Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 56(8): 1709-1711, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37557079

RESUMEN

Communication between the central nervous system and the periphery contributes to stress responses and mood disorders. In a recent issue of Cell, Schneider et al. report that psychological stress exacerbates gut inflammation and dysmotility by modifying enteric glia and neurons.


Asunto(s)
Sistema Nervioso Entérico , Humanos , Neuroglía , Neuronas , Encéfalo , Inflamación
2.
Front Neuroendocrinol ; 65: 100989, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35271863

RESUMEN

Prevalence of mental disorders, including major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ) are increasing at alarming rates in our societies. Growing evidence points toward major sex differences in these conditions, and high rates of treatment resistance support the need to consider novel biological mechanisms outside of neuronal function to gain mechanistic insights that could lead to innovative therapies. Blood-brain barrier alterations have been reported in MDD, BD and SZ. Here, we provide an overview of sex-specific immune, endocrine, vascular and transcriptional-mediated changes that could affect neurovascular integrity and possibly contribute to the pathogenesis of mental disorders. We also identify pitfalls in current literature and highlight promising vascular biomarkers. Better understanding of how these adaptations can contribute to mental health status is essential not only in the context of MDD, BD and SZ but also cardiovascular diseases and stroke which are associated with higher prevalence of these conditions.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Barrera Hematoencefálica/patología , Femenino , Humanos , Masculino , Salud Mental , Caracteres Sexuales
3.
Mol Psychiatry ; 27(5): 2563-2579, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33931727

RESUMEN

Heightened aggressive behavior is considered as one of the central symptoms of many neuropsychiatric disorders including autism, schizophrenia, and dementia. The consequences of aggression pose a heavy burden on patients and their families and clinicians. Unfortunately, we have limited treatment options for aggression and lack mechanistic insight into the causes of aggression needed to inform new efforts in drug discovery and development. Levels of proinflammatory cytokines in the periphery or cerebrospinal fluid were previously reported to correlate with aggressive traits in humans. However, it is still unknown whether cytokines affect brain circuits to modulate aggression. Here, we examined the functional role of interleukin 1ß (IL-1ß) in mediating individual differences in aggression using a resident-intruder mouse model. We found that nonaggressive mice exhibit higher levels of IL-1ß in the dorsal raphe nucleus (DRN), the major source of forebrain serotonin (5-HT), compared to aggressive mice. We then examined the effect of pharmacological antagonism and viral-mediated gene knockdown of the receptors for IL-1 within the DRN and found that both treatments consistently increased aggressive behavior of male mice. Aggressive mice also exhibited higher c-Fos expression in 5-HT neurons in the DRN compared to nonaggressive mice. In line with these findings, deletion of IL-1 receptor in the DRN enhanced c-Fos expression in 5-HT neurons during aggressive encounters, suggesting that modulation of 5-HT neuronal activity by IL-1ß signaling in the DRN controls expression of aggressive behavior.


Asunto(s)
Agresión , Núcleo Dorsal del Rafe , Interleucina-1beta , Serotonina , Agresión/fisiología , Animales , Núcleo Dorsal del Rafe/metabolismo , Humanos , Individualidad , Interleucina-1beta/metabolismo , Masculino , Ratones , Serotonina/metabolismo
4.
J Psychiatry Neurosci ; 48(3): E190-E208, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37253482

RESUMEN

Environment is known to substantially alter mental state and behaviour across the lifespan. Biological barriers such as the blood-brain barrier (BBB) and gut barrier (GB) are major hubs for communication of environmental information. Alterations in the structural, social and motor environment at different stages of life can influence function of the BBB and GB and their integrity to exert behavioural consequences. Importantly, each of these environmental components is associated with a distinct immune profile, glucocorticoid response and gut microbiome composition, creating unique effects on the BBB and GB. These barrier-environment interactions are sensitive to change throughout life, and positive or negative alterations at critical stages of development can exert long-lasting cognitive and behavioural consequences. Furthermore, because loss of barrier integrity is implicated in pathogenesis of mental disorders, the pathways of environmental influence represent important areas for understanding these diseases. Positive environments can be protective against stress- and age-related damage, raising the possibility of novel pharmacological targets. This review summarizes known mechanisms of environmental influence - such as social interactions, structural complexity and physical exercise - on barrier composition, morphology and development, and considers the outcomes and implications of these interactions in the context of psychiatric disorders.


Asunto(s)
Eje Cerebro-Intestino , Longevidad , Humanos , Interacción Gen-Ambiente , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Cognición , Encéfalo/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(6): 3326-3336, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31974313

RESUMEN

Preclinical and clinical studies suggest that inflammation and vascular dysfunction contribute to the pathogenesis of major depressive disorder (MDD). Chronic social stress alters blood-brain barrier (BBB) integrity through loss of tight junction protein claudin-5 (cldn5) in male mice, promoting passage of circulating proinflammatory cytokines and depression-like behaviors. This effect is prominent within the nucleus accumbens, a brain region associated with mood regulation; however, the mechanisms involved are unclear. Moreover, compensatory responses leading to proper behavioral strategies and active resilience are unknown. Here we identify active molecular changes within the BBB associated with stress resilience that might serve a protective role for the neurovasculature. We also confirm the relevance of such changes to human depression and antidepressant treatment. We show that permissive epigenetic regulation of cldn5 expression and low endothelium expression of repressive cldn5-related transcription factor foxo1 are associated with stress resilience. Region- and endothelial cell-specific whole transcriptomic analyses revealed molecular signatures associated with stress vulnerability vs. resilience. We identified proinflammatory TNFα/NFκB signaling and hdac1 as mediators of stress susceptibility. Pharmacological inhibition of stress-induced increase in hdac1 activity rescued cldn5 expression in the NAc and promoted resilience. Importantly, we confirmed changes in HDAC1 expression in the NAc of depressed patients without antidepressant treatment in line with CLDN5 loss. Conversely, many of these deleterious CLDN5-related molecular changes were reduced in postmortem NAc from antidepressant-treated subjects. These findings reinforce the importance of considering stress-induced neurovascular pathology in depression and provide therapeutic targets to treat this mood disorder and promote resilience.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Trastorno Depresivo Mayor/metabolismo , Estrés Psicológico/metabolismo , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Claudina-5/metabolismo , Depresión/tratamiento farmacológico , Depresión/metabolismo , Modelos Animales de Enfermedad , Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/fisiología , Histona Desacetilasa 1/metabolismo , Humanos , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Núcleo Accumbens/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
6.
Eur J Neurosci ; 55(9-10): 2851-2894, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33876886

RESUMEN

Regulation of emotions is generally associated exclusively with the brain. However, there is evidence that peripheral systems are also involved in mood, stress vulnerability vs. resilience, and emotion-related memory encoding. Prevalence of stress and mood disorders such as major depression, bipolar disorder, and post-traumatic stress disorder is increasing in our modern societies. Unfortunately, 30%-50% of individuals respond poorly to currently available treatments highlighting the need to further investigate emotion-related biology to gain mechanistic insights that could lead to innovative therapies. Here, we provide an overview of inflammation-related mechanisms involved in mood regulation and stress responses discovered using animal models. If clinical studies are available, we discuss translational value of these findings including limitations. Neuroimmune mechanisms of depression and maladaptive stress responses have been receiving increasing attention, and thus, the first part is centered on inflammation and dysregulation of brain and circulating cytokines in stress and mood disorders. Next, recent studies supporting a role for inflammation-driven leakiness of the blood-brain and gut barriers in emotion regulation and mood are highlighted. Stress-induced exacerbated inflammation fragilizes these barriers which become hyperpermeable through loss of integrity and altered biology. At the gut level, this could be associated with dysbiosis, an imbalance in microbial communities, and alteration of the gut-brain axis which is central to production of mood-related neurotransmitter serotonin. Novel therapeutic approaches such as anti-inflammatory drugs, the fast-acting antidepressant ketamine, and probiotics could directly act on the mechanisms described here improving mood disorder-associated symptomatology. Discovery of biomarkers has been a challenging quest in psychiatry, and we end by listing promising targets worth further investigation.


Asunto(s)
Trastorno Bipolar , Trastornos del Humor , Animales , Antidepresivos/farmacología , Encéfalo , Inflamación , Trastornos del Humor/etiología
7.
Nature ; 534(7609): 688-92, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27357796

RESUMEN

Maladaptive aggressive behaviour is associated with a number of neuropsychiatric disorders and is thought to result partly from the inappropriate activation of brain reward systems in response to aggressive or violent social stimuli. Nuclei within the ventromedial hypothalamus, extended amygdala and limbic circuits are known to encode initiation of aggression; however, little is known about the neural mechanisms that directly modulate the motivational component of aggressive behaviour. Here we established a mouse model to measure the valence of aggressive inter-male social interaction with a smaller subordinate intruder as reinforcement for the development of conditioned place preference (CPP). Aggressors develop a CPP, whereas non-aggressors develop a conditioned place aversion to the intruder-paired context. Furthermore, we identify a functional GABAergic projection from the basal forebrain (BF) to the lateral habenula (lHb) that bi-directionally controls the valence of aggressive interactions. Circuit-specific silencing of GABAergic BF-lHb terminals of aggressors with halorhodopsin (NpHR3.0) increases lHb neuronal firing and abolishes CPP to the intruder-paired context. Activation of GABAergic BF-lHb terminals of non-aggressors with channelrhodopsin (ChR2) decreases lHb neuronal firing and promotes CPP to the intruder-paired context. Finally, we show that altering inhibitory transmission at BF-lHb terminals does not control the initiation of aggressive behaviour. These results demonstrate that the BF-lHb circuit has a critical role in regulating the valence of inter-male aggressive behaviour and provide novel mechanistic insight into the neural circuits modulating aggression reward processing.


Asunto(s)
Agresión/fisiología , Prosencéfalo Basal/fisiología , Habénula/fisiología , Vías Nerviosas/fisiología , Recompensa , Potenciales de Acción , Animales , Prosencéfalo Basal/citología , Condicionamiento Psicológico/fisiología , Neuronas GABAérgicas/metabolismo , Habénula/citología , Halorrodopsinas/metabolismo , Individualidad , Masculino , Ratones , Modelos Neurológicos , Motivación , Inhibición Neural , Refuerzo en Psicología , Rodopsina/metabolismo , Conducta Social
8.
J Neurosci ; 40(32): 6228-6233, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32561672

RESUMEN

Chronic stress in both humans and rodents induces a robust downregulation of neuroligin-2, a key component of the inhibitory synapse, in the NAc that modifies behavioral coping mechanisms and stress resiliency in mice. Here we extend this observation by examining the role of two other inhibitory synapse constituents, vesicular GABA transporter (vGAT) and gephyrin, in the NAc of male mice that underwent chronic social defeat stress (CSDS) and in patients with major depressive disorder (MDD). We first performed transcriptional profiling of vGAT and gephyrin in postmortem NAc samples from a cohort of healthy controls, medicated, and nonmedicated MDD patients. In parallel, we conducted whole-cell electrophysiology recordings in the NAc of stress-susceptible and stress-resilient male mice following 10 d of CSDS. Finally, we used immunohistochemistry to analyze protein levels of vGAT and gephyrin in the NAc of mice after CSDS. We found that decreased vGAT and gephyrin mRNA in the NAc of nonmedicated MDD patients is paralleled by decreased inhibitory synapse markers and decreased frequency of mini inhibitory postsynaptic currents (mIPSC) in the NAc of susceptible mice, indicating a reduction in the number of NAc inhibitory synapses that is correlated with depression-like behavior. Overall, these findings suggest a common state of reduced inhibitory tone in the NAc in depression and stress susceptibility.SIGNIFICANCE STATEMENT Existing studies focus on excitatory synaptic changes after social stress, although little is known about stress-induced inhibitory synaptic plasticity and its relevance for neuropsychiatric disease. These results extend our previous findings on the critical role of impaired inhibitory tone in the NAc following stress and provide new neuropathological evidence for reduced levels of inhibitory synaptic markers in human NAc from nonmedicated major depressive disorder patients. This finding is corroborated in stress-susceptible male mice that have undergone chronic social defeat stress, a mouse model of depression, at both the level of synaptic function and protein expression. These data support the hypothesis that reduced inhibitory synaptic transmission within the NAc plays a critical role in the stress response.


Asunto(s)
Depresión/metabolismo , Potenciales Postsinápticos Inhibidores , Núcleo Accumbens/fisiopatología , Derrota Social , Estrés Psicológico/metabolismo , Adulto , Anciano , Animales , Depresión/fisiopatología , Femenino , Humanos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Persona de Mediana Edad , Núcleo Accumbens/metabolismo , Estrés Psicológico/fisiopatología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
9.
Annu Rev Pharmacol Toxicol ; 58: 411-428, 2018 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-28992428

RESUMEN

Mood disorders such as depression are among the most prevalent psychiatric disorders in the United States, but they are inadequately treated in a substantial proportion of patients. Accordingly, neuropsychiatric research has pivoted from investigation of monoaminergic mechanisms to exploration of novel mediators, including the role of inflammatory processes. Subsets of mood disorder patients exhibit immune-related abnormalities, including elevated levels of proinflammatory cytokines, monocytes, and neutrophils in the peripheral circulation; dysregulation of neuroglia and blood-brain barrier function; and disruption of gut microbiota. The field of psychoneuroimmunology is one of great therapeutic opportunity, yielding experimental therapeutics for mood disorders, such as peripheral cytokine targeting antibodies, microglia and astrocyte targeting therapies, and probiotic treatments for gut dysbiosis, and producing findings that identify therapeutic targets for future development.


Asunto(s)
Mediadores de Inflamación/metabolismo , Inflamación/metabolismo , Trastornos del Humor/metabolismo , Animales , Encéfalo/metabolismo , Citocinas/metabolismo , Humanos
10.
Eur J Neurosci ; 53(1): 183-221, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31421056

RESUMEN

Major depressive disorder (MDD) is a chronic and recurrent psychiatric condition characterized by depressed mood, social isolation and anhedonia. It will affect 20% of individuals with considerable economic impacts. Unfortunately, 30-50% of depressed individuals are resistant to current antidepressant treatments. MDD is twice as prevalent in women and associated symptoms are different. Depression's main environmental risk factor is chronic stress, and women report higher levels of stress in daily life. However, not every stressed individual becomes depressed, highlighting the need to identify biological determinants of stress vulnerability but also resilience. Based on a reverse translational approach, rodent models of depression were developed to study the mechanisms underlying susceptibility vs resilience. Indeed, a subpopulation of animals can display coping mechanisms and a set of biological alterations leading to stress resilience. The aetiology of MDD is multifactorial and involves several physiological systems. Exacerbation of endocrine and immune responses from both innate and adaptive systems are observed in depressed individuals and mice exhibiting depression-like behaviours. Increasing attention has been given to neurovascular health since higher prevalence of cardiovascular diseases is found in MDD patients and inflammatory conditions are associated with depression, treatment resistance and relapse. Here, we provide an overview of endocrine, immune and vascular changes associated with stress vulnerability vs. resilience in rodents and when available, in humans. Lack of treatment efficacy suggests that neuron-centric treatments do not address important causal biological factors and better understanding of stress-induced adaptations, including sex differences, could contribute to develop novel therapeutic strategies including personalized medicine approaches.


Asunto(s)
Trastorno Depresivo Mayor , Adaptación Psicológica , Animales , Antidepresivos , Depresión , Femenino , Humanos , Masculino , Ratones , Neurobiología , Estrés Psicológico
11.
Proc Natl Acad Sci U S A ; 115(5): 1111-1116, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29339486

RESUMEN

Behavioral coping strategies are critical for active resilience to stress and depression; here we describe a role for neuroligin-2 (NLGN-2) in the nucleus accumbens (NAc). Neuroligins (NLGN) are a family of neuronal postsynaptic cell adhesion proteins that are constituents of the excitatory and inhibitory synapse. Importantly, NLGN-3 and NLGN-4 mutations are strongly implicated as candidates underlying the development of neuropsychiatric disorders with social disturbances such as autism, but the role of NLGN-2 in neuropsychiatric disease states is unclear. Here we show a reduction in NLGN-2 gene expression in the NAc of patients with major depressive disorder. Chronic social defeat stress in mice also decreases NLGN-2 selectively in dopamine D1-positive cells, but not dopamine D2-positive cells, within the NAc of stress-susceptible mice. Functional NLGN-2 knockdown produces bidirectional, cell-type-specific effects: knockdown in dopamine D1-positive cells promotes subordination and stress susceptibility, whereas knockdown in dopamine D2-positive cells mediates active defensive behavior. These findings establish a behavioral role for NAc NLGN-2 in stress and depression; provide a basis for targeted, cell-type specific therapy; and highlight the role of active behavioral coping mechanisms in stress susceptibility.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Trastorno Depresivo Mayor/fisiopatología , Dominación-Subordinación , Proteínas del Tejido Nervioso/metabolismo , Núcleo Accumbens/metabolismo , Estrés Psicológico/fisiopatología , Agresión , Animales , Antidepresivos/farmacología , Conducta Animal , Línea Celular , Modelos Animales de Enfermedad , Heterocigoto , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Conducta Social , Sinapsis/metabolismo
12.
J Neurophysiol ; 123(6): 2382-2389, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32374202

RESUMEN

Parkinson's disease (PD) risk is increased by stress and certain gene mutations, including the most prevalent PD-linked mutation LRRK2-G2019S. Both PD and stress increase risk for psychiatric symptoms, yet it is unclear how PD-risk genes alter neural circuitry in response to stress that may promote psychopathology. Here we show significant differences between adult G2019S knockin and wild-type (wt) mice in stress-induced behaviors, with an unexpected uncoupling of depression-like and hedonia-like responses in G2019S mice. Moreover, mutant spiny projection neurons in nucleus accumbens (NAc) lack an adaptive, stress-induced change in excitability displayed by wt neurons, and instead show stress-induced changes in synaptic properties that wt neurons lack. Some synaptic alterations in NAc are already evident early in postnatal life. Thus G2019S alters the magnitude and direction of behavioral responses to stress that may reflect unique modifications of adaptive plasticity in cells and circuits implicated in psychopathology in humans.NEW & NOTEWORTHY Depression is associated with Parkinson's disease (PD), and environmental stress is a risk factor for both. We investigated how LRRK2-G2019S PD mutation affects depression-like behaviors, synaptic function, and intrinsic neuronal excitability following stress. In response to stress, the mutation drives abnormal synaptic changes, prevents adaptive changes in intrinsic excitability, and leads to aberrant behaviors, thus defining new ways in which PD mutations derail adaptive plasticity in response to stress that may contribute to disease onset.


Asunto(s)
Conducta Animal , Depresión , Fenómenos Electrofisiológicos , Potenciales Postsinápticos Excitadores , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Núcleo Accumbens , Enfermedad de Parkinson , Estrés Psicológico , Animales , Conducta Animal/fisiología , Depresión/etiología , Depresión/genética , Depresión/fisiopatología , Modelos Animales de Enfermedad , Fenómenos Electrofisiológicos/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Núcleo Accumbens/fisiopatología , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/genética , Estrés Psicológico/complicaciones , Estrés Psicológico/genética , Estrés Psicológico/fisiopatología
13.
J Neurosci ; 38(45): 9700-9711, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30249796

RESUMEN

The G2019S mutation in leucine-rich repeat kinase 2 (LRRK2) is a prevalent cause of late-onset Parkinson's disease, producing psychiatric and motor symptoms, including depression, that are indistinguishable from sporadic cases. Here we tested how this mutation impacts depression-related behaviors and associated synaptic responses and plasticity in mice expressing a Lrrk2-G2019S knock-in mutation. Young adult male G2019S knock-in and wild-type mice were subjected to chronic social defeat stress (CSDS), a validated depression model, and other tests of anhedonia, anxiety, and motor learning. We found that G2019S mice were highly resilient to CSDS, failing to exhibit social avoidance compared to wild-type mice, many of which exhibited prominent social avoidance and were thus susceptible to CSDS. In the absence of CSDS, no behavioral differences between genotypes were found. Whole-cell recordings of spiny projection neurons (SPNs) in the nucleus accumbens revealed that glutamatergic synapses in G2019S mice lacked functional calcium-permeable AMPARs, and following CSDS, failed to accumulate inwardly rectifying AMPAR responses characteristic of susceptible mice. Based on this abnormal AMPAR response profile, we asked whether long-term potentiation (LTP) of corticostriatal synaptic strength was affected. We found that both D1 receptor (D1R)- and D2R-SPNs in G2019S mutants were unable to express LTP, with D2R-SPNs abnormally expressing long-term depression following an LTP-induction protocol. Thus, G2019S promotes resilience to chronic social stress in young adulthood, likely reflecting synapses constrained in their ability to undergo experience-dependent plasticity. These unexpected findings may indicate early adaptive coping mechanisms imparted by the G2019S mutation.SIGNIFICANCE STATEMENT The G2019S mutation in LRRK2 causes late-onset Parkinson's disease (PD). LRRK2 is highly expressed in striatal neurons throughout life, but it is unclear how mutant LRRK2 affects striatal neuron function and behaviors in young adulthood. We addressed this question using Lrrk2-G2019S knock-in mice. The data show that young adult G2019S mice were unusually resilient to a depression-like syndrome resulting from chronic social stress. Further, mutant striatal synapses were incapable of forms of synaptic plasticity normally accompanying depression-like behavior and important for supporting the full range of cognitive function. These data suggest that in humans, LRRK2 mutation may affect striatal circuit function in ways that alter normal responses to stress and could be relevant for treatment strategies for non-motor PD symptoms.


Asunto(s)
Relaciones Interpersonales , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación/genética , Plasticidad Neuronal/fisiología , Enfermedad de Parkinson/genética , Resiliencia Psicológica , Estrés Psicológico/genética , Factores de Edad , Animales , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/psicología , Estrés Psicológico/fisiopatología , Estrés Psicológico/psicología
14.
J Neurosci ; 38(26): 5913-5924, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29891732

RESUMEN

A growing number of studies implicate the brain's reward circuitry in aggressive behavior. However, the cellular and molecular mechanisms within brain reward regions that modulate the intensity of aggression as well as motivation for it have been underexplored. Here, we investigate the cell-type-specific influence of ΔFosB, a transcription factor known to regulate a range of reward and motivated behaviors, acting in the nucleus accumbens (NAc), a key reward region, in male aggression in mice. We show that ΔFosB is specifically increased in dopamine D1 receptor (Drd1)-expressing medium spiny neurons (D1-MSNs) in NAc after repeated aggressive encounters. Viral-mediated induction of ΔFosB selectively in D1-MSNs of NAc intensifies aggressive behavior without affecting the preference for the aggression-paired context in a conditioned place preference (CPP) assay. In contrast, ΔFosB induction selectively in D2-MSNs reduces the time spent exploring the aggression-paired context during CPP without affecting the intensity of aggression per se. These data strongly support a dissociable cell-type-specific role for ΔFosB in the NAc in modulating aggression and aggression reward.SIGNIFICANCE STATEMENT Aggressive behavior is associated with several neuropsychiatric disorders and can be disruptive for affected individuals as well as their victims. Studies have shown a positive reinforcement mechanism underlying aggressive behavior that shares many common features with drug addiction. Here, we explore the cell-type-specific role of the addiction-associated transcription factor ΔFosB in the nucleus accumbens in aggression. We found that ΔFosB expression promotes aggressive behavior, effects that are dissociable from its effects on aggression reward. This finding is a significant first step in identifying therapeutic targets for the reduction of aggressive behavior across a range of neuropsychiatric illnesses.


Asunto(s)
Agresión/fisiología , Núcleo Accumbens/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Animales , Conducta Animal/fisiología , Masculino , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Recompensa
17.
Clin Gerontol ; 40(3): 197-206, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28452660

RESUMEN

OBJECTIVE: A relationship between generalized anxiety disorder (GAD) and fear of falling (FOF) has long been proposed but never specifically studied. This study aimed at analyzing the relationship between FOF and GAD or anxiety symptoms, while controlling for major depressive episodes (MDE), depressive symptoms, fall risk, and sociodemographic variables. METHODS: Twenty-five older adults participated in this pilot study. Assessments included the following: Anxiety Disorder Interview Schedule, Geriatric Anxiety Inventory, Geriatric Depression Scale, Falls-Efficacy Scale-International. A multidisciplinary team evaluated fall risk. RESULTS: FOF was significantly correlated with GAD, MDE, anxiety and depressive symptoms, and fall risk, but not with sociodemographic variables. Multiple regression analyses indicated that GAD and anxiety symptoms were significantly and independently associated with FOF. CONCLUSION: Although the results of this pilot study should be replicated with larger samples, they suggest that FOF is associated with GAD and anxiety symptoms even when considering physical factors that increase the risk of falling. CLINICAL IMPLICATIONS: Treatment of FOF in patients with GAD may present a particular challenge because of the central role of intolerance of uncertainty, which may prevent patients from regaining confidence despite the reduction of fall risk. Clinicians should screen for GAD and anxiety symptoms in patients with FOF to improve detection and treatment.


Asunto(s)
Accidentes por Caídas , Trastornos de Ansiedad/psicología , Ansiedad/psicología , Miedo/psicología , Evaluación Geriátrica/estadística & datos numéricos , Anciano , Ansiedad/complicaciones , Trastornos de Ansiedad/complicaciones , Canadá/epidemiología , Femenino , Evaluación Geriátrica/métodos , Humanos , Masculino , Proyectos Piloto , Factores de Riesgo
18.
J Neurosci ; 35(50): 16362-76, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26674863

RESUMEN

Depression and anxiety disorders are more prevalent in females, but the majority of research in animal models, the first step in finding new treatments, has focused predominantly on males. Here we report that exposure to subchronic variable stress (SCVS) induces depression-associated behaviors in female mice, whereas males are resilient as they do not develop these behavioral abnormalities. In concert with these different behavioral responses, transcriptional analysis of nucleus accumbens (NAc), a major brain reward region, by use of RNA sequencing (RNA-seq) revealed markedly different patterns of stress regulation of gene expression between the sexes. Among the genes displaying sex differences was DNA methyltransferase 3a (Dnmt3a), which shows a greater induction in females after SCVS. Interestingly, Dnmt3a expression levels were increased in the NAc of depressed humans, an effect seen in both males and females. Local overexpression of Dnmt3a in NAc rendered male mice more susceptible to SCVS, whereas Dnmt3a knock-out in this region rendered females more resilient, directly implicating this gene in stress responses. Associated with this enhanced resilience of female mice upon NAc knock-out of Dnmt3a was a partial shift of the NAc female transcriptome toward the male pattern after SCVS. These data indicate that males and females undergo different patterns of transcriptional regulation in response to stress and that a DNA methyltransferase in NAc contributes to sex differences in stress vulnerability. SIGNIFICANCE STATEMENT: Women have a higher incidence of depression than men. However, preclinical models, the first step in developing new diagnostics and therapeutics, have been performed mainly on male subjects. Using a stress-based animal model of depression that causes behavioral effects in females but not males, we demonstrate a sex-specific transcriptional profile in brain reward circuitry. This transcriptional profile can be altered by removal of an epigenetic mechanism, which normally suppresses DNA transcription, creating a hybrid male/female transcriptional pattern. Removal of this epigenetic mechanism also induces behavioral resilience to stress in females. These findings shed new light onto molecular factors controlling sex differences in stress response.


Asunto(s)
Núcleo Accumbens/fisiopatología , Resiliencia Psicológica , Estrés Psicológico/genética , Estrés Psicológico/psicología , Transcriptoma/genética , Animales , Ansiedad/genética , Ansiedad/psicología , Enfermedad Crónica , ADN (Citosina-5-)-Metiltransferasas/biosíntesis , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Conducta Alimentaria , Femenino , Regulación Enzimológica de la Expresión Génica/genética , Técnicas de Sustitución del Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora , Represión Psicológica , Caracteres Sexuales , Natación/psicología
19.
Biochim Biophys Acta ; 1852(6): 1195-201, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25281824

RESUMEN

Low-to-moderate red wine consumption appeared to reduce age-related neurological disorders including macular degeneration, stroke, and cognitive deficits with or without dementia. Resveratrol has been considered as one of the key ingredients responsible for the preventive action of red wine since the stilbene displays a neuroprotective action in various models of toxicity. Besides its well documented free radical scavenging and anti-inflammatory properties, resveratrol has been shown to increase the clearance of beta-amyloid, a key feature of Alzheimer's disease, and to modulate intracellular effectors associated with oxidative stress (e.g. heme oxygenase), neuronal energy homeostasis (e.g. AMP kinase), program cell death (i.e. AIF) and longevity (i.e. sirtuins). This article summarizes the most recent findings on mechanisms of action involved in the protective effects of this multi target polyphenol, and discusses its possible roles in the prevention of various age-related neurological disorders. This article is part of a Special Issue entitled: Resveratrol: Challenges in translating pre-clinical findings to improved patient outcomes.


Asunto(s)
Antioxidantes/farmacología , Fármacos Neuroprotectores/farmacología , Estilbenos/farmacología , Animales , Apoptosis/efectos de los fármacos , Humanos , Neuronas/efectos de los fármacos , Resveratrol , Sinapsis/efectos de los fármacos
20.
Handb Exp Pharmacol ; 228: 59-98, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25977080

RESUMEN

Aging is generally associated with a certain cognitive decline. However, individual differences exist. While age-related memory deficits can be observed in humans and rodents in the absence of pathological conditions, some individuals maintain intact cognitive functions up to an advanced age. The mechanisms underlying learning and memory processes involve the recruitment of multiple signaling pathways and gene expression, leading to adaptative neuronal plasticity and long-lasting changes in brain circuitry. This chapter summarizes the current understanding of how these signaling cascades could be modulated by cognition-enhancing agents favoring memory formation and successful aging. It focuses on data obtained in rodents, particularly in the rat as it is the most common animal model studied in this field. First, we will discuss the role of the excitatory neurotransmitter glutamate and its receptors, downstream signaling effectors [e.g., calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC), extracellular signal-regulated kinases (ERK), mammalian target of rapamycin (mTOR), cAMP response element-binding protein (CREB)], associated immediate early gene (e.g., Homer 1a, Arc and Zif268), and growth factors [insulin-like growth factors (IGFs) and brain-derived neurotrophic factor (BDNF)] in synaptic plasticity and memory formation. Second, the impact of the cholinergic system and related modulators on memory will be briefly reviewed. Finally, since dynorphin neuropeptides have recently been associated with memory impairments in aging, it is proposed as an attractive target to develop novel cognition-enhancing agents.


Asunto(s)
Encéfalo/efectos de los fármacos , Cognición/efectos de los fármacos , Trastornos Mentales/tratamiento farmacológico , Nootrópicos/uso terapéutico , Transducción de Señal/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatología , Fibras Colinérgicas/efectos de los fármacos , Fibras Colinérgicas/metabolismo , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/fisiopatología , Trastornos del Conocimiento/psicología , Dinorfinas/metabolismo , Humanos , Memoria/efectos de los fármacos , Trastornos Mentales/metabolismo , Trastornos Mentales/fisiopatología , Trastornos Mentales/psicología , Plasticidad Neuronal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA