Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 588(7839): 688-692, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33268895

RESUMEN

Inflammasomes are important sentinels of innate immune defence that are activated in response to diverse stimuli, including pathogen-associated molecular patterns (PAMPs)1. Activation of the inflammasome provides host defence against aspergillosis2,3, which is a major health concern for patients who are immunocompromised. However, the Aspergillus fumigatus PAMPs that are responsible for inflammasome activation are not known. Here we show that the polysaccharide galactosaminogalactan (GAG) of A. fumigatus is a PAMP that activates the NLRP3 inflammasome. The binding of GAG to ribosomal proteins inhibited cellular translation machinery, and thus activated the NLRP3 inflammasome. The galactosamine moiety bound to ribosomal proteins and blocked cellular translation, which triggered activation of the NLRP3 inflammasome. In mice, a GAG-deficient Aspergillus mutant (Δgt4c) did not elicit protective activation of the inflammasome, and this strain exhibited enhanced virulence. Moreover, administration of GAG protected mice from colitis induced by dextran sulfate sodium in an inflammasome-dependent manner. Thus, ribosomes connect the sensing of this fungal PAMP to the activation of an innate immune response.


Asunto(s)
Aspergilosis/prevención & control , Aspergillus fumigatus/metabolismo , Inflamasomas/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Polisacáridos/metabolismo , Animales , Aspergilosis/inmunología , Aspergilosis/microbiología , Aspergillus fumigatus/inmunología , Biopelículas , Colitis/inducido químicamente , Colitis/prevención & control , Sulfato de Dextran , Femenino , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Inmunidad Innata , Inflamasomas/inmunología , Masculino , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Polisacáridos/inmunología , Biosíntesis de Proteínas , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo
2.
Mycoses ; 67(4): e13719, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38551063

RESUMEN

BACKGROUND: Surveillance studies are crucial for updating trends in Aspergillus species and antifungal susceptibility information. OBJECTIVES: Determine the Aspergillus species distribution and azole resistance prevalence during this 3-year prospective surveillance study in a Spanish hospital. MATERIALS AND METHODS: Three hundred thirty-five Aspergillus spp. clinical and environmental isolates were collected during a 3-year study. All isolates were screened for azole resistance using an agar-based screening method and resistance was confirmed by EUCAST antifungal susceptibility testing. The azole resistance mechanism was confirmed by sequencing the cyp51A gene and its promoter. All Aspergillus fumigatus strains were genotyped using TRESPERG analysis. RESULTS: Aspergillus fumigatus was the predominant species recovered with a total of 174 strains (51.94%). The rest of Aspergillus spp. were less frequent: Aspergillus niger (14.93%), Aspergillus terreus (9.55%), Aspergillus flavus (8.36%), Aspergillus nidulans (5.37%) and Aspergillus lentulus (3.28%), among other Aspergillus species (6.57%). TRESPERG analysis showed 99 different genotypes, with 72.73% of the strains being represented as a single genotype. Some genotypes were common among clinical and environmental A. fumigatus azole-susceptible strains, even when isolated months apart. We describe the occurrence of two azole-resistant A. fumigatus strains, one clinical and another environmental, that were genotypically different and did not share genotypes with any of the azole-susceptible strains. CONCLUSIONS: Aspergillus fumigatus strains showed a very diverse population although several genotypes were shared among clinical and environmental strains. The isolation of azole-resistant strains from both settings suggest that an efficient analysis of clinical and environmental sources must be done to detect azole resistance in A. fumigatus.


Asunto(s)
Aspergilosis , Aspergillus nidulans , Humanos , Azoles/farmacología , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Aspergilosis/microbiología , Prevalencia , Estudios Prospectivos , Farmacorresistencia Fúngica , Aspergillus fumigatus , Hospitales , Proteínas Fúngicas/genética , Pruebas de Sensibilidad Microbiana
4.
Mycoses ; 65(2): 178-185, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34806786

RESUMEN

Antifungal susceptibility testing is an essential tool for guiding antifungal therapy. Reference methods are complex and usually only available in specialised laboratories. We have designed an expanded agar-based screening method for the detection of azole-resistant Aspergillus fumigatus isolates. Normally, identification of resistance mechanisms is obtained only after sequencing the cyp51A gene and promoter. However, our screening method provides azole resistance detection and presumptive resistance mechanisms identification. A previous agar-based method consisting of four wells containing voriconazole, itraconazole, posaconazole and a growth control, detected azole resistance to clinical azoles. Here, we have modified the concentrations of voriconazole and posaconazole to adapt to the updated EUCAST breakpoints against A. fumigatus. We have also expanded the method to include environmental azoles to assess azole resistance and the azole resistance mechanism involved. We used a collection of A. fumigatus including 54 azole-resistant isolates with Cyp51A modifications (G54, M220, G448S, TR53 , TR34 /L98H, TR46 /Y121F/T289A, TR34 /L98H/S297T/F495I), and 50 azole susceptible isolates with wild-type Cyp51A. The screening method detects azole-resistant A. fumigatus isolates when there is growth in any of the azole-containing wells after 48h. The growth pattern in the seven azoles tested helps determine the underlying azole resistance mechanism. This approach is designed for surveillance screening of A. fumigatus azole-resistant isolates and can be useful for the clinical management of patients prior to antifungal susceptibility testing confirmation.


Asunto(s)
Antifúngicos , Aspergillus fumigatus , Azoles , Farmacorresistencia Fúngica , Agar , Antifúngicos/farmacología , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Azoles/farmacología , Farmacorresistencia Fúngica/efectos de los fármacos , Proteínas Fúngicas/genética , Pruebas de Sensibilidad Microbiana , Voriconazol/farmacología
5.
Appl Environ Microbiol ; 87(5)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33355104

RESUMEN

Drug resistance poses a serious threat to human health and agricultural production. Azole drugs are the largest group of 14-α sterol demethylation inhibitor fungicides that are used both in agriculture and in clinical practice. As plant pathogenic molds share their natural environment with fungi that cause opportunistic infections in humans, both are exposed to a strong and persistent pressure of demethylase inhibitor (DMI) fungicides, including imidazole and triazole drugs. As a result, a loss of efficacy has occurred for this drug class in several species. In the clinical setting, Aspergillus fumigatus azole resistance is a growing public health problem and finding the source of this resistance has gained much attention. It is urgent to determine if there is a direct link between the agricultural use of azole compounds and the different A. fumigatus resistance mechanisms described for clinical triazoles. In this work we have performed A. fumigatus susceptibility testing to clinical triazoles and crop protection DMIs using a collection of azole susceptible and resistant strains which harbor most of the described azole resistance mechanisms. Various DMI susceptibility profiles have been found in the different A. fumigatus populations groups based on their azole resistance mechanism and previous WGS analysis, which suggests that the different resistance mechanisms have different origins and are specifically associated to the local use of a particular DMI.Importance Due to the worldwide emergence of A. fumigatus azole resistance, this opportunistic pathogen poses a serious health threat and, therefore, it has been included in the Watch List of the CDC 2019 Antimicrobial Resistance Threats Report. Azoles play a critical role in the control and management of fungal diseases, not only in the clinical setting but also in agriculture. Thus, azole resistance leads to a limited therapeutic arsenal which reduces the treatment options for aspergillosis patients, increasing their mortality risk. Evidence is needed to understand whether A. fumigatus azole resistance is emerging from an agricultural source due to the extended use of demethylase inhibitors as fungicides, or whether it is coming from somewhere else such as the clinical setting. If the environmental route is demonstrated, the current use and management of azole antifungal compounds might be forced to change in the forthcoming years.

6.
Molecules ; 26(19)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34641518

RESUMEN

Invasive aspergillosis, mainly caused by Aspergillus fumigatus, can lead to severe clinical outcomes in immunocompromised individuals. Antifungal treatment, based on the use of azoles, is crucial to increase survival rates. However, the recent emergence of azole-resistant A. fumigatus isolates is affecting the efficacy of the clinical therapy and lowering the success rate of azole strategies against aspergillosis. Azole resistance mechanisms described to date are mainly associated with mutations in the azole target gene cyp51A that entail structural changes in Cyp51A or overexpression of the gene. However, strains lacking cyp51A modifications but resistant to clinical azoles have recently been detected. Some genes have been proposed as new players in azole resistance. In this study, the gene hmg1, recently related to azole resistance, and its paralogue hmg2 were studied in a collection of fifteen azole-resistant strains without cyp51A modifications. Both genes encode HMG-CoA reductases and are involved in the ergosterol biosynthesis. Several mutations located in the sterol sensing domain (SSD) of Hmg1 (D242Y, G307D/S, P309L, K319Q, Y368H, F390L and I412T) and Hmg2 (I235S, V303A, I312S, I360F and V397C) were detected. The role of these mutations in conferring azole resistance is discussed in this work.


Asunto(s)
Antifúngicos/farmacología , Aspergillus fumigatus/efectos de los fármacos , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Hidroximetilglutaril-CoA Reductasas/genética , Antifúngicos/química , Aspergilosis/microbiología , Aspergillus fumigatus/genética , Aspergillus fumigatus/aislamiento & purificación , Azoles/química , Sistema Enzimático del Citocromo P-450/genética , Farmacorresistencia Fúngica/efectos de los fármacos , Proteínas Fúngicas/química , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Humanos , Hidroximetilglutaril-CoA Reductasas/química , Pruebas de Sensibilidad Microbiana , Mutación Puntual , Regiones Promotoras Genéticas , Secuenciación Completa del Genoma
7.
Artículo en Inglés | MEDLINE | ID: mdl-31285229

RESUMEN

Antifungal resistance is one of the major causes of the increasing mortality rates for fungal infections, especially for those caused by Aspergillus spp. A surveillance program was established in 2014 in the Spanish National Center for Microbiology for tracking resistance in the most prevalent Aspergillus species. A total of 273 samples were included in the study and were initially classified as susceptible or resistant according to EUCAST breakpoints. Several Aspergillus cryptic species were found within the molecularly identified isolates. Cyp51 mutations were characterized for Aspergillus fumigatus, Aspergillus terreus, and Aspergillus flavussensu stricto strains that were classified as resistant. Three A. fumigatus sensu stricto strains carried the TR34/L98H resistance mechanism, while two harbored G54R substitution and one harbored the TR46/Y121F/T289A mechanism. Seventeen strains had no mutations in cyp51A, with ten of them resistant only to isavuconazole. Three A. terreussensu stricto strains harbored D344N substitution in cyp51A, one of them combined with M217I, and another carried an A249G novel mutation. Itraconazole-resistant A. flavussensu stricto strains harbored P220L and H349R alterations in cyp51A and cyp51C, respectively, that need further investigation on their implication in azole resistance.


Asunto(s)
Antifúngicos/farmacología , Aspergillus flavus/genética , Aspergillus fumigatus/genética , Aspergillus/genética , Sistema Enzimático del Citocromo P-450/genética , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Sustitución de Aminoácidos , Aspergilosis/tratamiento farmacológico , Aspergilosis/epidemiología , Aspergilosis/microbiología , Aspergillus/efectos de los fármacos , Aspergillus/enzimología , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/enzimología , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/enzimología , Expresión Génica , Itraconazol/farmacología , Pruebas de Sensibilidad Microbiana , Mutación , Nitrilos/farmacología , Vigilancia en Salud Pública , Piridinas/farmacología , España/epidemiología , Triazoles/farmacología , Voriconazol/farmacología
8.
Artículo en Inglés | MEDLINE | ID: mdl-29632011

RESUMEN

Triazole antifungal compounds are the first treatment choice for invasive aspergillosis. However, in the last decade the rate of azole resistance among Aspergillus fumigatus strains has increased notoriously. The main resistance mechanisms are well defined and mostly related to point mutations of the azole target, 14-α sterol demethylase (cyp51A), with or without tandem repeat integrations in the cyp51A promoter. Furthermore, different combinations of five Cyp51A mutations (F46Y, M172V, N248T, D255E, and E427K) have been reported worldwide in about 10% of all A. fumigatus isolates tested. The azole susceptibility profile of these strains shows elevated azole MICs, although on the basis of the azole susceptibility breakpoints, these strains are not considered azole resistant. The purpose of the study was to determine whether these cyp51A polymorphisms (single nucleotide polymorphisms [SNPs]) are responsible for the azole susceptibility profile and whether they are reflected in a poorer azole treatment response in vivo that could compromise patient treatment and outcome. A mutant with a cyp51A deletion was generated and became fully susceptible to all azoles tested. Also, three cyp51A gene constructions with different combinations of SNPs were generated and reintroduced into an azole-susceptible wild-type (WT) strain (the ΔakuBKU80 strain). The alternative model host Galleria mellonella was used to compare the virulence and voriconazole response of G. mellonella larvae infected with A. fumigatus strains with WT cyp51A or cyp51A with SNPs. All strains were pathogenic in G. mellonella larvae, although they did not respond similarly to voriconazole therapeutic doses. Finally, the full genomes of these strains were sequenced and analyzed in comparison with those of A. fumigatus WT strains, revealing that they belong to different strain clusters or lineages.


Asunto(s)
Antifúngicos/farmacología , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Sistema Enzimático del Citocromo P-450/genética , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Voriconazol/farmacología , Sustitución de Aminoácidos/genética , Animales , Aspergillus fumigatus/aislamiento & purificación , Humanos , Pruebas de Sensibilidad Microbiana , Mariposas Nocturnas/microbiología , Mutación Puntual/genética , Polimorfismo de Nucleótido Simple/genética , Triazoles/farmacología
9.
Mycoses ; 61(3): 172-178, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29082564

RESUMEN

A clear link between mating type and virulence has been demonstrated for some fungal pathogens, but not for Aspergillus fumigatus as of yet. An association between mating type and invasiveness has recently been established. The mating type proportion (MAT1-1:MAT1-2) of 213 A. fumigatus strains was determined (48.5%:51.5%) and results were in agreement with previous studies. However, these percentages changed when the strain collection was divided into azole-susceptible and -resistant strains. The 163 susceptible strains kept these proportions, but among the 50 azole-resistant strains 60.0% MAT1-1 and 40% MAT1-2 were found. Moreover, looking at the clinical outcome associated to 27 azole-resistant strains, we found that MAT1-1 was linked to a high mortality rate (64%), whereas the rate associated to MAT1-2 genotype was markedly lower (15%). The pathogenicity linked to the Mat type was tested in a Galleria mellonella model of infection, showing that MAT1-1 strains were consistently more pathogenic than MAT1-2, independently of their susceptibility phenotype. This data would suggest that A. fumigatus mating type determination at the time of diagnosis could have a prognostic value in invasive aspergillosis.


Asunto(s)
Aspergilosis/diagnóstico , Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidad , Genes del Tipo Sexual de los Hongos , Infecciones Fúngicas Invasoras/diagnóstico , Animales , Aspergilosis/microbiología , Aspergilosis/mortalidad , Aspergillus fumigatus/efectos de los fármacos , Azoles/farmacología , Modelos Animales de Enfermedad , Proteínas Fúngicas/genética , Genotipo , Humanos , Infecciones Fúngicas Invasoras/microbiología , Infecciones Fúngicas Invasoras/mortalidad , Larva/microbiología , Lepidópteros/microbiología , Pronóstico , Virulencia
10.
Mycoses ; 60(1): 40-50, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27633849

RESUMEN

Cryptococcal meningitis is one of the leading causes of death in HIV/AIDS patients. Our aim was to in order to characterise the epidemiology, antifungal susceptibility pattern and virulence of 28 Cyptococcus sp. strains recovered from 12 AIDS patients during two years in a Spanish single institution. Antifungal susceptibility testing was performed according to the CLSI protocols. Clinical strains were molecularly characterised by serotyping, mating type, PCR fingerprinting (M13 and GACA4 microsatellites) and analysis of two rDNA regions (IGS1 and ITS). Sequencing of the ERG11 gene was used to explore mechanisms of fluconazole resistance. Differences in virulence between species were studied in a Galleria mellonella infection model. Cryptococcus deneoformans and C. deneoformans x Cryptococcus neoformans hybrids were the most frequent variety (65%) followed by C. neoformans (35%). Strains were categorised according to 13 microsatellite genotypes and mixed infections could be detected in three patients. Twenty-nine per cent of the strains were fluconazole resistant. In one of the patients, the fluconazole resistance phenotype was associated with a point mutation in the ERG11 gene responsible for the amino acid substitution G470R. C. neoformans strains were able to kill G. mellonella larvae more efficiently than C. deneoformans and hybrids between both species. Precisely molecular characterisation of C. neoformans species is important for an accurate patient's management.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida/complicaciones , Antifúngicos/farmacología , Criptococosis/microbiología , Cryptococcus/genética , Cryptococcus/patogenicidad , Síndrome de Inmunodeficiencia Adquirida/microbiología , Animales , Criptococosis/tratamiento farmacológico , Criptococosis/epidemiología , Cryptococcus/efectos de los fármacos , Cryptococcus/aislamiento & purificación , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/genética , Cryptococcus neoformans/aislamiento & purificación , Cryptococcus neoformans/patogenicidad , Dermatoglifia del ADN , ADN de Hongos/química , ADN de Hongos/aislamiento & purificación , ADN Intergénico/química , ADN Intergénico/genética , Farmacorresistencia Fúngica Múltiple/genética , Fluconazol/farmacología , Humanos , Larva/microbiología , Meningitis Criptocócica/tratamiento farmacológico , Meningitis Criptocócica/epidemiología , Meningitis Criptocócica/microbiología , Tipificación Molecular , Mariposas Nocturnas/microbiología , Mutación , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Serotipificación , España/epidemiología , Virulencia
11.
Enferm Infecc Microbiol Clin ; 34(9): 571-576, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26804792

RESUMEN

INTRODUCTION: A steroid-immunosuppressed rat model of invasive pulmonary aspergillosis was use to examine the usefulness of galactomannan enzyme immunoassay (GM) and quantitative real time PCR (RT-PCR) in evaluating the association between response and exposure after a high dose of prophylactic posaconazole. METHODS: Two different strains of Aspergillus fumigatus with different in vitro posaconazole susceptibility were used. RESULTS: Serum concentrations demonstrated similar posaconazole exposure for all treated animals. However, response to posaconazole relied on the in vitro susceptibility of the infecting strain. After prophylaxis, galactomannan index and fungal burden only decreased in those animals infected with the most susceptible strain. CONCLUSION: This study demonstrated that both biomarkers may be useful tools for predicting efficacy of antifungal compounds in prophylaxis.


Asunto(s)
Antifúngicos/uso terapéutico , Mananos/sangre , Aspergilosis Pulmonar/tratamiento farmacológico , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Triazoles/uso terapéutico , Animales , Antifúngicos/sangre , Biomarcadores/sangre , Galactosa/análogos & derivados , Técnicas para Inmunoenzimas , Aspergilosis Pulmonar/sangre , Ratas , Triazoles/sangre
12.
Antimicrob Agents Chemother ; 59(12): 7866-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26416854
13.
Antimicrob Agents Chemother ; 59(9): 5145-53, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26055366

RESUMEN

Fungal infections have increased dramatically in the last 2 decades, and fighting infectious diseases requires innovative approaches such as the combination of two drugs acting on different targets or even targeting a salvage pathway of one of the drugs. The fungal cell wall biosynthesis is inhibited by the clinically used antifungal drug caspofungin. This antifungal activity has been found to be potentiated by humidimycin, a new natural product identified from the screening of a collection of 20,000 microbial extracts, which has no major effect when used alone. An analysis of transcriptomes and selected Aspergillus fumigatus mutants indicated that humidimycin affects the high osmolarity glycerol response pathway. By combining humidimycin and caspofungin, a strong increase in caspofungin efficacy was achieved, demonstrating that targeting different signaling pathways provides an excellent basis to develop novel anti-infective strategies.


Asunto(s)
Antifúngicos/farmacología , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/metabolismo , Equinocandinas/farmacología , Péptidos/farmacología , Caspofungina , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Humanos , Lipopéptidos , Transducción de Señal/efectos de los fármacos
14.
Cell Microbiol ; 16(4): 548-64, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24245710

RESUMEN

Aspergillus fumigatus can invade the lungs of immunocompromised individuals causing a life-threatening disease called invasive pulmonary aspergillosis (IPA). To grow in the lungs, A. fumigatus obtains from the host all nutrients, including zinc. In living tissues, however, most zinc is tightly bound to zinc-binding proteins. Moreover, during infection the bioavailability of zinc can be further decreased by calprotectin, an antimicrobial Zn/Mn-chelating protein that is released by neutrophils in abscesses. Nevertheless, A. fumigatus manages to uptake zinc from and grow within the lungs of susceptible individuals. Thus, in this study we investigated the role of the zrfA, zrfB and zrfC genes, encoding plasma membrane zinc transporters, in A. fumigatus virulence. We showed that zrfC is essential for virulence in the absence of zrfA and zrfB, which contribute to fungal pathogenesis to a lesser extent than zrfC and are dispensable for virulence in the presence of zrfC. The special ability of ZrfC to scavenge and uptake zinc efficiently from lungtissue depended on its N-terminus, which is absent in the ZrfA and ZrfB transporters. In addition, under Zn- and/or Mn-limiting conditions zrfC enables A. fumigatus to grow in the presence of calprotectin, which is detected in fungal abscesses of non-leucopenic animals. This study extends our knowledge about the pathobiology of A. fumigatus and suggests that fungal zinc uptake could be a promising target for new antifungals.


Asunto(s)
Aspergillus fumigatus/enzimología , Aspergillus fumigatus/patogenicidad , Proteínas Portadoras/metabolismo , Complejo de Antígeno L1 de Leucocito/metabolismo , Manganeso/metabolismo , Zinc/metabolismo , Aspergillus fumigatus/crecimiento & desarrollo , Virulencia
15.
Cell Microbiol ; 16(12): 1784-805, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24946720

RESUMEN

Although chitin is an essential component of the fungal cell wall (CW), its biosynthesis and role in virulence is poorly understood. In Aspergillus fumigatus, there are eight chitin synthase (CHS) genes belonging to two families CHSA-C, CHSG in family 1 and CHSF, CHSD, CSMA, CSMB in family 2). To understand the function of these CHS genes, their single and multiple deletions were performed using ß-rec/six system to be able to delete all genes within each family (up to a quadruple ΔchsA/C/B/G mutant in family 1 and a quadruple ΔcsmA/csmB/F/D mutant in family 2). Radial growth, conidiation, mycelial/conidial morphology, CW polysaccharide content, Chs-activity, susceptibility to antifungal molecules and pathogenicity in experimental animal aspergillosis were analysed for all the mutants. Among the family 1 CHS, ΔchsA, ΔchsB and ΔchsC mutants showed limited impact on chitin synthesis. In contrast, there was reduced conidiation, altered mycelial morphotype and reduced growth and Chs-activity in the ΔchsG and ΔchsA/C/B/G mutants. In spite of this altered phenotype, these two mutants were as virulent as the parental strain in the experimental aspergillosis models. Among family 2 CHS, phenotypic defects mainly resulted from the CSMA deletion. Despite significant morphological mycelial and conidial growth phenotypes in the quadruple ΔcsmA/csmB/F/D mutant, the chitin content was poorly affected by gene deletions in this family. However, the entire mycelial cell wall structure was disorganized in the family 2 mutants that may be related to the reduced pathogenicity of the quadruple ΔcsmA/csmB/F/D mutant strain compared to the parental strain, in vivo. Deletion of the genes encompassing the two families (ΔcsmA/csmB/F/G) showed that in spite of being originated from an ancient divergence of fungi, these two families work cooperatively to synthesize chitin in A. fumigatus and demonstrate the essentiality of chitin biosynthesis for vegetative growth, resistance to antifungal drugs, and virulence of this filamentous fungus.


Asunto(s)
Aspergillus fumigatus/enzimología , Aspergillus fumigatus/crecimiento & desarrollo , Quitina Sintasa/metabolismo , Genes Fúngicos , Animales , Aspergilosis/microbiología , Aspergilosis/patología , Aspergillus fumigatus/citología , Aspergillus fumigatus/genética , Quitina Sintasa/genética , Modelos Animales de Enfermedad , Marcación de Gen , Ratones , Micelio/citología , Micelio/crecimiento & desarrollo , Eliminación de Secuencia , Esporas Fúngicas/citología , Esporas Fúngicas/crecimiento & desarrollo , Análisis de Supervivencia
16.
Br J Haematol ; 166(4): 471-84, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24749533

RESUMEN

Mortality linked to invasive fungal diseases remains very high despite the availability of novel antifungals and new therapeutic strategies. Candida albicans and Aspergillus fumigatus account for most invasive mycosis produced by yeast or moulds, respectively. Other Candida non-albicans are increasingly being reported and newly emerging, as well as cryptic, filamentous fungi often cause disseminated infections in immunocompromised hosts. Management of invasive fungal infections is becoming a challenge as emerging fungal pathogens generally show poor response to many antifungals. The ability of reference antifungal susceptibility testing methods to detect emerging resistance patterns, together with the molecular characterization of antifungal resistance mechanisms, are providing useful information to optimize the effectiveness of antifungal therapy. The current status of antifungal resistance epidemiology with special emphasis on the molecular resistant mechanisms that have been described in the main pathogenic fungal species are reviewed.


Asunto(s)
Antifúngicos/uso terapéutico , Farmacorresistencia Fúngica , Micosis/tratamiento farmacológico , Humanos , Pruebas de Sensibilidad Microbiana , Micosis/epidemiología
17.
J Clin Microbiol ; 52(10): 3707-21, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25100816

RESUMEN

Aspergillus section Fumigati contains 12 clinically relevant species. Among these Aspergillus species, A. fumigatus is the most frequent agent of invasive aspergillosis, followed by A. lentulus and A. viridinutans. Genealogical concordance and mating experiments were performed to examine the relationship between phylogenetic distance and mating success in these three heterothallic species. Analyses of 19 isolates from section Fumigati revealed the presence of three previously unrecognized species within the broadly circumscribed species A. viridinutans. A single mating type was found in the new species Aspergillus pseudofelis and Aspergillus pseudoviridinutans, but in Aspergillus parafelis, both mating types were present. Reciprocal interspecific pairings of all species in the study showed that the only successful crosses occurred with the MAT1-2 isolates of both A. parafelis and A. pseudofelis. The MAT1-2 isolate of A. parafelis was fertile when paired with the MAT1-1 isolates of A. fumigatus, A. viridinutans, A. felis, A. pseudoviridinutans, and A. wyomingensis but was not fertile with the MAT1-1 isolate of A. lentulus. The MAT1-2 isolates of A. pseudofelis were fertile when paired with the MAT1-1 isolate of A. felis but not with any of the other species. The general infertility in the interspecies crossings suggests that genetically unrelated species are also biologically incompatible, with the MAT1-2 isolates of A. parafelis and A. pseudofelis being the exception. Our findings underscore the importance of genealogical concordance analysis for species circumscription, as well as for accurate species identification, since misidentification of morphologically similar pathogens with differences in innate drug resistance may be of grave consequences for disease management.


Asunto(s)
Aspergillus/crecimiento & desarrollo , Aspergillus/genética , Cruzamientos Genéticos , Genes del Tipo Sexual de los Hongos , Animales , Aspergilosis/microbiología , Aspergilosis/patología , Aspergillus/clasificación , Aspergillus/aislamiento & purificación , ADN Bacteriano/química , ADN Bacteriano/genética , Modelos Animales de Enfermedad , Humanos , Lepidópteros , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Virulencia
18.
Med Mycol ; 52(5): 472-81, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24847037

RESUMEN

The epidemiology of Candida parapsilosis and the closely related species C. orthopsilosis and C. metapsilosis has changed in recent years, justify the need to identify this complex at the species level. In this study we investigate the intergenic spacer 1 (IGS1) of the ribosomal DNA (rDNA) to evaluate the utility of this gene region as a phylogenetic molecular marker and the suitability of a high-resolution melting (HRM) strategy based on this region for identification of members of the C. parapsilosis spp. complex. We sequenced the IGS1 and the internal transcribed spacer (ITS) regions of the rDNA from 33 C. parapsilosis sensu lato strains. Although both regions are useful in identifying species, comparative sequence analysis showed that the diversity in the IGS1 region was higher than in the ITS sequences. We also developed an HRM analysis that reliably identifies C. parapsilosis spp. complex based on the amplification of 70 bp in the IGS1 region. All isolates were correctly identified with a confidence interval >98%. Our results demonstrate that HRM analysis based on the IGS1 region is a powerful tool for distinguishing C. parapsilosis from cryptic species.


Asunto(s)
Candida/aislamiento & purificación , Candidiasis/microbiología , ADN Espaciador Ribosómico/genética , Técnicas de Tipificación Micológica/métodos , Secuencia de Bases , Candida/clasificación , Candida/genética , Candidiasis/diagnóstico , Intervalos de Confianza , Cartilla de ADN/genética , ADN de Hongos/química , ADN de Hongos/genética , ADN Espaciador Ribosómico/química , Marcadores Genéticos , Humanos , Datos de Secuencia Molecular , Técnicas de Tipificación Micológica/economía , Filogenia , Análisis de Secuencia de ADN , Especificidad de la Especie
19.
J Fungi (Basel) ; 10(3)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38535218

RESUMEN

One of the systems responsible for the recognition and repair of mistakes occurring during cell replication is the DNA mismatch repair (MMR) system. Two major protein complexes constitute the MMR pathway: MutS and MutL. Here, we investigated the possible relation of four A. fumigatus MMR genes (msh2, msh6, pms1, and mlh1) with the development of azole resistance related to the phenomenon of multi-drug resistance. We examined the MMR gene variations in 163 Aspergillus fumigatus genomes. Our analysis showed that genes msh2, pms1, and mlh1 have low genetic variability and do not seem to correlate with drug resistance. In contrast, there is a nonsynonymous mutation (G240A) in the msh6 gene that is harbored by 42% of the strains, most of them also harboring the TR34/L98H azole resistance mechanism in cyp51A. The msh6 gene was deleted in the akuBKU80A. fumigatus strain, and the ∆msh6 isolates were analyzed for fitness, azole susceptibility, and virulence capacity, showing no differences compared with the akuBKU80 parental strain. Wild-type msh6 and Δmsh6 strains were grown on high concentrations of azole and other non-azole fungicides used in crop protection. A 10- and 2-fold higher mutation frequency in genes that confer resistance to boscalid and benomyl, respectively, were observed in Δmsh6 strains compared to the wild-type. This study suggests a link between Msh6 and fungicide resistance acquisition.

20.
Med Mycol ; 51(5): 461-72, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23170962

RESUMEN

Although Candida tropicalis is a frequent cause of invasive fungal diseases, its interaction with the host remains poorly studied. Galleria mellonella is a Lepidoptera model which offers a useful tool to study virulence of different microorganisms and drug efficacy. In this work we investigated the virulence of C. tropicalis in G. mellonella at different temperatures and the efficacy of antifungal drugs in this infection model. When larvae were infected with yeast inocula suspensions of different concentrations (4 × 10(6), 2 × 10(6), 10(6) and 5 × 10(5) cells/larva), we observed a dose-dependent effect on the killing of the insect (50% survival ranging from 1.4 ± 0.8 to 8.8 ± 1.2 days with the higher and lower inocula, respectively). Candida tropicalis killed G. mellonella larvae at both 30°C and 37°C, although at 37°C the virulence was more evident. Haemocytes phagocytosed C. tropicalis cells after 2 hours of infection, although the phagocytosis rate was lower when compared with other fungal pathogens, such as Cryptococcus neoformans. Moreover, the haemocyte density in the haemolymph decreased during infection and the yeast formed pseudohyphae in G. mellonella. The efficacy of amphotericin B, caspofungin, fluconazole and voriconazole was tested at different concentrations, and a protective effect was observed with all the drugs at concentrations equivalent to therapeutic dose. Fungal burden increased in infected larvae during time of infection and amphotericin B and fluconazole reduced the number of colony-forming units in the worms. Moreover, antifungal treatment was associated with the presence of cell aggregates around infected areas. We conclude that G. mellonella offers a simple and feasible model to study C. tropicalis virulence and drug efficacy.


Asunto(s)
Antifúngicos/farmacología , Candida tropicalis/efectos de los fármacos , Candida tropicalis/patogenicidad , Modelos Animales de Enfermedad , Lepidópteros/microbiología , Animales , Larva/microbiología , Análisis de Supervivencia , Temperatura , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA