G+C content of 47.7 mol%. Its most abundant cellular long-chain fatty acids were anteiso-C15 : 0, iso-C15 : 0 and C16 : 0. Taken together, this polyphasic data suggests strain A2931T to represent a novel species within the genus Prevotella, for which the name Prevotella illustrans sp. nov. is proposed. The type strain is A2931T (=DSM 108028T=CCOS 1232T=CCUG 72806T). Interestingly, we found strain A2931T to correspond to the oral taxon Prevotella HMT-820 in the Human Oral Microbiome Database, as supported by overall genome relatedness index analyses >99 %. Thus, our work not only closes one of the gaps of knowledge about hitherto unnamed species isolated from humans, but also will facilitate identification of this taxon both in the clinical microbiology context and in research alike.


Asunto(s)
Absceso , Orofaringe/microbiología , Filogenia , Prevotella/clasificación , Absceso/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Humanos , Prevotella/aislamiento & purificación , Punciones , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
4.
Artículo en Inglés | MEDLINE | ID: mdl-34435946

RESUMEN

Species belonging to the genus Sphingomonas have been isolated from environments such as soil, water and plant tissues. Many strains are known for their capability of degrading aromatic molecules and producing extracellular polymers. A Gram-stain-negative, strictly aerobic, motile, red-pigmented, oxidase-negative, catalase-positive, rod-shaped strain, designated DH-S5T, has been isolated from pork steak packed under CO2-enriched modified atmosphere. Cell diameters were 1.5×0.9 µm. Growth optima were at 30 °C and at pH 6.0. Phylogenetic analyses based on both complete 16S rRNA gene sequence and whole-genome sequence data revealed that strain DH-S5T belongs to the genus Sphingomonas, being closely related to Sphingomonas alpina DSM 22537T (97.4 % gene sequence similarity), followed by Sphingomonas qilianensis X1T (97.4 %) and Sphingomonas hylomeconis GZJT-2T (97.3 %). The DNA G+C content was 64.4 mol%. The digital DNA-DNA hybridization value between the isolate strain and S. alpina DSM 22537T was 21.0 % with an average nucleotide identity value of 77.03 %. Strain DH-S5T contained Q-10 as the ubiquinone and major fatty acids were C18 : 1 cis 11 (39.3 %) and C16 : 1 cis 9 (12.5 %), as well as C16 : 0 (12.1 %) and C14 : 0 2-OH (11.4 %). As for polar lipids, phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, dimethylphosphatidylethanolamine and sphingoglycolipid could be detected, alongside traces of monomethylphosphatidylethanolamine. Based on its phenotypic, chemotaxonomic and phylogenetic characteristics, strain DH-S5T (=DSM 110829T=LMG 31606T) is classified as a representative of the genus Sphingomonas, for which the name Sphingomonas aliaeris sp. nov. is proposed.


Asunto(s)
Filogenia , Carne de Cerdo , Sphingomonas , Animales , Atmósfera , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Microbiología de Alimentos , Alemania , Fosfolípidos/química , Pigmentación , Carne de Cerdo/microbiología , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Sphingomonas/clasificación , Sphingomonas/aislamiento & purificación , Porcinos
5.
Artículo en Inglés | MEDLINE | ID: mdl-33835911

RESUMEN

In the course of screening the surface soils of ancient copper mines and smelters (East Harz, Germany) an aerobic, non-motile and halotolerant actinobacterium forming small rods or cocci was isolated. The strain designated F300T developed creamy to yellow colonies on tryptone soy agar and grew optimally at 28 °C, pH 7-8 and with 0.5-2 % (m/v) NaCl. Its peptidoglycan was of type A4α l-Lys-l-Glu (A11.54). The menaquinone profile was dominated by MK-8(II, III-H4) and contained minor amounts of MK-8(H2), MK-8(H6) and MK-9(H4). The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, mono and diacylated phosphatidylinositol dimannosides, and components that were not fully characterized, including two phospholipids, two glycolipids and an uncharacterized lipid. Major whole-cell sugars were rhamnose and ribose. The fatty acid profile contained mainly iso and anteiso branched fatty acids (anteiso-C15 : 0, iso-C14 : 0) and aldehydes/dimethylacetals (i.e. not fatty acids). Sequence analysis of its genomic DNA and subsequent analysis of the data placed the isolate in the group currently defined by members of the genera Ruania and Haloactinobacterium (family Ruaniaceae, order Micrococcales) as a sister taxon to the previously described species Haloactinobacterium glacieicola, sharing an average nucleotide identity and average amino acid identity values of 85.3 and 85.7 %, respectively. Genotypic and chemotaxonomic analyses support the view that strain F300T (=DSM 108350T=CIP 111667T) is the type strain of a new genus and new species for which the name Occultella aeris gen. nov., sp. nov. is proposed. Based on revised chemotaxonomic and additional genome based data, it is necessary to discuss and evaluate the results in the light of the classification and nomenclature of members of the family Ruaniaceae, i.e. the genera Haloactinobacterium and Ruania. Consequently, the reclassification of Haloactinobacterium glacieicola as Occultella glacieicola comb. nov. and Haloactinobacterium album as Ruania alba comb. nov., with an emended description of the genus Ruania are proposed.


Asunto(s)
Actinobacteria/clasificación , Cobre , Filogenia , Microbiología del Suelo , Actinobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Alemania , Peptidoglicano/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
6.
BMC Genomics ; 21(1): 24, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31914924

RESUMEN

BACKGROUND: The genus Trichococcus currently contains nine species: T. flocculiformis, T. pasteurii, T. palustris, T. collinsii, T. patagoniensis, T. ilyis, T. paludicola, T. alkaliphilus, and T. shcherbakoviae. In general, Trichococcus species can degrade a wide range of carbohydrates. However, only T. pasteurii and a non-characterized strain of Trichococcus, strain ES5, have the capacity of converting glycerol to mainly 1,3-propanediol. Comparative genomic analysis of Trichococcus species provides the opportunity to further explore the physiological potential and uncover novel properties of this genus. RESULTS: In this study, a genotype-phenotype comparative analysis of Trichococcus strains was performed. The genome of Trichococcus strain ES5 was sequenced and included in the comparison with the other nine type strains. Genes encoding functions related to e.g. the utilization of different carbon sources (glycerol, arabinan and alginate), antibiotic resistance, tolerance to low temperature and osmoregulation could be identified in all the sequences analysed. T. pasteurii and Trichococcus strain ES5 contain a operon with genes encoding necessary enzymes for 1,3-PDO production from glycerol. All the analysed genomes comprise genes encoding for cold shock domains, but only five of the Trichococcus species can grow at 0 °C. Protein domains associated to osmoregulation mechanisms are encoded in the genomes of all Trichococcus species, except in T. palustris, which had a lower resistance to salinity than the other nine studied Trichococcus strains. CONCLUSIONS: Genome analysis and comparison of ten Trichococcus strains allowed the identification of physiological traits related to substrate utilization and environmental stress resistance (e.g. to cold and salinity). Some substrates were used by single species, e.g. alginate by T. collinsii and arabinan by T. alkaliphilus. Strain ES5 may represent a subspecies of Trichococcus flocculiformis and contrary to the type strain (DSM 2094T), is able to grow on glycerol with the production of 1,3-propanediol.


Asunto(s)
Carnobacteriaceae/genética , Carnobacteriaceae/fisiología , Técnicas de Tipificación Bacteriana , Carnobacteriaceae/metabolismo , Fenotipo , Filogenia , Glicoles de Propileno/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
7.
Environ Microbiol ; 22(1): 198-211, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31637799

RESUMEN

The first representative of the phylum Planctomycetes, Planctomyces bekefii, was described nearly one century ago. This morphologically conspicuous freshwater bacterium is a rare example of as-yet-uncultivated prokaryotes with validly published names and unknown identity. We report the results of molecular identification of this elusive bacterium, which was detected in a eutrophic boreal lake in Northern Russia. By using high-performance cell sorting, P. bekefii-like cell rosettes were selectively enriched from lake water. The retrieved 16S rRNA gene sequence was nearly identical to those in dozens of metagenomes assembled from freshwater lakes during cyanobacterial blooms and was phylogenetically placed within a large group of environmental sequences originating from various freshwater habitats worldwide. In contrast, 16S rRNA gene sequence similarity to all currently described members of the order Planctomycetales was only 83%-92%. The metagenome assembled for P. bekefii reached 43% genome coverage and showed the potential for degradation of peptides, pectins, and sulfated polysaccharides. Tracing the seasonal dynamics of P. bekefii by Illumina paired-end sequencing of 16S rRNA gene fragments and by fluorescence in situ hybridization revealed that these bacteria only transiently surpass the detection limit, with a characteristic population peak of up to 104 cells ml-1 following cyanobacterial blooms.


Asunto(s)
Planctomycetales/clasificación , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Hibridación Fluorescente in Situ , Lagos/microbiología , Redes y Vías Metabólicas/genética , Metagenoma , Filogenia , Filogeografía , Planctomycetales/genética , Planctomycetales/aislamiento & purificación , Planctomycetales/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
8.
Int J Syst Evol Microbiol ; 70(11): 5607-5612, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32701423

RESUMEN

The List of Prokaryotic names with Standing in Nomenclature (LPSN) was acquired in November 2019 by the DSMZ and was relaunched using an entirely new production system in February 2020. This article describes in detail the structure of the new site, navigation, page layout, search facilities and new features.

9.
Proc Natl Acad Sci U S A ; 113(35): 9882-7, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27535936

RESUMEN

Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the clade sister to the known CUG-Ser clade. Our well-resolved yeast phylogeny shows that some traits, such as methylotrophy, are restricted to single clades, whereas others, such as l-rhamnose utilization, have patchy phylogenetic distributions. Gene clusters, with variable organization and distribution, encode many pathways of interest. Genomics can predict some biochemical traits precisely, but the genomic basis of others, such as xylose utilization, remains unresolved. Our data also provide insight into early evolution of ascomycetes. We document the loss of H3K9me2/3 heterochromatin, the origin of ascomycete mating-type switching, and panascomycete synteny at the MAT locus. These data and analyses will facilitate the engineering of efficient biosynthetic and degradative pathways and gateways for genomic manipulation.


Asunto(s)
Biotecnología/métodos , Genoma Fúngico/genética , Genómica/métodos , Levaduras/genética , Ascomicetos/clasificación , Ascomicetos/genética , Ascomicetos/metabolismo , Evolución Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Código Genético/genética , Redes y Vías Metabólicas/genética , Filogenia , Especificidad de la Especie , Levaduras/clasificación , Levaduras/metabolismo
10.
Bioinformatics ; 33(21): 3396-3404, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29036289

RESUMEN

MOTIVATION: Bacterial and archaeal viruses are crucial for global biogeochemical cycles and might well be game-changing therapeutic agents in the fight against multi-resistant pathogens. Nevertheless, it is still unclear how to best use genome sequence data for a fast, universal and accurate taxonomic classification of such viruses. RESULTS: We here present a novel in silico framework for phylogeny and classification of prokaryotic viruses, in line with the principles of phylogenetic systematics, and using a large reference dataset of officially classified viruses. The resulting trees revealed a high agreement with the classification. Except for low resolution at the family level, the majority of taxa was well supported as monophyletic. Clusters obtained with distance thresholds chosen for maximizing taxonomic agreement appeared phylogenetically reasonable, too. Analysis of an expanded dataset, containing >4000 genomes from public databases, revealed a large number of novel species, genera, subfamilies and families. AVAILABILITY AND IMPLEMENTATION: The selected methods are available as the easy-to-use web service 'VICTOR' at https://victor.dsmz.de. CONTACT: jan.meier-kolthoff@dsmz.de. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Simulación por Computador , Genómica/métodos , Filogenia , Programas Informáticos , Virus/clasificación , Virus/genética , Archaea/virología , Bacterias/virología , Análisis de Secuencia de ADN
11.
PLoS Comput Biol ; 12(12): e1005271, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-28033346

RESUMEN

Typical bacterial strain differentiation methods are often challenged by high genetic similarity between strains. To address this problem, we introduce a novel in silico peptide fingerprinting method based on conventional wet-lab protocols that enables the identification of potential strain-specific peptides. These can be further investigated using in vitro approaches, laying a foundation for the development of biomarker detection and application-specific methods. This novel method aims at reducing large amounts of comparative peptide data to binary matrices while maintaining a high phylogenetic resolution. The underlying case study concerns the Bacillus cereus group, namely the differentiation of Bacillus thuringiensis, Bacillus anthracis and Bacillus cereus strains. Results show that trees based on cytoplasmic and extracellular peptidomes are only marginally in conflict with those based on whole proteomes, as inferred by the established Genome-BLAST Distance Phylogeny (GBDP) method. Hence, these results indicate that the two approaches can most likely be used complementarily even in other organismal groups. The obtained results confirm previous reports about the misclassification of many strains within the B. cereus group. Moreover, our method was able to separate the B. anthracis strains with high resolution, similarly to the GBDP results as benchmarked via Bayesian inference and both Maximum Likelihood and Maximum Parsimony. In addition to the presented phylogenomic applications, whole-peptide fingerprinting might also become a valuable complementary technique to digital DNA-DNA hybridization, notably for bacterial classification at the species and subspecies level in the future.


Asunto(s)
Bacillus/clasificación , Proteínas Bacterianas/clasificación , Péptidos/clasificación , Proteoma/clasificación , Proteómica/métodos , Bacillus/genética , Proteínas Bacterianas/genética , ADN Bacteriano/genética , Bases de Datos de Proteínas , Modelos Genéticos , Péptidos/genética , Filogenia , Proteoma/genética , Especificidad de la Especie
13.
Int J Syst Evol Microbiol ; 67(6): 1676-1682, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28141499

RESUMEN

A novel strain, G25T, was isolated from desert soil collected near Jeddah in Saudi Arabia. The strain could accumulate nearly 65 % of its cell dry weight as fatty acids, grow on a broad range of carbon sources and tolerate temperatures of up to 50 °C. With respect to to its 16S rRNA gene sequence, G25T is most closely related to Streptomyces massasporeus DSM 40035T, Streptomyces hawaiiensis DSM 40042T, Streptomyces indiaensis DSM 43803T, Streptomyces luteogriseus DSM 40483T and Streptomyces purpurascens DSM 40310T. Conventional DNA-DNA hybridization (DDH) values ranged from 18.7 to 46.9 % when G25T was compared with these reference strains. Furthermore, digital DDH values between the draft genome sequence of G25T and the genome sequences of other species of the genus Streptomyces were also significantly below the threshold of 70 %. The DNA G+C content of the draft genome sequence, consisting of 8.46 Mbp, was 70.3 %. The prevalent cellular fatty acids of G25T comprised anteiso-C15 : 0, iso-C15 : 0, C16 : 0 and iso-C16 : 0. The predominant menaquinones were MK-9(H6), MK-9(H8) and MK-9(H4). The polar lipids profile contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylglycerol and phosphatidylinositol mannosides as well as unidentified phospholipids and phosphoaminolipids. The cell wall contained ll-diaminopimelic acid. Whole-cell sugars were predominantly glucose with small traces of ribose and mannose. The results of the polyphasic approach confirmed that this isolate represents a novel species of the genus Streptomyces, for which the name Streptomyces jeddahensis sp. nov. is proposed. The type strain of this species is G25T (=DSM 101878T =LMG 29545T =NCCB 100603T).


Asunto(s)
Filogenia , Microbiología del Suelo , Streptomyces/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Clima Desértico , Ácido Diaminopimélico/química , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Arabia Saudita , Análisis de Secuencia de ADN , Streptomyces/genética , Streptomyces/aislamiento & purificación , Vitamina K 2/análogos & derivados , Vitamina K 2/química
14.
Int J Syst Evol Microbiol ; 66(12): 5201-5210, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27624710

RESUMEN

Before the establishment of pure cultures, the species Frankia alni, 'Frankia casuarinae' and 'Frankia elaeagni' were proposed to encompass all causal agents of the nitrogen-fixing root nodules of dicotyledonous plants from the genera Alnus, Casuarina or Elaeagnus. The sole Frankia species with a validly published name, the type species F. alni, was described by Woronin (1866) as present in the root of alder. Until now no type strain has been designated for F. alni, even though the absence of a type strain has seriously inhibited the application of modern taxonomic methods to the genus Frankia. Thus, we propose that strain ACN14aT, isolated in pure culture from Alnus viridis ssp. crispa with morphological properties matching the original description of F. alni, be recognized as the type strain of this species according to Rule 18f of the International Code of Nomenclature of Bacteria. We compared ACN14aT to two strains, CcI3T and BMG5.12T, isolated from Casuarina cunninghamiana and Elaeagnus angustifolia, respectively, based on chemotaxonomy, phenotype microarray data and molecular data retrieved from genome sequences. All three tested strains grew as branched hyphae, produced vesicles and multilocular sporangia containing non-motile spores and metabolized short fatty acids, TCA-cycle intermediates and carbohydrates. Chemotaxonomically, the three strains were indistinguishable with respect to phospholipids (phosphatidylinositol, diphosphatidylglycerol, glycophospholipids and phosphatidylglycerol) and cell-sugar composition (glucose, mannose, ribose, rhamnose, galactose and xylose, with the latter two being diagnostic for the genus). The major fatty acids identified in all three strains were iso-C16 : 0, C17 : 1ω8c, C15 : 0, C17 : 0 and C16 : 0. ACN14aT and BMG5.12T also shared C15 : 1ω6c, while C18 : 1ω9c was found to be unique to BMG5.12T. The major menaquinones identified in all three novel type strains were MK-9(H8), MK-9(H6) and MK-9(H4). MK-9(H2) was shared by ACN14aT and BMG5.12T, while MK-10(H4) and MK-8(H4) were only found in BMG5.12T. Analysis of 16S rRNA gene sequences showed 98.1-98.9 % identity between strains ACN14aT, CcI3T and BMG5.12T. Digital DNA-DNA hybridization values between the three type strains were well below 70 %. These results confirm the separation of the strains into three distinct species, Frankia alni, Frankia casuarinae sp. nov. and Frankia elaeagni sp. nov. Thus, we propose ACN14aT (=DSM 45986T=CECT 9034T), CcI3T (=DSM 45818T=CECT 9043T) and BMG5.12T (=DSM 46783T=CECT 9031T) as the respective type strains.


Asunto(s)
Frankia/clasificación , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/química
15.
Environ Microbiol ; 16(1): 218-38, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24165547

RESUMEN

Combining omics and enzymatic approaches, catabolic routes of nine selected amino acids (tryptophan, phenylalanine, methionine, leucine, isoleucine, valine, histidine, lysine and threonine) were elucidated in substrate-adapted cells of Phaeobacter inhibens DSM 17395 (displaying conspicuous morphotypes). The catabolic network [excluding tricarboxylic acid (TCA) cycle] was reconstructed from 71 genes (scattered across the chromosome; one-third newly assigned), with 69 encoded proteins and 20 specific metabolites identified, and activities of 10 different enzymes determined. For example, Ph. inhibens DSM 17395 does not degrade lysine via the widespread saccharopine pathway but might rather employ two parallel pathways via 5-aminopentanoate or 2-aminoadipate. Tryptophan degradation proceeds via kynurenine and 2-aminobenzoate; the latter is metabolized as known from Azoarcus evansii. Histidine degradation is analogous to the Pseudomonas-type Hut pathway via N-formyl-l-glutamate. For threonine, only one of the three genome-predicted degradation pathways (employing threonine 3-dehydrogenase) is used. Proteins of the individual peripheral degradation sequences in Ph. inhibens DSM 17395 were apparently substrate-specifically formed contrasting the non-modulated TCA cycle enzymes. Comparison of genes for the reconstructed amino acid degradation network in Ph. inhibens DSM 17395 across 27 other complete genomes of Roseobacter clade members revealed most of them to be widespread among roseobacters.


Asunto(s)
Aminoácidos/metabolismo , Redes y Vías Metabólicas , Roseobacter/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Roseobacter/genética , Especificidad de la Especie
16.
Virol J ; 11: 14, 2014 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-24468270

RESUMEN

BACKGROUND: Multi-resistant Achromobacter xylosoxidans has been recognized as an emerging pathogen causing nosocomially acquired infections during the last years. Phages as natural opponents could be an alternative to fight such infections. Bacteriophages against this opportunistic pathogen were isolated in a recent study. This study shows a molecular analysis of two podoviruses and reveals first insights into the genomic structure of Achromobacter phages so far. METHODS: Growth curve experiments and adsorption kinetics were performed for both phages. Adsorption and propagation in cells were visualized by electron microscopy. Both phage genomes were sequenced with the PacBio RS II system based on single molecule, real-time (SMRT) technology and annotated with several bioinformatic tools. To further elucidate the evolutionary relationships between the phage genomes, a phylogenomic analysis was conducted using the genome Blast Distance Phylogeny approach (GBDP). RESULTS: In this study, we present the first detailed analysis of genome sequences of two Achromobacter phages so far. Phages JWAlpha and JWDelta were isolated from two different waste water treatment plants in Germany. Both phages belong to the Podoviridae and contain linear, double-stranded DNA with a length of 72329 bp and 73659 bp, respectively. 92 and 89 putative open reading frames were identified for JWAlpha and JWDelta, respectively, by bioinformatic analysis with several tools. The genomes have nearly the same organization and could be divided into different clusters for transcription, replication, host interaction, head and tail structure and lysis. Detailed annotation via protein comparisons with BLASTP revealed strong similarities to N4-like phages. CONCLUSIONS: Analysis of the genomes of Achromobacter phages JWAlpha and JWDelta and comparisons of different gene clusters with other phages revealed that they might be strongly related to other N4-like phages, especially of the Escherichia group. Although all these phages show a highly conserved genomic structure and partially strong similarities at the amino acid level, some differences could be identified. Those differences, e.g. the existence of specific genes for replication or host interaction in some N4-like phages, seem to be interesting targets for further examination of function and specific mechanisms, which might enlighten the mechanism of phage establishment in the host cell after infection.


Asunto(s)
Achromobacter denitrificans/virología , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , ADN Viral/química , ADN Viral/genética , Genoma Viral , Bacteriófagos/clasificación , Bacteriófagos/fisiología , Análisis por Conglomerados , Alemania , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Podoviridae/clasificación , Podoviridae/genética , Podoviridae/aislamiento & purificación , Podoviridae/fisiología , Análisis de Secuencia de ADN , Virión/ultraestructura , Acoplamiento Viral , Replicación Viral , Aguas Residuales/virología
17.
Int J Syst Evol Microbiol ; 64(Pt 2): 352-356, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24505073

RESUMEN

The G+C content of a genome is frequently used in taxonomic descriptions of species and genera. In the past it has been determined using conventional, indirect methods, but it is nowadays reasonable to calculate the DNA G+C content directly from the increasingly available and affordable genome sequences. The expected increase in accuracy, however, might alter the way in which the G+C content is used for drawing taxonomic conclusions. We here re-estimate the literature assumption that the G+C content can vary up to 3-5 % within species using genomic datasets. The resulting G+C content differences are compared with DNA-DNA hybridization (DDH) similarities calculated in silico using the GGDC web server, with 70% similarity as the gold standard threshold for species boundaries. The results indicate that the G+C content, if computed from genome sequences, varies no more than 1% within species. Statistical models based on larger differences alone can reject the hypothesis that two strains belong to the same species. Because DDH similarities between two non-type strains occur in the genomic datasets, we also examine to what extent and under which conditions such a similarity could be <70% even though the similarity of either strain to a type strain was ≥ 70%. In theory, their similarity could be as low as 50%, whereas empirical data suggest a boundary closer (but not identical) to 70%. However, it is shown that using a 50% boundary would not affect the conclusions regarding the DNA G+C content. Hence, we suggest that discrepancies between G+C content data provided in species descriptions on the one hand and those recalculated after genome sequencing on the other hand ≥ 1% are due to significant inaccuracies of the applied conventional methods and accordingly call for emendations of species descriptions.


Asunto(s)
Composición de Base , Genómica/métodos , Hibridación de Ácido Nucleico/métodos , Clasificación/métodos , Modelos Logísticos , Análisis de Secuencia de ADN/métodos
18.
Eur J Cancer ; 211: 114306, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39293347

RESUMEN

INTRODUCTION: Whole Exome Sequencing (WES) has emerged as an efficient tool in clinical cancer diagnostics to broaden the scope from panel-based diagnostics to screening of all genes and enabling robust determination of complex biomarkers in a single analysis. METHODS: To assess concordance, six formalin-fixed paraffin-embedded (FFPE) tissue specimens and four commercial reference standards were analyzed by WES as matched tumor-normal DNA at 21 NGS centers in Germany, each employing local wet-lab and bioinformatics. Somatic and germline variants, copy-number alterations (CNAs), and complex biomarkers were investigated. Somatic variant calling was performed in 494 diagnostically relevant cancer genes. The raw data were collected and re-analyzed with a central bioinformatic pipeline to separate wet- and dry-lab variability. RESULTS: The mean positive percentage agreement (PPA) of somatic variant calling was 76 % while the positive predictive value (PPV) was 89 % in relation to a consensus list of variants found by at least five centers. Variant filtering was identified as the main cause for divergent variant calls. Adjusting filter criteria and re-analysis increased the PPA to 88 % for all and 97 % for the clinically relevant variants. CNA calls were concordant for 82 % of genomic regions. Homologous recombination deficiency (HRD), tumor mutational burden (TMB), and microsatellite instability (MSI) status were concordant for 94 %, 93 %, and 93 % of calls, respectively. Variability of CNAs and complex biomarkers did not decrease considerably after harmonization of the bioinformatic processing and was hence attributed mainly to wet-lab differences. CONCLUSION: Continuous optimization of bioinformatic workflows and participating in round robin tests are recommended.


Asunto(s)
Benchmarking , Variaciones en el Número de Copia de ADN , Secuenciación del Exoma , Neoplasias , Medicina de Precisión , Humanos , Secuenciación del Exoma/métodos , Alemania , Medicina de Precisión/métodos , Medicina de Precisión/normas , Neoplasias/genética , Biomarcadores de Tumor/genética , Biología Computacional/métodos
19.
BMC Bioinformatics ; 14: 60, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23432962

RESUMEN

BACKGROUND: For the last 25 years species delimitation in prokaryotes (Archaea and Bacteria) was to a large extent based on DNA-DNA hybridization (DDH), a tedious lab procedure designed in the early 1970s that served its purpose astonishingly well in the absence of deciphered genome sequences. With the rapid progress in genome sequencing time has come to directly use the now available and easy to generate genome sequences for delimitation of species. GBDP (Genome Blast Distance Phylogeny) infers genome-to-genome distances between pairs of entirely or partially sequenced genomes, a digital, highly reliable estimator for the relatedness of genomes. Its application as an in-silico replacement for DDH was recently introduced. The main challenge in the implementation of such an application is to produce digital DDH values that must mimic the wet-lab DDH values as close as possible to ensure consistency in the Prokaryotic species concept. RESULTS: Correlation and regression analyses were used to determine the best-performing methods and the most influential parameters. GBDP was further enriched with a set of new features such as confidence intervals for intergenomic distances obtained via resampling or via the statistical models for DDH prediction and an additional family of distance functions. As in previous analyses, GBDP obtained the highest agreement with wet-lab DDH among all tested methods, but improved models led to a further increase in the accuracy of DDH prediction. Confidence intervals yielded stable results when inferred from the statistical models, whereas those obtained via resampling showed marked differences between the underlying distance functions. CONCLUSIONS: Despite the high accuracy of GBDP-based DDH prediction, inferences from limited empirical data are always associated with a certain degree of uncertainty. It is thus crucial to enrich in-silico DDH replacements with confidence-interval estimation, enabling the user to statistically evaluate the outcomes. Such methodological advancements, easily accessible through the web service at http://ggdc.dsmz.de, are crucial steps towards a consistent and truly genome sequence-based classification of microorganisms.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Genómica/métodos , Filogenia , Archaea/genética , Bacterias/genética , Intervalos de Confianza , ADN/química , Modelos Estadísticos , Hibridación de Ácido Nucleico/métodos , Análisis de Regresión , Análisis de Secuencia de ADN
20.
Arch Microbiol ; 195(6): 413-8, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23591456

RESUMEN

DNA-DNA hybridizations (DDH) play a key role in microbial species discrimination in cases when 16S rRNA gene sequence similarities are 97 % or higher. Using real-world 16S rRNA gene sequences and DDH data, we here re-investigate whether or not, and in which situations, this threshold value might be too conservative. Statistical estimates of these thresholds are calculated in general as well as more specifically for a number of phyla that are frequently subjected to DDH. Among several methods to infer 16S gene sequence similarities investigated, most of those routinely applied by taxonomists appear well suited for the task. The effects of using distinct DDH methods also seem to be insignificant. Depending on the investigated taxonomic group, a threshold between 98.2 and 99.0 % appears reasonable. In that way, up to half of the currently conducted DDH experiments could safely be omitted without a significant risk for wrongly differentiated species.


Asunto(s)
Bacterias/clasificación , Técnicas de Tipificación Bacteriana/métodos , Hibridación de Ácido Nucleico/métodos , Bacterias/genética , ADN Bacteriano , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA