Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Lung Cell Mol Physiol ; 322(1): L149-L161, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35015568

RESUMEN

Disruption of the lung endothelial barrier is a hallmark of acute respiratory distress syndrome (ARDS), for which no effective pharmacologic treatments exist. Prior work has demonstrated that FTY720 S-phosphonate (Tys), an analog of sphingosine-1-phosphate (S1P) and FTY720, exhibits potent endothelial cell (EC) barrier protective properties. In this study, we investigated the in vitro and in vivo efficacy of Tys against methicillin-resistant Staphylococcus aureus (MRSA), a frequent bacterial cause of ARDS. Tys-protected human lung EC from barrier disruption induced by heat-killed MRSA (HK-MRSA) or staphylococcal α-toxin and attenuated MRSA-induced cytoskeletal changes associated with barrier disruption, including actin stress fiber formation and loss of peripheral VE-cadherin and cortactin. Tys-inhibited Rho and myosin light chain (MLC) activation after MRSA and blocked MRSA-induced NF-κB activation and release of the proinflammatory cytokines, IL-6 and IL-8. In vivo, intratracheal administration of live MRSA in mice caused significant vascular leakage and leukocyte infiltration into the alveolar space. Pre- or posttreatment with Tys attenuated MRSA-induced lung permeability and levels of alveolar neutrophils. Posttreatment with Tys significantly reduced levels of bronchoalveolar lavage (BAL) VCAM-1 and plasma IL-6 and KC induced by MRSA. Dynamic intravital imaging of mouse lungs demonstrated Tys attenuation of HK-MRSA-induced interstitial edema and neutrophil infiltration into lung tissue. Tys did not directly inhibit MRSA growth or viability in vitro. In conclusion, Tys inhibits lung EC barrier disruption and proinflammatory signaling induced by MRSA in vitro and attenuates acute lung injury induced by MRSA in vivo. These results support the potential utility of Tys as a novel ARDS therapeutic strategy.


Asunto(s)
Lesión Pulmonar Aguda/microbiología , Lesión Pulmonar Aguda/patología , Permeabilidad de la Membrana Celular , Células Endoteliales/microbiología , Clorhidrato de Fingolimod/análogos & derivados , Staphylococcus aureus Resistente a Meticilina/fisiología , Organofosfonatos/farmacología , Animales , Antígenos CD/metabolismo , Cadherinas/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Citoprotección/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Activación Enzimática/efectos de los fármacos , Clorhidrato de Fingolimod/farmacología , Humanos , Inflamación/patología , Ratones , Cadenas Ligeras de Miosina/metabolismo , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteína de Unión al GTP rhoA/metabolismo
2.
Microvasc Res ; 129: 103954, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31730773

RESUMEN

Group V secretory phospholipase A2 (gVPLA2) is a potent inflammatory mediator in mammalian tissues that hydrolyzes phospholipids and initiates eicosanoid biosynthesis. Previous work has demonstrated that multiple inflammatory stimuli induce its expression and secretion in several cell types, including the lung endothelium. However, little is known about the mechanism(s) by which gVPLA2 inflammatory signaling is subsequently downregulated. Therefore, in this study we characterized potential clearance mechanisms for gVPLA2 in lung endothelial cells (EC). We observed that exogenous gVPLA2 is taken up rapidly by nutrient-starved human pulmonary artery EC (HPAEC) in vitro, and its cellular expression subsequently is reduced over several hours. In parallel experiments performed in pulmonary vascular EC isolated from mice genetically deficient in gVPLA2, the degradation of exogenously applied gVPLA2 occurs in a qualitatively similar fashion. This degradation is significantly attenuated in EC treated with ammonium chloride or chloroquine, which are lysosomal inhibitors that block autophagic flux. In contrast, the proteasomal inhibitor MG132 fails to prevent the clearance of gVPLA2. Both immunofluorescence microscopy and proximity ligation assay demonstrate the co-localization of LC3 and gVPLA2 during this process, indicating the association of gVPLA2 with autophagosomes. Nutrient starvation, a known inducer of autophagy, is sufficient to stimulate gVPLA2 degradation. These results suggest that a lysosome-mediated autophagy pathway contributes to gVPLA2 clearance from lung EC. These novel observations advance our understanding of the mechanism by which this key inflammatory enzyme is downregulated in the lung vasculature.


Asunto(s)
Autofagia , Células Endoteliales/enzimología , Fosfolipasas A2 Grupo V/metabolismo , Lisosomas/enzimología , Arteria Pulmonar/enzimología , Animales , Células Cultivadas , Estabilidad de Enzimas , Fosfolipasas A2 Grupo V/deficiencia , Fosfolipasas A2 Grupo V/genética , Humanos , Ratones Noqueados , Proteolisis , Factores de Tiempo
3.
Am J Physiol Lung Cell Mol Physiol ; 304(10): L689-700, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23525785

RESUMEN

Ventilation at high tidal volume may cause lung inflammation and barrier dysfunction that culminates in ventilator-induced lung injury (VILI). However, the mechanisms by which mechanical stimulation triggers the inflammatory response have not been fully elucidated. This study tested the hypothesis that onset of VILI is triggered by activation of secretory group V phospholipase A(2) (gVPLA2) in pulmonary vascular endothelium exposed to excessive mechanical stretch. High-magnitude cyclic stretch (18% CS) increased expression and surface exposure of gVPLA2 in human pulmonary endothelial cells (EC). CS-induced gVPLA2 activation was required for activation of ICAM-1 expression and polymorphonuclear neutrophil (PMN) adhesion to CS-preconditioned EC. By contrast, physiological CS (5% CS) had no effect on gVPLA2 activation or EC-PMN adhesion. CS-induced ICAM-1 expression and EC-PMN adhesion were attenuated by the gVPLA2-blocking antibody (MCL-3G1), general inhibitor of soluble PLA2, LY311727, or siRNA-induced EC gVPLA2 knockdown. In vivo, ventilator-induced lung leukocyte recruitment, cell and protein accumulation in the alveolar space, and total lung myeloperoxidase activity were strongly suppressed in gVPLA2 mouse knockout model or upon administration of MCL-3G1. These results demonstrate a novel role for gVPLA2 as the downstream effector of pathological mechanical stretch leading to an inflammatory response associated with VILI.


Asunto(s)
Lesión Pulmonar Aguda/enzimología , Fosfolipasas A2/biosíntesis , Neumonía/enzimología , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Animales , Células Cultivadas , Células Endoteliales/enzimología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio Vascular/enzimología , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Inducción Enzimática , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Leucocitos/enzimología , Leucocitos/metabolismo , Leucocitos/patología , Pulmón/enzimología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/enzimología , Neutrófilos/metabolismo , Neutrófilos/patología , Neumonía/metabolismo , Neumonía/patología , Estrés Mecánico , Volumen de Ventilación Pulmonar/fisiología , Lesión Pulmonar Inducida por Ventilación Mecánica/enzimología , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/patología
4.
Pulm Circ ; 2(2): 182-92, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22837859

RESUMEN

Acute lung injury (ALI) is characterized by inflammatory disruption of the alveolar-vascular barrier, resulting in severe respiratory compromise. Inhibition of the intercellular messenger protein, Group V phospholipase A(2) (gVPLA(2)), blocks vascular permeability caused by LPS both in vivo and in vitro. In this investigation we studied the mechanism by which recombinant gVPLA(2) increases permeability of cultured human pulmonary endothelial cells (EC). Exogenous gVPLA(2) (500 nM), a highly hydrolytic enzyme, caused a significant increase in EC permeability that began within minutes and persisted for >10 hours. However, the major hydrolysis products of gVPLA(2) (Lyso-PC, Lyso-PG, LPA, arachidonic acid) did not cause EC structural rearrangement or loss of barrier function at concentrations <10 µM. Higher concentrations (≥ 30 µM) of these membrane hydrolysis products caused some increased permeability but were associated with EC toxicity (measured by propidium iodide incorporation) that did not occur with barrier disruption by gVPLA(2) (500 nM). Pharmacologic inhibition of multiple intracellular signaling pathways induced by gVPLA(2) activity (ERK, p38, PI3K, cytosolic gIVPLA(2)) also did not prevent EC barrier disruption by gVPLA(2). Finally, pretreatment with heparinase to prevent internalization of gVPLA(2) did not inhibit EC barrier disruption by gVPLA(2). Our data thus indicate that gVPLA(2) increases pulmonary EC permeability directly through action as a membrane hydrolytic agent. Disruption of EC barrier function does not depend upon membrane hydrolysis products, gVPLA(2) internalization, or upregulation of downstream intracellular signaling.

5.
J Inflamm (Lond) ; 7: 14, 2010 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-20298597

RESUMEN

BACKGROUND: Cytosolic gIVaPLA2 is a critical enzyme in the generation of arachidonate metabolites and in induction of beta2-integrin adhesion in granulocytes. We hypothesized that gIVaPLA2 activation also is an essential downstream step for post adhesive migration of PMN in vitro. METHODS: Migration of PMNs caused by IL-8/CXCL8 was assessed using a transwell migration chamber. PMNs were pretreated with two structurally unrelated inhibitors of gIVaPLA2, arachidonyl trifluoromethylketone (TFMK) or pyrrophenone, prior to IL-8/CXCL8 exposure. The fraction of migrated PMNs present in the lower chamber was measured as total myeloperoxidase content. GIVaPLA2 enzyme activity was analyzed using [14C-PAPC] as specific substrate F-actin polymerization and cell structure were examined after rhodamine-phalloidin staining. RESULTS: IL-8/CXCL8-induced migration of PMNs was elicited in concentration- and time-dependent manner. Time-related phosphorylation and translocation of cytosolic gIVaPLA2 to the nucleus was observed for PMNs stimulated with IL-8/CXCL8 in concentration sufficient to cause upstream phosphorylation of MAPKs (ERK-1/2 and p38) and Akt/PKB. Inhibition of gIVaPLA2 corresponded to the magnitude of blockade of PMN migration. Neither AA nor LTB4 secretion was elicited following IL-8/CXCL8 activation. In unstimulated PMNs, F-actin was located diffusely in the cytosol; however, a clear polarized morphology with F-actin-rich ruffles around the edges of the cell was observed after activation with IL-8/CXCL8. Inhibition of gIVaPLA2 blocked change in cell shape and migration caused by IL-8/CXCL8 but did not cause F-actin polymerization or translocation of cytosolic F-actin to inner leaflet of the PMN membrane. CONCLUSION: We demonstrate that IL-8/CXCL8 causes a) phosphorylation and translocation of cytosolic gIVaPLA2 to the nucleus, b) change in cell shape, c) polymerization of F-actin, and d) chemoattractant/migration of PMN in vitro. Inhibition of gIVaPLA2 blocks the deformability and subsequent migration of PMNs caused by IL-8/CXCL8. Our data suggest that activation of gIVaPLA2 is an essential step in PMN migration in vitro.

6.
Am J Physiol Lung Cell Mol Physiol ; 296(6): L879-87, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19286925

RESUMEN

We investigated the regulatory role of 14-kDa secretory group V phospholipase A(2) (gVPLA(2)) in the development of acute lung injury (ALI) and neutrophilic inflammation (NI) caused by intratracheal administration of LPS. Experiments were conducted in gVPLA(2) knockout (pla2g5(-/-)) mice, which lack the gene, and gVPLA(2) wild-type littermate control (pla2g5(+/+)) mice. Indices of pulmonary injury were evaluated 24 h after intratracheal administration of LPS. Expression of gVPLA(2) in microsections of airways and mRNA content in lung homogenates were increased substantially in pla2g5(+/+) mice after LPS-administered compared with saline-treated pla2g5(+/+) mice. By contrast, expression of gVPLA(2) was neither localized in LPS- nor saline-treated pla2g5(-/-) mice. LPS also caused 1) reduced transthoracic static compliance, 2) lung edema, 3) neutrophilic infiltration, and 4) increased neutrophil myeloperoxidase activity in pla2g5(+/+) mice. These events were attenuated in pla2g5(-/-) mice exposed to LPS or in pla2g5(+/+) mice receiving MCL-3G1, a neutralizing MAb directed against gVPLA(2), before LPS administration. Our data demonstrate that gVPLA(2) is an inducible protein in pla2g5(+/+) mice but not in pla2g5(-/-) mice within 24 h after LPS treatment. Specific inhibition of gVPLA(2) with MCL-3G1 or gene-targeted mice lacking gVPLA(2) blocks ALI and attenuates NI caused by LPS.


Asunto(s)
Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/metabolismo , Fosfolipasas A2 Grupo V/genética , Fosfolipasas A2 Grupo V/metabolismo , Neutrófilos/inmunología , Lesión Pulmonar Aguda/inducido químicamente , Animales , Anticuerpos Monoclonales/farmacología , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Agua Pulmonar Extravascular/metabolismo , Fosfolipasas A2 Grupo V/inmunología , Lipopolisacáridos/farmacología , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Rendimiento Pulmonar/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tamaño de los Órganos , Peroxidasa/metabolismo , Neumonía/inducido químicamente , Neumonía/inmunología , Neumonía/metabolismo , ARN Mensajero/metabolismo , Sistemas de Mensajero Secundario/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA