Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
FEBS Lett ; 555(1): 40-4, 2003 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-14630316

RESUMEN

Photosystem I (PS I) is a large membrane protein complex that catalyzes the first step of solar conversion, the light-induced transmembrane electron transfer, and generates reductants for CO2 assimilation. It consists of 12 different proteins and 127 cofactors that perform light capturing and electron transfer. The function of PS I includes inter-protein electron transfer between PS I and smaller soluble electron transfer proteins. The structure of PS I is discussed with respect to the potential docking sites for the soluble electron acceptors, ferredoxin/flavodoxin, at the stromal side and the soluble electron donors, cytochrome c6/plastocyanin, at the luminal side of the PS I complex. Furthermore, the potential interaction sites with the peripheral antenna proteins are discussed.


Asunto(s)
Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/metabolismo , Sitios de Unión , Citocromos c6/química , Transporte de Electrón , Ferredoxinas/química , Flavodoxina/química , Sustancias Macromoleculares , Modelos Moleculares , Plastocianina/química , Solubilidad , Electricidad Estática
2.
Science ; 319(5859): 64-9, 2008 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-18079367

RESUMEN

We report the draft genome sequence of the model moss Physcomitrella patens and compare its features with those of flowering plants, from which it is separated by more than 400 million years, and unicellular aquatic algae. This comparison reveals genomic changes concomitant with the evolutionary movement to land, including a general increase in gene family complexity; loss of genes associated with aquatic environments (e.g., flagellar arms); acquisition of genes for tolerating terrestrial stresses (e.g., variation in temperature and water availability); and the development of the auxin and abscisic acid signaling pathways for coordinating multicellular growth and dehydration response. The Physcomitrella genome provides a resource for phylogenetic inferences about gene function and for experimental analysis of plant processes through this plant's unique facility for reverse genetics.


Asunto(s)
Evolución Biológica , Bryopsida/genética , Genoma de Planta , Adaptación Fisiológica , Animales , Arabidopsis/genética , Arabidopsis/fisiología , Bryopsida/fisiología , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/fisiología , Biología Computacional , Reparación del ADN , Deshidratación , Duplicación de Gen , Genes de Plantas , Magnoliopsida/genética , Magnoliopsida/fisiología , Redes y Vías Metabólicas/genética , Familia de Multigenes , Oryza/genética , Oryza/fisiología , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Secuencias Repetitivas de Ácidos Nucleicos , Retroelementos , Análisis de Secuencia de ADN , Transducción de Señal/genética
3.
Biochemistry ; 45(2): 331-45, 2006 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-16401064

RESUMEN

In photosynthetic membranes of cyanobacteria, algae, and higher plants, photosystem I (PSI) mediates light-driven transmembrane electron transfer from plastocyanin or cytochrome c6 to the ferredoxin-NADP complex. The oxidoreductase function of PSI is sensitized by a reversible photooxidation of primary electron donor P700, which launches a multistep electron transfer via a series of redox cofactors of the reaction center (RC). The excitation energy for the functioning of the primary electron donor in the RC is delivered via the chlorophyll core antenna in the complex with peripheral light-harvesting antennas. Supermolecular complexes of the PSI acquire remarkably different structural forms of the peripheral light-harvesting antenna complexes, including distinct pigment types and organizational principles. The PSI core antenna, being the main functional unit of the supercomplexes, provides an increased functional connectivity in the chlorophyll antenna network due to dense pigment packing resulting in a fast spread of the excitation among the neighbors. Functional connectivity within the network as well as the spectral overlap of antenna pigments allows equilibration of the excitation energy in the depth of the whole membrane within picoseconds and loss-free delivery of the excitation to primary donor P700 within 20-40 ps. Low-light-adapted cyanobacteria under iron-deficiency conditions extend this capacity via assembly of efficiently energy coupled rings of CP43-like complexes around the PSI trimers. In green algae and higher plants, less efficient energy coupling in the eukaryotic PSI-LHCI supercomplexes is probably a result of the structural adaptation of the Chl a/b binding LHCI peripheral antenna that not only extends the absorption cross section of the PSI core but participates in regulation of excitation flows between the two photosystems as well as in photoprotection.


Asunto(s)
Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/fisiología , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/fisiología , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Relación Estructura-Actividad
4.
Photosynth Res ; 85(1): 33-50, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15977058

RESUMEN

This review centers on the structural and functional organization of the light-harvesting system in the peripheral antenna of Photosystem I (LHC I) and its energy coupling to the Photosystem I (PS I) core antenna network in view of recently available structural models of the eukaryotic Photosystem I-LHC I complex, eukaryotic LHC II complexes and the cyanobacterial Photosystem I core. A structural model based on the 3D homology of Lhca4 with LHC II is used for analysis of the principles of pigment arrangement in the LHC I peripheral antenna, for prediction of the protein ligands for the pigments that are unique for LHC I and for estimates of the excitonic coupling in strongly interacting pigment dimers. The presence of chlorophyll clusters with strong pigment-pigment interactions is a structural feature of PS I, resulting in the characteristic red-shifted fluorescence. Analysis of the interactions between the PS I core antenna and the peripheral antenna leads to the suggestion that the specific function of the red pigments is likely to be determined by their localization with respect to the reaction center. In the PS I core antenna, the Chl clusters with a different magnitude of low energy shift contribute to better spectral overlap of Chls in the reaction center and the Chls of the antenna network, concentrate the excitation around the reaction center and participate in downhill enhancement of energy transfer from LHC II to the PS I core. Chlorophyll clusters forming terminal emitters in LHC I are likely to be involved in photoprotection against excess energy.


Asunto(s)
Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Conformación Proteica , Alineación de Secuencia , Homología de Secuencia de Aminoácido
5.
Photosynth Res ; 86(1-2): 203-15, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16172939

RESUMEN

Energy transfer processes in the chlorophyll antenna of the PS I-LHCI supercomplexes from the green alga Chlamydomonas reinhardtii have been studied at 77 K using transient absorption spectroscopy with multicolor excitation in the 640-670 nm region. Comparison of the kinetic data obtained at low and room temperatures indicates that the slow approximately approximately 100 ps excitation equilibration phase that is characteristic of energy coupling of the LHCI peripheral antenna to the PS I core at physiological temperatures (Melkozernov AN, Kargul J, Lin S, Barber J and Blankenship RE (2004) J Phys Chem B 108: 10547-10555) is not observed in the excitation dynamics of the PS I-LHCI supercomplex at 77 K. This suggests that at low temperatures the peripheral antenna is energetically uncoupled from the PS I core antenna. Under these conditions the observed kinetic phases on the time scales from subpicoseconds to tens of picoseconds represent the superposition of the processes occurring independently in the PS I core antenna and the Chl a/b containing LHCI antenna. In the PS I-LHCI supercomplex with two uncoupled antennas the excitation is channeled to the excitation sinks formed at low temperature by clusters of red pigments. A better spectral resolution of the transient absorption spectra at 77 K results in detection of two DeltaA bands originating from the rise of photobleaching on the picosecond time scale of two clearly distinguished pools of low energy absorbing Chls in the PS I-LHCI supercomplex. The first pool of low energy pigments absorbing at 687 nm is likely to originate from the red pigments in the LHCI where the Lhca1 protein is most abundant. The second pool at 697 nm is suggested to result either from the structural interaction of the LHCI and the PS I core or from other Lhca proteins in the antenna. The kinetic data are discussed based on recent structural models of the PS I-LHCI. It is proposed that the uncoupling of pigment pools may be a control mechanism that regulates energy flow in Photosystem I.


Asunto(s)
Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/metabolismo , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/metabolismo , Temperatura , Animales , Cinética , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína , Análisis Espectral
6.
J Biol Chem ; 278(45): 44542-51, 2003 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-12923171

RESUMEN

Peripheral chlorophyll a/b binding antenna of photosystem I (LHCI) from green algae and higher plants binds specific low energy absorbing chlorophylls (red pigments) that give rise to a unique red-shifted emission. A three-dimensional structural model of the Lhca4 polypeptide from the LHCI from higher plants was constructed on the basis of comparative sequence analysis, secondary structure prediction, and homology modeling using LHCII as a template. The obtained model of Lhca4 helps to visualize protein ligands to nine chlorophylls (Chls) and three potential His residues to extra Chls. Central domain of the Lhca4 comprising the first (A) and the third (C) transmembrane (TM) helices that binds 6 Chl molecules and two carotenoids is conserved structurally, whereas the interface between the first and the second TM helices and the outer surface of the second TM helix differ significantly among the LHCI and LHCII polypeptides. The model of Lhca4 predicts a histidine residue in the second TM helix, a potential binding site for extra Chl in close proximity to Chls a5 and b5 (labeling by Kühlbrandt). The interpigment interactions in the formed pigment cluster are suggested to cause a red spectral shift in absorption and emission. Modeling of the LHCI-730 heterodimer based on the model structures of Lhca1 and Lhca4 allowed us to suggest potential sites of pigment-pigment interactions that might be formed upon heterodimerization or docking of the LHCI dimers to the surface of PSI.


Asunto(s)
Complejos de Proteína Captadores de Luz/química , Modelos Moleculares , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema II/química , Subunidades de Proteína/química , Secuencia de Aminoácidos , Arginina , Sitios de Unión , Clorofila/metabolismo , Clorofila A , Proteínas de Unión a Clorofila , Simulación por Computador , Secuencia de Consenso , Dimerización , Datos de Secuencia Molecular , Estructura Molecular , Pigmentos Biológicos/metabolismo , Conformación Proteica , Estructura Secundaria de Proteína , Alineación de Secuencia
7.
Biochemistry ; 42(13): 3893-903, 2003 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-12667080

RESUMEN

Excitation energy transfer and trapping processes in an iron stress-induced supercomplex of photosystem I from the cyanobacterium Synechocystis sp. PCC6803 were studied by time-resolved absorption and fluorescence spectroscopy on femtosecond and picosecond time scales. The data provide evidence that the energy transfer dynamics of the CP43'-PSI supercomplex are consistent with energy transfer processes that occur in the Chl a network of the PSI trimer antenna. The most significant absorbance changes in the CP43'-PSI supercomplex are observed within the first several picoseconds after the excitation into the spectral region of CP43' absorption (665 nm). The difference time-resolved spectra (DeltaDeltaA) resulting from subtraction of the PSI trimer kinetic data from the CP43'-PSI supercomplex data indicate three energy transfer processes with time constants of 0.2, 1.7, and 10 ps. The 0.2 ps kinetic phase is tentatively interpreted as arising from energy transfer processes originating within or between the CP43' complexes. The 1.7 ps phase is interpreted as possibly arising from energy transfer from the CP43' ring to the PSI trimer via closely located clusters of Chl a in CP43' and the PSI core, while the slower 10 ps process might reflect the overall excitation transfer from the CP43' ring to the PSI trimer. These three fast kinetic phases are followed by a 40 ps overall excitation decay in the supercomplex, in contrast to a 25 ps overall decay observed in the trimer complex without CP43'. Excitation of Chl a in both the CP43'-PSI antenna supercomplex and the PSI trimer completely decays within 100 ps, resulting in the formation of P700(+). The data indicate that there is a rapid and efficient energy transfer between the outer antenna ring and the PSI reaction center complex.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Cianobacterias/química , Complejos de Proteína Captadores de Luz , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Clorofila/metabolismo , Transferencia de Energía , Cinética , Fotólisis , Complejo de Proteína del Fotosistema I , Espectrometría de Fluorescencia , Termodinámica , Factores de Tiempo
8.
Biochemistry ; 43(6): 1478-87, 2004 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-14769024

RESUMEN

The main-form (MFPCP) and high-salt (HSPCP) peridinin-chlorophyll a proteins from the dinoflagellate Amphidinium carterae were investigated using absorption, fluorescence, fluorescence excitation, two-photon, and fast-transient optical spectroscopy. Pigment analysis has demonstrated previously that MFPCP contains eight peridinins and two chlorophyll (Chl) a molecules, whereas HSPCP has six peridinins and two Chl a molecules [Sharples, F. P., et al. (1996) Biochim. Biophys. Acta 1276, 117-123]. Absorption spectra of the complexes were recorded at 10 K and analyzed in the 400-600 nm region by summing the individual 10 K spectra of Chl a and peridinin recorded in 2-MTHF. The absorption spectral profiles of the complexes in the Q(y) region between 650 and 700 nm were fit using Gaussian functions. The absorption and fluorescence spectra from both complexes exhibit several distinguishing features that become evident only at cryogenic temperatures. In particular, at low temperatures the Q(y) transitions of the Chls bound in the HSPCP complex are split into two well-resolved bands. Fluorescence excitation spectroscopy has revealed that the peridinin-to-Chl a energy transfer efficiency is high (>95%). Transient absorption spectroscopy has been used to measure the rate of energy transfer between the two bound Chls which is a factor of 2.9 slower in HSPCP than in MFPCP. The kinetic data are interpreted in terms of the Förster mechanism describing energy transfer between weakly coupled, spatially fixed, donor-acceptor Chl a molecules. The study provides insight into the molecular factors that control energy transfer in this class of light-harvesting pigment-protein complexes.


Asunto(s)
Carotenoides/química , Clorofila/química , Dinoflagelados/química , Proteínas Protozoarias/química , Sulfato de Amonio/química , Animales , Tampones (Química) , Clorofila A , Congelación , Fotones , Pigmentos Biológicos/química , Acetato de Sodio/química , Cloruro de Sodio/química , Espectrometría de Fluorescencia/métodos , Espectrofotometría/métodos , Análisis Espectral , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA