RESUMEN
A procedure of nuclear magnetic resonance (NMR) urinalysis using pattern recognition is proposed for early detection of toxicity of investigational compounds in rats. The method is applied to detect toxicity upon administration of 13 toxic reference compounds and one nontoxic control compound (mianserine) in rats. The toxic compounds are expected to induce necrosis (bromobenzene, paracetamol, carbon tetrachloride, iproniazid, isoniazid, thioacetamide), cholestasis (alpha-naphthylisothiocyanate (ANIT), chlorpromazine, ethinylestradiol, methyltestosterone, ibuprofen), or steatosis (phenobarbital, tetracycline). Animals were treated daily for 2 or 4 days except for paracetamol and bromobenzene (1 and 2 days) and carbon tetrachloride (1 day only). Urine was collected 24 h after the first and second treatment. The animals were sacrificed 24 h after the last treatment, and NMR data were compared with liver histopathology as well as blood and urine biochemistry. Pathology and biochemistry showed marked toxicity in the liver at high doses of bromobenzene, paracetamol, carbon tetrachloride, ANIT, and ibuprofen. Thioacetamide and chlorpromazine showed less extensive changes, while the influences of iproniazid, isoniazid, phenobarbital, ethinylestradiol, and tetracycline on the toxic parameters were marginal or for methyltestosterone and mianserine negligible. NMR spectroscopy revealed significant changes upon dosing in 88 NMR biomarker signals preselected with the Procrustus Rotation method on principal component discriminant analysis (PCDA) plots. Further evaluation of the specific changes led to the identification of biomarker patterns for the specific types of liver toxicity. Comparison of our rat NMR PCDA data with histopathological changes reported in humans and/or rats suggests that rat NMR urinalysis can be used to predict hepatotoxicity.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/clasificación , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Espectroscopía de Resonancia Magnética , Orina/química , Animales , Biomarcadores , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Colestasis/inducido químicamente , Colestasis/patología , Hígado Graso/inducido químicamente , Hígado Graso/patología , Hígado/química , Masculino , Necrosis/inducido químicamente , Necrosis/patología , Reconocimiento de Normas Patrones Automatizadas , Análisis de Componente Principal , Ratas , Ratas WistarRESUMEN
(1)H nuclear magnetic resonance (NMR) spectroscopy of rat urine in combination with pattern recognition analysis was evaluated for early noninvasive detection of toxicity of investigational chemical entities. Bromobenzene (B) and paracetamol (P) were administered at five single oral dosages between 2 and 500 mg/kg and between 6 and 1800 mg/kg, respectively. The sensitivity of the proposed method to detect changes in the NMR spectra 24 and 48 h after single dosing was compared with histopathology and biochemical parameters in plasma and urine. Both B and P applied at the highest dosages induced liver necrosis and markedly increased aspartate aminotransferase (AST) and alanine aminotransferase (ALT) plasma levels. At dosages of 125 mg/kg B and 450 mg/kg P, liver necrosis and changes in AST and ALT were less pronounced, while at lower dose levels these effects could not be detected. Changes in kidney pathology or standard urine biochemistry were not observed at any of these dosages. Evaluation of the total NMR dataset showed 80 signals to be sensitive for B and P dosing. Principal component analysis on the reduced dataset revealed that NMR spectra were significantly different at dosages above 8 mg/kg (B) and 110 mg/kg (P) at both sampling times. This implies a 4- to 16-fold increased sensitivity of NMR versus histopathology and clinical chemistry in recognizing early events of liver toxicity.