Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(10): 2193-2207.e19, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37098343

RESUMEN

Somatic hypermutation (SHM), initiated by activation-induced cytidine deaminase (AID), generates mutations in the antibody-coding sequence to allow affinity maturation. Why these mutations intrinsically focus on the three nonconsecutive complementarity-determining regions (CDRs) remains enigmatic. Here, we found that predisposition mutagenesis depends on the single-strand (ss) DNA substrate flexibility determined by the mesoscale sequence surrounding AID deaminase motifs. Mesoscale DNA sequences containing flexible pyrimidine-pyrimidine bases bind effectively to the positively charged surface patches of AID, resulting in preferential deamination activities. The CDR hypermutability is mimicable in in vitro deaminase assays and is evolutionarily conserved among species using SHM as a major diversification strategy. We demonstrated that mesoscale sequence alterations tune the in vivo mutability and promote mutations in an otherwise cold region in mice. Our results show a non-coding role of antibody-coding sequence in directing hypermutation, paving the way for the synthetic design of humanized animal models for optimal antibody discovery and explaining the AID mutagenesis pattern in lymphoma.


Asunto(s)
Citidina Desaminasa , Hipermutación Somática de Inmunoglobulina , Animales , Ratones , Anticuerpos/genética , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , ADN/genética , ADN de Cadena Simple , Mutación , Evolución Molecular , Regiones Determinantes de Complementariedad/genética , Motivos de Nucleótidos
2.
Mol Cell ; 84(7): 1206-1223.e15, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38423014

RESUMEN

Appropriate DNA end synapsis, regulated by core components of the synaptic complex including KU70-KU80, LIG4, XRCC4, and XLF, is central to non-homologous end joining (NHEJ) repair of chromatinized DNA double-strand breaks (DSBs). However, it remains enigmatic whether chromatin modifications can influence the formation of NHEJ synaptic complex at DNA ends, and if so, how this is achieved. Here, we report that the mitotic deacetylase complex (MiDAC) serves as a key regulator of DNA end synapsis during NHEJ repair in mammalian cells. Mechanistically, MiDAC removes combinatorial acetyl marks on histone H2A (H2AK5acK9ac) around DSB-proximal chromatin, suppressing hyperaccumulation of bromodomain-containing protein BRD4 that would otherwise undergo liquid-liquid phase separation with KU80 and prevent the proper installation of LIG4-XRCC4-XLF onto DSB ends. This study provides mechanistic insight into the control of NHEJ synaptic complex assembly by a specific chromatin signature and highlights the critical role of H2A hypoacetylation in restraining unscheduled compartmentalization of DNA repair machinery.


Asunto(s)
Cromatina , Proteínas Nucleares , Animales , Cromatina/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , ADN/genética , Reparación del ADN por Unión de Extremidades , Histonas/genética , Histonas/metabolismo , Emparejamiento Cromosómico , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Mamíferos/metabolismo
3.
Cell ; 163(4): 947-59, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26593423

RESUMEN

RAG initiates antibody V(D)J recombination in developing lymphocytes by generating "on-target" DNA breaks at matched pairs of bona fide recombination signal sequences (RSSs). We employ bait RAG-generated breaks in endogenous or ectopically inserted RSS pairs to identify huge numbers of RAG "off-target" breaks. Such breaks occur at the simple CAC motif that defines the RSS cleavage site and are largely confined within convergent CTCF-binding element (CBE)-flanked loop domains containing bait RSS pairs. Marked orientation dependence of RAG off-target activity within loops spanning up to 2 megabases implies involvement of linear tracking. In this regard, major RAG off-targets in chromosomal translocations occur as convergent RSS pairs at enhancers within a loop. Finally, deletion of a CBE-based IgH locus element disrupts V(D)J recombination domains and, correspondingly, alters RAG on- and off-target distributions within IgH. Our findings reveal how RAG activity is developmentally focused and implicate mechanisms by which chromatin domains harness biological processes within them.


Asunto(s)
Cromosomas de los Mamíferos/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Recombinación V(D)J , Animales , Factor de Unión a CCCTC , Cromosomas de los Mamíferos/química , Proteínas de Unión al ADN/metabolismo , Genes myc , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Homeodominio/metabolismo , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Linfoma/genética , Ratones , Motivos de Nucleótidos , Proteínas Represoras/metabolismo , Análisis de Secuencia de ADN , Translocación Genética
4.
Cell ; 163(5): 1124-1137, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26582132

RESUMEN

In activated B lymphocytes, AID initiates antibody variable (V) exon somatic hypermutation (SHM) for affinity maturation in germinal centers (GCs) and IgH switch (S) region DNA breaks (DSBs) for class-switch recombination (CSR). To resolve long-standing questions, we have developed an in vivo assay to study AID targeting of passenger sequences replacing a V exon. First, we find AID targets SHM hotspots within V exon and S region passengers at similar frequencies and that the normal SHM process frequently generates deletions, indicating that SHM and CSR employ the same mechanism. Second, AID mutates targets in diverse non-Ig passengers in GC B cells at levels similar to those of V exons, definitively establishing the V exon location as "privileged" for SHM. Finally, Peyer's patch GC B cells generate a reservoir of V exons that are highly mutated before selection for affinity maturation. We discuss the implications of these findings for harnessing antibody diversification mechanisms.


Asunto(s)
Linfocitos B/metabolismo , Citidina Desaminasa/genética , Cambio de Clase de Inmunoglobulina , Hipermutación Somática de Inmunoglobulina , Recombinación V(D)J , Animales , Humanos , Ratones , Mutación , Globinas beta/genética
5.
Cell ; 159(7): 1538-48, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25483776

RESUMEN

Activation-induced cytidine deaminase (AID) initiates both somatic hypermutation (SHM) for antibody affinity maturation and DNA breakage for antibody class switch recombination (CSR) via transcription-dependent cytidine deamination of single-stranded DNA targets. Though largely specific for immunoglobulin genes, AID also acts on a limited set of off-targets, generating oncogenic translocations and mutations that contribute to B cell lymphoma. How AID is recruited to off-targets has been a long-standing mystery. Based on deep GRO-seq studies of mouse and human B lineage cells activated for CSR or SHM, we report that most robust AID off-target translocations occur within highly focal regions of target genes in which sense and antisense transcription converge. Moreover, we found that such AID-targeting "convergent" transcription arises from antisense transcription that emanates from super-enhancers within sense transcribed gene bodies. Our findings provide an explanation for AID off-targeting to a small subset of mostly lineage-specific genes in activated B cells.


Asunto(s)
Citidina Desaminasa/metabolismo , Elementos de Facilitación Genéticos , Inestabilidad Genómica , Transcripción Genética , Animales , Linfocitos B/metabolismo , Humanos , Cambio de Clase de Inmunoglobulina , Ratones , Sitio de Iniciación de la Transcripción
6.
Trends Biochem Sci ; 49(7): 622-632, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38614818

RESUMEN

Activation-induced cytidine deaminase (AID) initiates somatic hypermutation (SHM) by introducing base substitutions into antibody genes, a process enabling antibody affinity maturation in immune response. How a mutator is tamed to precisely and safely generate programmed DNA lesions in a physiological process remains unsettled, as its dysregulation drives lymphomagenesis. Recent research has revealed several hidden features of AID-initiated mutagenesis: preferential activity on flexible DNA substrates, restrained activity within chromatin loop domains, unique DNA repair factors to differentially decode AID-caused lesions, and diverse consequences of aberrant deamination. Here, we depict the multifaceted regulation of AID activity with a focus on emerging concepts/factors and discuss their implications for the design of base editors (BEs) that install somatic mutations to correct deleterious genomic variants.


Asunto(s)
Citidina Desaminasa , Hipermutación Somática de Inmunoglobulina , Citidina Desaminasa/metabolismo , Citidina Desaminasa/genética , Humanos , Animales , Mutación , Reparación del ADN
7.
Cell ; 152(3): 417-29, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23374339

RESUMEN

Chromosomal translocations involving antigen receptor loci are common in lymphoid malignancies. Translocations require DNA double-strand breaks (DSBs) at two chromosomal sites, their physical juxtaposition, and their fusion by end-joining. Ability of lymphocytes to generate diverse repertoires of antigen receptors and effector antibodies derives from programmed genomic alterations that produce DSBs. We discuss these lymphocyte-specific processes, with a focus on mechanisms that provide requisite DSB target specificity and mechanisms that suppress DSB translocation. We also discuss recent work that provides new insights into DSB repair pathways and the influences of three-dimensional genome organization on physiological processes and cancer genomes.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Inestabilidad Genómica , Linfocitos/metabolismo , Recombinación V(D)J , Animales , Humanos , Linfocitos/inmunología , Linfoma/genética , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos T/genética , Translocación Genética
8.
Trends Immunol ; 45(3): 167-176, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38402044

RESUMEN

Antibody-coding genes accumulate somatic mutations to achieve antibody affinity maturation. Genetic dissection using various mouse models has shown that intrinsic hypermutations occur preferentially and are predisposed in the DNA region encoding antigen-contacting residues. The molecular basis of nonrandom/preferential mutations is a long-sought question in the field. Here, we summarize recent findings on how single-strand (ss)DNA flexibility facilitates activation-induced cytidine deaminase (AID) activity and fine-tunes the mutation rates at a mesoscale within the antibody variable domain exon. We propose that antibody coding sequences are selected based on mutability during the evolution of adaptive immunity and that DNA mechanics play a noncoding role in the genome. The mechanics code may also determine other cellular DNA metabolism processes, which awaits future investigation.


Asunto(s)
Genes de Inmunoglobulinas , Hipermutación Somática de Inmunoglobulina , Animales , Ratones , Hipermutación Somática de Inmunoglobulina/genética , Mutación , ADN , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo
9.
EMBO J ; 41(11): e109324, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35471583

RESUMEN

In activated B cells, activation-induced cytidine deaminase (AID) generates programmed DNA lesions required for antibody class switch recombination (CSR), which may also threaten genome integrity. AID dynamically shuttles between cytoplasm and nucleus, and the majority stays in the cytoplasm due to active nuclear export mediated by its C-terminal peptide. In immunodeficient-patient cells expressing mutant AID lacking its C-terminus, a catalytically active AID-delC protein accumulates in the nucleus but nevertheless fails to support CSR. To resolve this apparent paradox, we dissected the function of AID-delC proteins in the CSR process and found that they cannot efficiently target antibody genes. We demonstrate that AID-delC proteins form condensates both in vivo and in vitro, dependent on its N-terminus and on a surface arginine-rich patch. Co-expression of AID-delC and wild-type AID leads to an unbalanced nuclear AID-delC/AID ratio, with AID-delC proteins able to trap wild-type AID in condensates, resulting in a dominant-negative phenotype that could contribute to immunodeficiency. The co-condensation model of mutant and wild-type proteins could be an alternative explanation for the dominant-negative effect in genetic disorders.


Asunto(s)
Citidina Desaminasa , Cambio de Clase de Inmunoglobulina , Linfocitos B , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , ADN/metabolismo , Humanos , Cambio de Clase de Inmunoglobulina/genética
10.
Cell ; 144(3): 353-63, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21255825

RESUMEN

Activation-induced cytidine deaminase (AID) initiates immunoglobulin (Ig) heavy-chain (IgH) class switch recombination (CSR) and Ig variable region somatic hypermutation (SHM) in B lymphocytes by deaminating cytidines on template and nontemplate strands of transcribed DNA substrates. However, the mechanism of AID access to the template DNA strand, particularly when hybridized to a nascent RNA transcript, has been an enigma. We now implicate the RNA exosome, a cellular RNA-processing/degradation complex, in targeting AID to both DNA strands. In B lineage cells activated for CSR, the RNA exosome associates with AID, accumulates on IgH switch regions in an AID-dependent fashion, and is required for optimal CSR. Moreover, both the cellular RNA exosome complex and a recombinant RNA exosome core complex impart robust AID- and transcription-dependent DNA deamination of both strands of transcribed SHM substrates in vitro. Our findings reveal a role for noncoding RNA surveillance machinery in generating antibody diversity.


Asunto(s)
Linfocitos B/metabolismo , Citidina Desaminasa/metabolismo , Exorribonucleasas/metabolismo , Cambio de Clase de Inmunoglobulina , Cadenas Pesadas de Inmunoglobulina/genética , Complejos Multienzimáticos/metabolismo , ARN/metabolismo , Animales , Linfocitos B/citología , Linfocitos B/enzimología , Línea Celular , Células Cultivadas , Humanos , Ratones , Transcripción Genética
11.
Mol Cell ; 67(3): 361-373.e4, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28757211

RESUMEN

Activation-induced cytidine deaminase (AID) initiates both class switch recombination (CSR) and somatic hypermutation (SHM) in antibody diversification. Mechanisms of AID targeting and catalysis remain elusive despite its critical immunological roles and off-target effects in tumorigenesis. Here, we produced active human AID and revealed its preferred recognition and deamination of structured substrates. G-quadruplex (G4)-containing substrates mimicking the mammalian immunoglobulin switch regions are particularly good AID substrates in vitro. By solving crystal structures of maltose binding protein (MBP)-fused AID alone and in complex with deoxycytidine monophosphate, we surprisingly identify a bifurcated substrate-binding surface that explains structured substrate recognition by capturing two adjacent single-stranded overhangs simultaneously. Moreover, G4 substrates induce cooperative AID oligomerization. Structure-based mutations that disrupt bifurcated substrate recognition or oligomerization both compromise CSR in splenic B cells. Collectively, our data implicate intrinsic preference of AID for structured substrates and uncover the importance of G4 recognition and oligomerization of AID in CSR.


Asunto(s)
Citidina Desaminasa/metabolismo , ADN/metabolismo , Cambio de Clase de Inmunoglobulina , Región de Cambio de la Inmunoglobulina , Recombinación Genética , Desaminasas APOBEC/genética , Desaminasas APOBEC/metabolismo , Animales , Diversidad de Anticuerpos , Linfocitos B/enzimología , Linfocitos B/inmunología , Citidina Desaminasa/química , Citidina Desaminasa/genética , ADN/química , ADN/genética , Humanos , Ratones , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Bazo/enzimología , Bazo/inmunología , Relación Estructura-Actividad , Especificidad por Sustrato
12.
J Immunol ; 208(1): 143-154, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34862258

RESUMEN

Somatic hypermutation (SHM) drives the genetic diversity of Ig genes in activated B cells and supports the generation of Abs with increased affinity for Ag. SHM is targeted to Ig genes by their enhancers (diversification activators [DIVACs]), but how the enhancers mediate this activity is unknown. We show using chicken DT40 B cells that highly active DIVACs increase the phosphorylation of RNA polymerase II (Pol II) and Pol II occupancy in the mutating gene with little or no accompanying increase in elongation-competent Pol II or production of full-length transcripts, indicating accumulation of stalled Pol II. DIVAC has similar effect also in human Ramos Burkitt lymphoma cells. The DIVAC-induced stalling is weakly associated with an increase in the detection of ssDNA bubbles in the mutating target gene. We did not find evidence for antisense transcription, or that DIVAC functions by altering levels of H3K27ac or the histone variant H3.3 in the mutating gene. These findings argue for a connection between Pol II stalling and cis-acting targeting elements in the context of SHM and thus define a mechanistic basis for locus-specific targeting of SHM in the genome. Our results suggest that DIVAC elements render the target gene a suitable platform for AID-mediated mutation without a requirement for increasing transcriptional output.


Asunto(s)
Proteínas Aviares/metabolismo , Subgrupos de Linfocitos B/inmunología , Linfoma de Burkitt/inmunología , Elementos de Facilitación Genéticos/genética , Inmunoglobulinas/metabolismo , ARN Polimerasa II/metabolismo , Animales , Diversidad de Anticuerpos , Proteínas Aviares/genética , Linfoma de Burkitt/genética , Pollos , Citidina Desaminasa/genética , Humanos , Inmunoglobulinas/genética , Activación de Linfocitos , Mutagénesis Sitio-Dirigida , Mutación/genética , ARN Polimerasa II/genética , Hipermutación Somática de Inmunoglobulina , Transcripción Genética
13.
Nature ; 542(7642): 489-493, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28199309

RESUMEN

Activation-induced cytidine deaminase (AID) is a B-cell-specific enzyme that targets immunoglobulin genes to initiate class switch recombination and somatic hypermutation. In addition, through off-target activity, AID has a much broader effect on genomic instability by initiating oncogenic chromosomal translocations and mutations involved in the development and progression of lymphoma. AID expression is tightly regulated in B cells and its overexpression leads to enhanced genomic instability and lymphoma formation. The phosphatidylinositol 3-kinase δ (PI3Kδ) pathway regulates AID by suppressing its expression in B cells. Drugs for leukaemia or lymphoma therapy such as idelalisib, duvelisib and ibrutinib block PI3Kδ activity directly or indirectly, potentially affecting AID expression and, consequently, genomic stability in B cells. Here we show that treatment of primary mouse B cells with idelalisib or duvelisib, and to a lesser extent ibrutinib, enhanced the expression of AID and increased somatic hypermutation and chromosomal translocation frequency to the Igh locus and to several AID off-target sites. Both of these effects were completely abrogated in AID-deficient B cells. PI3Kδ inhibitors or ibrutinib increased the formation of AID-dependent tumours in pristane-treated mice. Consistently, PI3Kδ inhibitors enhanced AID expression and translocation frequency to IGH and AID off-target sites in human chronic lymphocytic leukaemia and mantle cell lymphoma cell lines, and patients treated with idelalisib, but not ibrutinib, showed increased somatic hypermutation in AID off-targets. In summary, we show that PI3Kδ or Bruton's tyrosine kinase inhibitors increase genomic instability in normal and neoplastic B cells by an AID-dependent mechanism. This effect should be carefully considered, as such inhibitors can be administered to patients for years.


Asunto(s)
Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Inestabilidad Genómica/efectos de los fármacos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Adenina/análogos & derivados , Agammaglobulinemia Tirosina Quinasa , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Linfocitos B/enzimología , Linfocitos B/patología , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Citidina Desaminasa/metabolismo , Inhibidores Enzimáticos/efectos adversos , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Cambio de Clase de Inmunoglobulina/efectos de los fármacos , Cadenas Pesadas de Inmunoglobulina/genética , Isoquinolinas/efectos adversos , Isoquinolinas/farmacología , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/patología , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Piperidinas , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Purinas/efectos adversos , Purinas/farmacología , Pirazoles/efectos adversos , Pirazoles/farmacología , Pirimidinas/efectos adversos , Pirimidinas/farmacología , Quinazolinonas/efectos adversos , Quinazolinonas/farmacología , Recombinación Genética/efectos de los fármacos , Hipermutación Somática de Inmunoglobulina/efectos de los fármacos , Translocación Genética/efectos de los fármacos
14.
Nucleic Acids Res ; 49(15): 8732-8742, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34365511

RESUMEN

CRISPR-Cas9 generates double-stranded DNA breaks (DSBs) to activate cellular DNA repair pathways for genome editing. The repair of DSBs leads to small insertions or deletions (indels) and other complex byproducts, including large deletions and chromosomal translocations. Indels are well understood to disrupt target genes, while the other deleterious byproducts remain elusive. We developed a new in silico analysis pipeline for the previously described primer-extension-mediated sequencing assay to comprehensively characterize CRISPR-Cas9-induced DSB repair outcomes in human or mouse cells. We identified tremendous deleterious DSB repair byproducts of CRISPR-Cas9 editing, including large deletions, vector integrations, and chromosomal translocations. We further elucidated the important roles of microhomology, chromosomal interaction, recurrent DSBs, and DSB repair pathways in the generation of these byproducts. Our findings provide an extra dimension for genome editing safety besides off-targets. And caution should be exercised to avoid not only off-target damages but also deleterious DSB repair byproducts during genome editing.


Asunto(s)
Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Reparación del ADN , Edición Génica , Animales , Células Cultivadas , Simulación por Computador , Humanos , Ratones , Plásmidos/genética , Eliminación de Secuencia , Translocación Genética
15.
J Am Chem Soc ; 144(3): 1323-1331, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35037455

RESUMEN

As an aberrant base in DNA, uracil is generated by either deoxyuridine (dU) misincorporation or cytosine deamination, and involved in multiple physiological and pathological processes. Genome-wide profiles of uracil are important for study of these processes. Current methods for whole-genome mapping of uracil all rely on uracil-DNA N-glycosylase (UNG) and are limited in resolution, specificity, and/or sensitivity. Here, we developed a UdgX cross-linking and polymerase stalling sequencing ("Ucaps-seq") method to detect dU at single-nucleotide resolution. First, the specificity of Ucaps-seq was confirmed on synthetic DNA. Then the effectiveness of the approach was verified on two genomes from different sources. Ucaps-seq not only identified the enrichment of dU at dT sites in pemetrexed-treated cancer cells with globally elevated uracil but also detected dU at dC sites within the "WRC" motif in activated B cells which have increased dU in specific regions. Finally, Ucaps-seq was utilized to detect dU introduced by the cytosine base editor (nCas9-APOBEC) and identified a novel off-target site in cellular context. In conclusion, Ucaps-seq is a powerful tool with many potential applications, especially in evaluation of base editing fidelity.


Asunto(s)
Nucleótidos
16.
Nucleic Acids Res ; 48(22): 12792-12803, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33270890

RESUMEN

Telomeres at the ends of eukaryotic chromosomes are essential for genome integrality and stability. In order to identify genes that sustain telomere maintenance independently of telomerase recruitment, we have exploited the phenotype of over-long telomeres in the cells that express Cdc13-Est2 fusion protein, and examined 195 strains, in which individual non-essential gene deletion causes telomere shortening. We have identified 24 genes whose deletion results in dramatic failure of Cdc13-Est2 function, including those encoding components of telomerase, Yku, KEOPS and NMD complexes, as well as quite a few whose functions are not obvious in telomerase activity regulation. We have characterized Swc4, a shared subunit of histone acetyltransferase NuA4 and chromatin remodeling SWR1 (SWR1-C) complexes, in telomere length regulation. Deletion of SWC4, but not other non-essential subunits of either NuA4 or SWR1-C, causes significant telomere shortening. Consistently, simultaneous disassembly of NuA4 and SWR1-C does not affect telomere length. Interestingly, inactivation of Swc4 in telomerase null cells accelerates both telomere shortening and senescence rates. Swc4 associates with telomeric DNA in vivo, suggesting a direct role of Swc4 at telomeres. Taken together, our work reveals a distinct role of Swc4 in telomere length regulation, separable from its canonical roles in both NuA4 and SWR1-C.


Asunto(s)
Adenosina Trifosfatasas/genética , Histona Acetiltransferasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Homeostasis del Telómero/genética , Cromatina/genética , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica/genética , Histonas/genética , Humanos , Complejos Multiproteicos/genética , Saccharomyces cerevisiae/genética , Telomerasa/genética , Telómero/genética , Proteínas de Unión a Telómeros/genética
17.
Proc Natl Acad Sci U S A ; 115(40): 10076-10081, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30213852

RESUMEN

Chromosomal rearrangements, including translocations, are early and essential events in the formation of many tumors. Previous studies that defined the genetic requirements for rearrangement formation have identified differences between murine and human cells, most notably in the role of classic and alternative nonhomologous end-joining (NHEJ) factors. We reported that poly(ADP)ribose polymerase 3 (PARP3) promotes chromosomal rearrangements induced by endonucleases in multiple human cell types. We show here that in contrast to classic (c-NHEJ) factors, Parp3 also promotes rearrangements in murine cells, including translocations in murine embryonic stem cells (mESCs), class-switch recombination in primary B cells, and inversions in tail fibroblasts that generate Eml4-Alk fusions. In mESCs, Parp3-deficient cells had shorter deletion lengths at translocation junctions. This was corroborated using next-generation sequencing of Eml4-Alk junctions in tail fibroblasts and is consistent with a role for Parp3 in promoting the processing of DNA double-strand breaks. We confirmed a previous report that Parp1 also promotes rearrangement formation. In contrast with Parp3, rearrangement junctions in the absence of Parp1 had longer deletion lengths, suggesting that Parp1 may suppress double-strand break processing. Together, these data indicate that Parp3 and Parp1 promote rearrangements with distinct phenotypes.


Asunto(s)
Linfocitos B/metabolismo , Reparación del ADN por Unión de Extremidades/fisiología , Cambio de Clase de Inmunoglobulina/fisiología , Células Madre Embrionarias de Ratones/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Quinasa de Linfoma Anaplásico , Animales , Fibroblastos/metabolismo , Ratones , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo
18.
Yi Chuan ; 42(11): 1042-1061, 2020 Nov 20.
Artículo en Zh | MEDLINE | ID: mdl-33229312

RESUMEN

Since Takahashi and Yamanaka reported the generation of induced pluripotent stem cells (iPSCs) in 2006, the field of pluripotent stem cells has entered an unprecedented state of development. It plays an important role in disease modeling, drug discovery and cell therapy, and promotes the development of cell biology and regenerative medicine. At present, iPSC technology has become an important tool for studying of pathological mechanisms. New drugs screened by iPSC technology are being developed, and the number of clinical trials using iPSC-derived cells is gradually increasing. The latest research progress of iPSCs, combined with gene editing technology and 3D organoid methodology, promotes the further applications of iPSCs in disease research. In this review, we introduce the innovation of reprogramming methods in recent years, analyze the advantages and disadvantages of four reprogramming methods: integrated virus vector system, integrated non-viral vector system, non-integrated virus vector system and non-integrated non virus vector system. At the same time, we summarize the latest research progress on iPSCs in disease modeling and clinical treatment strategies, so as to provide a reference for further in-depth research in various fields of iPSCs.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas , Edición Génica , Humanos , Medicina Regenerativa/tendencias , Investigación/tendencias
19.
Yi Chuan ; 41(11): 994-1008, 2019 Nov 20.
Artículo en Zh | MEDLINE | ID: mdl-31735703

RESUMEN

Deafness has become one of the most frequent health problems worldwide, and affects almost every age group. Hair cell damage or absence is the main cause of hearing loss, but there is no successful treatment to heal deafness. MicroRNA (miRNA), as a highly conserved endogenous non-coding small RNA, plays an important role in inner ear cochlea and hair cell development. In this review, we elaborate on the expression and function of miRNAs in cochlear hair cell development, and reveal its indispensable important role. We summarize the molecular mechanism of miRNA in regulating transcription factors involved in cochlear hair cell development, which may provide references and insights for hair cell regeneration in vivo and cellular transplantation therapy of deafness.


Asunto(s)
Células Ciliadas Auditivas/fisiología , MicroARNs/genética , Cóclea/crecimiento & desarrollo , Oído Interno/crecimiento & desarrollo , Humanos , Neurogénesis
20.
Adv Exp Med Biol ; 1044: 49-64, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29956291

RESUMEN

The sources of genome instability can be attributed to many extra- and exo- cellular factors accompanying various biological processes. In leukemia and lymphomas, the collateral effect of programmed DNA alterations during immune diversification is the major source of genome instability. Cytidine deamination from cytidine (C) to uridine (U) at immunoglobulin (Ig) gene loci is required for initiation of antibody diversification, while the same process also contributes to recurrent translocation or mutations outside of Ig loci in lymphocyte-origin tumors. Furthermore, genome sequencing of cancer cells from many tissue origins revealed a significant enrichment of cytidine deaminase mutagenesis signature in human cancers. Thus, cytidine deamination, which can intensively happen in an enzyme-dependent fashion at specific genomic regions, is a widespread genome instability source across many tumor types. AID/APOBEC superfamily proteins are the main single-stranded DNA deaminases in eukaryotes, which play vital roles in adaptive and innate immunity. Their deamination products can be channeled into mutations, insertions and deletions (indels), clusters of mutations called kaetagis, or chromosomal rearrangements/translocations. Here, we review the generation of genome instability from AID/APOBEC-dependent cytidine deamination with emphasis on the most studied enzyme, AID.


Asunto(s)
Citidina Desaminasa/fisiología , Citidina/metabolismo , Inestabilidad Genómica , Desaminación , Humanos , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA