Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Part Fibre Toxicol ; 17(1): 24, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32513186

RESUMEN

Given the global abundance and environmental persistence, exposure of humans and (aquatic) animals to micro- and nanoplastics is unavoidable. Current evidence indicates that micro- and nanoplastics can be taken up by aquatic organism as well as by mammals. Upon uptake, micro- and nanoplastics can reach the brain, although there is limited information regarding the number of particles that reaches the brain and the potential neurotoxicity of these small plastic particles.Earlier studies indicated that metal and metal-oxide nanoparticles, such as gold (Au) and titanium dioxide (TiO2) nanoparticles, can also reach the brain to exert a range of neurotoxic effects. Given the similarities between these chemically inert metal(oxide) nanoparticles and plastic particles, this review aims to provide an overview of the reported neurotoxic effects of micro- and nanoplastics in different species and in vitro. The combined data, although fragmentary, indicate that exposure to micro- and nanoplastics can induce oxidative stress, potentially resulting in cellular damage and an increased vulnerability to develop neuronal disorders. Additionally, exposure to micro- and nanoplastics can result in inhibition of acetylcholinesterase activity and altered neurotransmitter levels, which both may contribute to the reported behavioral changes.Currently, a systematic comparison of the neurotoxic effects of different particle types, shapes, sizes at different exposure concentrations and durations is lacking, but urgently needed to further elucidate the neurotoxic hazard and risk of exposure to micro- and nanoplastics.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Encéfalo/efectos de los fármacos , Microplásticos/toxicidad , Nanopartículas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Organismos Acuáticos/metabolismo , Cadena Alimentaria , Humanos , Microplásticos/química , Microplásticos/farmacocinética , Nanopartículas/química , Tamaño de la Partícula , Propiedades de Superficie , Distribución Tisular , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/farmacocinética
2.
Int J Mol Sci ; 20(5)2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30845775

RESUMEN

Prostate cancer (PCa) is one of the most commonly diagnosed cancers worldwide, accounting for almost 1 in 5 new cancer diagnoses in the US alone. The current non-invasive biomarker prostate specific antigen (PSA) has lately been presented with many limitations, such as low specificity and often associated with over-diagnosis. The dysregulation of miRNAs in cancer has been widely reported and it has often been shown to be specific, sensitive and stable, suggesting miRNAs could be a potential specific biomarker for the disease. Previously, we identified four miRNAs that are significantly upregulated in plasma from PCa patients when compared to healthy controls: miR-98-5p, miR-152-3p, miR-326 and miR-4289. This panel showed high specificity and sensitivity in detecting PCa (area under the curve (AUC) = 0.88). To investigate the specificity of these miRNAs as biomarkers for PCa, we undertook an in depth analysis on these miRNAs in cancer from the existing literature and data. Additionally, we explored their prognostic value found in the literature when available. Most studies showed these miRNAs are downregulated in cancer and this is often associated with cancer progression and poorer overall survival rate. These results suggest our four miRNA signatures could potentially become a specific PCa diagnostic tool of which prognostic potential should also be explored.


Asunto(s)
Biomarcadores de Tumor/genética , MicroARNs/genética , Neoplasias de la Próstata/diagnóstico , Regulación hacia Arriba , Área Bajo la Curva , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Pronóstico , Neoplasias de la Próstata/genética , Sensibilidad y Especificidad
3.
Bone Res ; 7: 13, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31044095

RESUMEN

While stromal interactions are essential in cancer adaptation to hormonal therapies, the effects of bone stroma and androgen deprivation on cancer progression in bone are poorly understood. Here, we tissue-engineered and validated an in vitro microtissue model of osteoblastic bone metastases, and used it to study the effects of androgen deprivation in this microenvironment. The model was established by culturing primary human osteoprogenitor cells on melt electrowritten polymer scaffolds, leading to a mineralized osteoblast-derived microtissue containing, in a 3D setting, viable osteoblastic cells, osteocytic cells, and appropriate expression of osteoblast/osteocyte-derived mRNA and proteins, and mineral content. Direct co-culture of androgen receptor-dependent/independent cell lines (LNCaP, C4-2B, and PC3) led cancer cells to display functional and molecular features as observed in vivo. Co-cultured cancer cells showed increased affinity to the microtissues, as a function of their bone metastatic potential. Co-cultures led to alkaline phosphatase and collagen-I upregulation and sclerostin downregulation, consistent with the clinical marker profile of osteoblastic bone metastases. LNCaP showed a significant adaptive response under androgen deprivation in the microtissues, with the notable appearance of neuroendocrine transdifferentiation features and increased expression of related markers (dopa decarboxylase, enolase 2). Androgen deprivation affected the biology of the metastatic microenvironment with stronger upregulation of androgen receptor, alkaline phosphatase, and dopa decarboxylase, as seen in the transition towards resistance. The unique microtissues engineered here represent a substantial asset to determine the involvement of the human bone microenvironment in prostate cancer progression and response to a therapeutic context in this microenvironment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA