Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 573
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(11): 3448-3455, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38452056

RESUMEN

Unlike graphene derived from graphite, borophenes represent a distinct class of synthetic two-dimensional materials devoid of analogous bulk-layered allotropes, leading to covalent bonding within borophenes instead of van der Waals (vdW) stacking. Our investigation focuses on 665 vdW-stacking boron bilayers to uncover potential bulk-layered boron allotropes through vdW stacking. Systematic high-throughput screening and stability analysis reveal a prevailing inclination toward covalently bonded layers in the majority of boron bilayers. However, an intriguing outlier emerges in δ5 borophene, demonstrating potential as a vdW-stacking candidate. We delve into electronic and topological structural similarities between δ5 borophene and graphene, shedding light on the structural integrity and stability of vdW-stacked boron structures across bilayers, multilayers, and bulk-layered allotropes. The δ5 borophene analogues exhibit metallic properties and characteristics of phonon-mediated superconductors, boasting a critical temperature near 22 K. This study paves the way for the concept of "borophite", a long-awaited boron analogue of graphite.

2.
Plant Mol Biol ; 114(3): 37, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602592

RESUMEN

Reactive oxygen species (ROS) is a chemically reactive chemical substance containing oxygen and a natural by-product of normal oxygen metabolism. Excessive ROS affect the growth process of crops, which will lead to the decrease of yield. Nitrogen, as a critical nutrient element in plants and plays a vital role in plant growth and crop production. Nitrate is the primary nitrogen source available to plants in agricultural soil and various natural environments. However, the molecular mechanism of ROS-nitrate crosstalk is still unclear. In this study, we used the foxtail millet (Setaria italica L.) as the material to figure it out. Here, we show that excessive NaCl inhibits nitrate-promoted plant growth and nitrogen use efficiency (NUE). NaCl induces ROS accumulation in roots, and ROS inhibits nitrate-induced gene expression in a short time. Surprisingly, low concentration ROS slight promotes and high concentration of ROS inhibits foxtail millet growth under long-term H2O2 treatment. These results may open a new perspective for further exploration of ROS-nitrate signaling pathway in plants.


Asunto(s)
Nitratos , Setaria (Planta) , Especies Reactivas de Oxígeno , Nitratos/farmacología , Setaria (Planta)/genética , Peróxido de Hidrógeno , Cloruro de Sodio , Oxígeno , Transducción de Señal , Perfilación de la Expresión Génica , Nitrógeno
3.
Small ; 20(11): e2305905, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37926774

RESUMEN

To overcome the low efficiency of overall water splitting, highly effective and stable catalysts are in urgent need, especially for the anode oxygen evolution reaction (OER). In this case, nickel selenides appear as good candidates to catalyze OER and other substitutable anodic reactions due to their high electronic conductivity and easily tunable electronic structure to meet the optimized adsorption ability. Herein, an interesting phase transition from the hexagonal phase of NiSe (H-NiSe) to the rhombohedral phase of NiSe (R-NiSe) induced by the doping of cobalt atoms is reported. The five-coordinated R-NiSe is found to grow adjacent to the six-coordinated H-NiSe, resulting in the formation of the H-NiSe/R-NiSe heterostructure. Further characterizations and calculations prove the reduced splitting energy for R-NiSe and thus the less occupancy in the t2g orbits, which can facilitate the electron transfer process. As a result, the Co2 -NiSe/NF shows a satisfying catalytic performance toward OER, hydrogen evolution reaction, and (hybrid) overall water splitting. This work proves that trace amounts of Co doping can induce the phase transition from H-NiSe to R-NiSe. The formation of less-coordinated species can reduce the t2g occupancy and thus enhance the catalytic performance, which might guide rational material design.

4.
Am J Pathol ; 193(10): 1548-1567, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37419385

RESUMEN

ACTA1 encodes skeletal muscle-specific α-actin, which polymerizes to form the thin filament of the sarcomere. Mutations in ACTA1 are responsible for approximately 30% of nemaline myopathy (NM) cases. Previous studies of weakness in NM have focused on muscle structure and contractility, but genetic issues alone do not explain the phenotypic heterogeneity observed in patients with NM or NM mouse models. To identify additional biological processes related to NM phenotypic severity, proteomic analysis was performed using muscle protein isolates from wild-type mice in comparison to moderately affected knock-in (KI) Acta1H40Y and the minimally affected transgenic (Tg) ACTA1D286G NM mice. This analysis revealed abnormalities in mitochondrial function and stress-related pathways in both mouse models, supporting an in-depth assessment of mitochondrial biology. Interestingly, evaluating each model in comparison to its wild-type counterpart identified different degrees of mitochondrial abnormality that correlated well with the phenotypic severity of the mouse model. Muscle histology, mitochondrial respiration, electron transport chain function, and mitochondrial transmembrane potential were all normal or minimally affected in the TgACTA1D286G mouse model. In contrast, the more severely affected KI.Acta1H40Y mice displayed significant abnormalities in relation to muscle histology, mitochondrial respirometry, ATP, ADP, and phosphate content, and mitochondrial transmembrane potential. These findings suggest that abnormal energy metabolism is related to symptomatic severity in NM and may constitute a contributor to phenotypic variability and a novel treatment target.


Asunto(s)
Miopatías Nemalínicas , Animales , Ratones , Actinas/genética , Modelos Animales de Enfermedad , Músculo Esquelético/metabolismo , Mutación , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/patología , Proteómica
5.
Am J Pathol ; 193(10): 1528-1547, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37422147

RESUMEN

Nemaline myopathy (NM) is a genetically and clinically heterogeneous disease that is diagnosed on the basis of the presence of nemaline rods on skeletal muscle biopsy. Although NM has typically been classified by causative genes, disease severity or prognosis cannot be predicted. The common pathologic end point of nemaline rods (despite diverse genetic causes) and an unexplained range of muscle weakness suggest that shared secondary processes contribute to the pathogenesis of NM. We speculated that these processes could be identified through a proteome-wide interrogation using a mouse model of severe NM in combination with pathway validation and structural/functional analyses. A proteomic analysis was performed using skeletal muscle tissue from the Neb conditional knockout mouse model compared with its wild-type counterpart to identify pathophysiologically relevant biological processes that might impact disease severity or provide new treatment targets. A differential expression analysis and Ingenuity Pathway Core Analysis predicted perturbations in several cellular processes, including mitochondrial dysfunction and changes in energetic metabolism and stress-related pathways. Subsequent structural and functional studies demonstrated abnormal mitochondrial distribution, decreased mitochondrial respiratory function, an increase in mitochondrial transmembrane potential, and extremely low ATP content in Neb conditional knockout muscles relative to wild type. Overall, the findings of these studies support a role for severe mitochondrial dysfunction as a novel contributor to muscle weakness in NM.


Asunto(s)
Miopatías Nemalínicas , Animales , Humanos , Ratones , Ratones Noqueados , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Debilidad Muscular , Músculo Esquelético/metabolismo , Mutación , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/patología , Proteómica
6.
Chemistry ; 30(34): e202400714, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38622057

RESUMEN

Quantum chemical calculations using ab initio methods at the MRCI+Q(8,9)/def2-QZVPPD and CCSD(T)/def2-QZVPPD levels as well as using density functional theory are reported for the diatomic molecules AeN- (Ae=Ca, Sr, Ba). The anions CaN- and SrN- have electronic triplet (3Π) ground states with nearly identical bond dissociation energies De ~57 kcal/mol calculated at the MRCI+Q(8,9)/def2-QZVPPD level. In contrast, the heavier homologue BaN- has a singlet (1Σ+) ground state, which is only 1.1 kcal/mol below the triplet (3Σ-) state. The computed bond dissociation energy of (1Σ+) BaN- is 68.4 kcal/mol. The calculations at the CCSD(T)-full/def2-QZVPPD and BP86-D3(BJ)/def2-QZVPPD levels are in reasonable agreement with the MRCI+Q(8,9)/def2-QZVPPD data, except for the singlet (1Σ+) state, which has a large multireference character. The calculated atomic partial charges given by the CM5, Voronoi and Hirshfeld methods suggest small to medium-sized Ae←N- charge donation for most electronic states. In contrast, the NBO method predicts for all species medium to large Ae→N- electronic charge donation, which is due to the neglect of the (n)p AOs of Ae atoms as genuine valence orbitals. Neither the bond orders nor the bond lengths correlate with the bond dissociation energies. The EDA-NOCV calculations show that the heavier alkaline earth atoms Ca, Sr, Ba use their (n)s and (n-1)d orbitals for covalent bonding.

7.
Lupus ; 33(2): 155-165, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182135

RESUMEN

BACKGROUND: Systemic lupus erythematosus (SLE) is a complex autoimmune connective tissue disease (CTD) that is an important cause of devastating pulmonary arterial hypertension (PAH), and persistent progression of PAH can lead to right heart failure, predicting a poor prognosis for SLE patients. Right ventricular-pulmonary arterial (RV-PA) coupling with echocardiography has been demonstrated to be a noninvasive alternative method for evaluating PAH patients' predictive outcomes. Whether the ratio of right ventricular stroke volume (RVSV) to right ventricular end-systolic volume (RVESV) measured by three-dimensional echocardiography (3DE) is a new index of RV-PA coupling has not been discussed as a new predictor for the clinical outcome of systemic lupus erythematosus-associated pulmonary arterial hypertension (SLE-PAH). METHODS: From June 2019 to February 2023, 46 consecutive patients with SLE-PAH were enrolled prospectively, and their clinical data and echocardiographs were studied and analyzed. The control group consisted of 30 healthy subjects matched for age, sex, and body surface area (BSA). The main endpoints of this study were a composite of all-cause mortality and adverse clinical events. Baseline clinical characteristics and echocardiographic assessments were analyzed. RESULTS: During a median of 24 months (IQR 18-31), 16 of 46 SLE-PAH patients (34.7%) experienced endpoint-related events. At baseline, patients who experienced mortality or adverse events had a worse WHO functional class (WHO FC) and lower anti-double-stranded DNA (dsDNA) antibody levels. The right ventricular (RV) systolic dysfunction in SLE-PAH subjects was significantly worse than that in the healthy control group, especially in SLE-PAH patients in the endpoint event group. Compared to controls, patients with SLE-PAH had a lower RVSV/RVESV ratio. In the group comparison, patients who had experienced an endpoint event had a sequentially worse ratio (1.86 (1.65-2.3) versus 1.30 (1.09-1.46) versus 0.64 (0.59-0.67), p < .001). There were statistically significant associations between the RVSV/RVESV ratio to routine RV systolic function and clinical parameters. The RVSV/RVESV ratio was negatively correlated with the WHO FC (r = -0.621, p < .001) and positively correlated with the anti-dsDNA level. The ROC curve showed that the optimal cutoff for RVSV/RVESV < 0.712 determined a higher risk of poor prognosis. Kaplan‒Meier survival curves showed that an RVSV/RVESV ratio >0.712 was associated with more favorable long-term outcomes. CONCLUSIONS: The 3DE-derived SV/ESV ratio as a noninvasive alternative surrogate of RV-PA coupling was an eximious indicator for identifying endpoint events in SLE-PAH patients and can provide a diagnostic basis for clinical intervention.


Asunto(s)
Ecocardiografía Tridimensional , Hipertensión Pulmonar , Lupus Eritematoso Sistémico , Hipertensión Arterial Pulmonar , Disfunción Ventricular Derecha , Humanos , Hipertensión Pulmonar/etiología , Lupus Eritematoso Sistémico/complicaciones , Ecocardiografía Tridimensional/métodos , Ecocardiografía , Disfunción Ventricular Derecha/etiología
8.
Yi Chuan ; 46(1): 46-62, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38230456

RESUMEN

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer accounting for 90% of cases. It is a highly invasive and deadly cancer with a gradual onset. Polypyrimidine tract-binding protein 1 (PTBP1) is an important RNA-binding protein involved in RNA metabolism and has been linked to oncogenic splicing events. While the oncogenic role of PTBP1 in HCC cells has been established, the exact mechanism of action remains unclear. This study aimed to investigate the functional connection between PTBP1 and dysregulated splicing events in HCC. Through immunoprecipitation-mass spectrometry analyses, we discovered that the proteins bound to PTBP1 were significantly enriched in the complex responsible for the alternative splicing of FGFR2 (fibroblast growth factor receptor 2). Further RNA immunoprecipitation and quantitative PCR assays confirmed that PTBP1 down-regulated the FGFR2-IIIb isoform levels and up-regulated the FGFR2-IIIc isoform levels in HCC cells, leading to a switch from FGFR2-IIIb to FGFR2-IIIc isoforms. Subsequent functional evaluations using CCK-8, transwell, and plate clone formation assays in HCC cell lines HepG2 and Huh7 demonstrated that FGFR2-IIIb exhibited tumor-suppressive effects, while FGFR2-IIIc displayed tumor-promoting effects. In conclusion, this study provides insights into the PTBP1-mediated alternative splicing mechanism in HCC progression, offering a new theoretical basis for the prevention and treatment of this malignancy. Mechanistically, the isoform switch from FGFR2-IIIb to FGFR2-IIIc promoted epithelial-mesenchymal transformation (EMT) of HCC cells and activated the FGFR cascades ERK and AKT pathways.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Isoformas de Proteínas/genética , Empalme Alternativo , ARN/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo
9.
Small ; 19(32): e2303214, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37170674

RESUMEN

It remains a challenge to develop efficient noble metal-free electrocatalysts for the oxygen reduction reaction (ORR) in various renewable energy systems. Single atom catalysts have recently drawn great attention as promising candidates both due to their high activity and their utmost atom utilization for electrocatalytic ORR. Herein, the synthesis of an efficient ORR electrocatalyst that is composed of N-doped mesoporous carbon and a high density (4.05 wt%) of single Fe atoms via pyrolysis Fe-conjugated polymer is reported. Benefiting from the abundant atomic Fe-N4 sites on its conductive, mesoporous carbon structures, this material exhibits an excellent electrocatalytic activity for ORR, with positive onset potentials of 0.93 and 0.98 V in acidic and alkaline media, respectively. Its electrocatalytic performance for ORR is also comparable to that of Pt/C (20 wt%) in both media. Furthermore, it electrocatalyzes the reaction almost fully to H2 O (or barely to H2 O2 ). Additionally, it is durable and tolerates the methanol crossover reaction well. Furthermore, a proton exchange membrane fuel cell and a zinc-air battery assembled using it on their cathode deliver high maximum power densities (320 and 91 mW cm-2 , respectively). Density functional theory calculation reveals that the material's decent electrocatalytic performance for ORR is due to its atomically dispersed Fe-N4 sites.

10.
Small ; 19(49): e2303481, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37590378

RESUMEN

The development of bifunctional catalysts that facilitate both the hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR) in alkaline environment is crucial for realizing unitized regenerative anion-exchange membrane fuel cells. In this study, a novel strategy to modulate the electron density of MoO3 through Ni doping (sample named Nix Mo1- x O3 ) is reported. Ni is incorporated to replace Mo atoms in MoO3 . Specifically, Nix Mo1- x O3 is combined with optimal adsorption energy, along with MoO2 /Mo2 N hybrid with high conductivity. The resulting Nix Mo1- x O3 supported on MoO2 /Mo2 N hybrid (sample named as Nix Mo1- x O3 -H) exhibits excellent alkaline HER activity, with an overpotential of only 16 mV at 10 mA cm-2 and a Tafel slope of 54 mV dec-1 . In addition, the Nix Mo1- x O3 -H demonstrates an ultrahigh HOR performance with a high exchange current density (3.852 mA cm-2 ). The catalyst's breakdown potential of 0.23 V indicates its ability to withstand higher voltages without breaking down. As evidenced by the results, this characteristic leads to improved stability. These results are higher than those of the other catalysts reported, which indicates that the electron density of MoO3 can be effectively modulated through Ni doping, leading to excellent HER and HOR performance.

11.
Small ; 19(18): e2207086, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36650993

RESUMEN

It is a good idea for efficient production of hydrogen to use ethanol oxidation reaction (EOR) in place of oxygen evolution reaction (OER) in water electrolysis process. Ni-based non-precious electrocatalysts are widely used in the conversion of ethanol to acetic acid. Here, different selenide heterostructures (NiCoSe, NiFeSe, and NiCuSe) are prepared in which Ni sites are regulated by transition metal. The valence state of Ni is NiCuSe < NiCoSe < NiFeSe in the three heterojunctions. NiCoSe shows the optimized charge distribution of Ni sites and outstanding catalytic activity. The effective modulations lead to optimized d-band center and facilitates both adsorption and desorption of reaction intermediates, which improves the kinetics of EOR. The results of this work prove that with appropriate designed catalyst it is possible to replace kinetically slow OER with faster EOR in water electrolysis to produce hydrogen.

12.
J Med Virol ; 95(12): e29302, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38084773

RESUMEN

Alphavirus is a type of arbovirus that can infect both humans and animals. The amino acid sequence of the 6K protein, being one of the structural proteins of the alphavirus, is not conserved. Deletion of this protein will result in varying effects on different alphaviruses. Our study focuses on the function of the Getah virus (GETV) 6K protein in infected cells and mice. We successfully constructed infectious clone plasmids and created resulting viruses (rGETV and rGETV-Δ6K). Our comprehensive microscopic analysis revealed that the 6 K protein mainly stays in the endoplasmic reticulum. In addition, rGETV-Δ6K has lower thermal stability and sensitivity to temperature than GETV. Although the deletion of the 6K protein does not reduce virion production in ST cells, it affects the release of virions from host cells by inhibiting the process of E2 protein transportation to the plasma membrane. Subsequent in vivo testing demonstrated that neonatal mice infected with rGETV-Δ6K had a lower virus content, less significant pathological changes in tissue slices, and milder disease than those infected with the wild-type virus. Our results indicate that the 6K protein effectively reduces the viral titer by influencing the release of viral particles. Furthermore, the 6K protein play a role in the clinical manifestation of GETV disease.


Asunto(s)
Alphavirus , Humanos , Animales , Ratones , Alphavirus/metabolismo , Virulencia , Proteínas Virales/metabolismo , Replicación Viral , Secuencia de Aminoácidos
13.
Microvasc Res ; 146: 104471, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36566948

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) is a life-threatening cardiopulmonary disorder whose underlying pathogenesis is unknown. Our previous study showed that pulmonary endothelial cell (PAEC) ferroptosis is involved in the progression of PH by releasing High-mobility group box 1 (HMGB1) and activating Toll-like receptor 4/NOD-like receptor family pyrin domain containing 3 (TLR4/NLRP3) inflammasome signalling. The precise mechanisms that regulate ferroptosis in PH are unclear. This study aimed to investigate the effect of peroxiredoxin 6 (PRDX6) on PAEC ferroptosis in PH. METHODS: A rat model of PH was established with monocrotaline (MCT), and the distribution and expression of PRDX6 in the pulmonary artery were examined. Lentiviral vectors carrying PRDX6 (LV-PRDX6) were transfected into PAECs and injected into MCT-induced PH rats. Cell viability, MDA levels, reactive oxygen species (ROS) levels, labile iron pool (LIP) levels and mitochondrial morphology were examined. Ferroptosis-related proteins (NADPH oxidase-4 (NOX4), glutathione peroxidase 4 (GPX4), and ferritin heavy chain 1(FTH1)), TLR4, NLRP3 inflammasome markers, HMGB1 and inflammatory cytokines were examined. Pulmonary vascular remodelling and right ventricular structure and function were measured. RESULTS: PRDX6 was expressed in PAECs and was significantly decreased in PH. PRDX6 overexpression significantly inhibited ferroptosis in PAECs under PH conditions in vitro and in vivo, as indicated by increased cell viability, decreased MDA, ROS and LIP levels, inhibited mitochondrial damage, upregulated GPX4 and FTH1 expression, and downregulated NOX4 expression. PRDX6 overexpression attenuated pulmonary vascular remodelling and changes in right ventricle structure and function in MCT-induced PH rats. Moreover, PRDX6 overexpression prevented HMGB1 release by PAECs and decreased TLR4 and NLRP3 inflammasome expression and inflammatory cytokine release in macrophages, while RSL3, a specific activator of ferroptosis, reversed these effects. CONCLUSIONS: Taken together, these findings indicate that PRDX6 regulates PAEC ferroptosis through the release of HMGB1 and activation of the TLR4/NLRP3 inflammasome signalling pathway, providing novel therapeutic targets for the treatment of PH.


Asunto(s)
Ferroptosis , Proteína HMGB1 , Hipertensión Pulmonar , Ratas , Animales , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/tratamiento farmacológico , Arteria Pulmonar/patología , Monocrotalina/toxicidad , Proteína HMGB1/metabolismo , Peroxiredoxina VI/farmacología , Peroxiredoxina VI/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Inflamasomas/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Receptor Toll-Like 4/metabolismo , Remodelación Vascular , Células Endoteliales/metabolismo
14.
Phys Rev Lett ; 130(24): 240202, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37390410

RESUMEN

Contextuality is a distinctive feature of quantum theory and a fundamental resource for quantum computation. However, existing examples of contextuality in high-dimensional systems lack the necessary robustness required in experiments. Here, we address this problem by identifying a family of noncontextuality inequalities whose maximum quantum violation grows with the dimension of the system. At first glance, this contextuality is the single-system version of multipartite Bell nonlocality taken to an extreme form. What is interesting is that the single-system version achieves the same degree of contextuality but uses a Hilbert space of lower dimension. That is, contextuality "concentrates" as the degree of contextuality per dimension increases. We show the practicality of this result by presenting an experimental test of contextuality in a seven-dimensional system. By simulating sequences of quantum ideal measurements with destructive measurements and repreparation in an all-optical setup, we report a violation of 68.7 standard deviations of the simplest case of the noncontextuality inequalities identified. Our results advance the investigation of high-dimensional contextuality, its connection to the Clifford algebra, and its role in quantum computation.

15.
Chemistry ; 29(30): e202300446, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-36883663

RESUMEN

Quantum chemical calculations using ab initio methods at the MRCI+Q(6,8)/def2-QZVPP and CCSD(T)/def2-QZVPP levels as well as density functional theory are reported for the diatomic molecules AeB- and isoelectronic AeC (Ae=Ca, Sr, Ba). The boride anions AeB- have an electronic triplet (3 Σ- ) ground state. The quintet (5 Σ- ) state is 5.8-12.3 kcal/mol higher in energy and the singlet (1 Δ) state is 13.1-15.3 kcal/mol above the triplet. The isoelectronic AeC molecules are also predicted to have a low-lying triplet (3 Σ- ) state but the quintet (5 Σ- ) state is only 2.2 kcal/mol (SrC) and 2.9 kcal/mol (CaC) above the triplet state. The triplet (3 Σ- ) and quintet (5 Σ- ) states of BaC are nearly isoenergetic. All systems have rather strong bonds. The calculated bond dissociation energies of the triplet (3 Σ- ) state are between De =38.3-41.7 kcal/mol for AeB- and De =49.4-57.5 kcal/mol for AeC. The barium species have always the strongest bonds whereas the calcium and strontium compounds have similar BDEs. The bonding analysis indicates that there is little charge migration in AeB- in the direction Ae→B- where the alkaline earth atoms carry positive charges between 0.09 e-0.22 e. The positive charges at the Ae atoms are much larger in AeC where the charge migration Ae→C is between 0.90 e-0.91 e. A detailed analysis of the interatomic interactions with the EDA-NOCV method shows that all diatomic species AeB- and AeC are built from dative interactions between Ae (1 S, ns2 ) and B- or C (3 P, 2 s2 2pπ 1 2pπ' 1 ). The eventually formed bonds in AeC are better described in terms of interactions between the ions Ae+ (2 S, ns1 )+C- (4 S, 2 s2 2pπ 1 2pπ' 1 2pσ 1 ). Inspection of the orbital interactions suggests that the alkaline earth atoms Ca, Sr, Ba use mainly their (n-1)d AOs besides the (n)s AOs for the covalent bonds. This creates a second energetically low-lying σ-bonding MO in the molecules, which feature valence orbitals with the order ϕ1 (σ-bonding)<ϕ2 (σ-bonding)<ϕ3 (degenerate π-bonding). All four occupied valence MOs of AeB- and AeC are bonding orbitals. Since the degenerate π orbitals ϕ3 are only singly occupied, the formal bond order is three.

16.
Int Arch Allergy Immunol ; 184(7): 707-719, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36822170

RESUMEN

INTRODUCTION: Respiratory viral infection in childhood is closely associated with asthmatic attacks. Of all predisposing factors, viral infection is the primary contributor to acute childhood asthma exacerbations. However, the mechanisms involved in viral asthma are unclear. This study attempted to provide insights into molecular mechanisms in respiratory virus-induced acute asthma exacerbations. METHODS: House dust mite (HDM) was given by intranasal administration to induce asthma in mice. Poly(I:C) was used to mimic the viral infection. A selective YAP inhibitor, verteporfin (VP), was used to investigate the role of the YAP/FOXM1 pathway. The expression of YAP, FOXM1, cytokines, and inflammatory cells in lung tissue, and bronchoalveolar lavage fluid (BALF) was determined using RT-PCR, immunohistochemical, ELISA, and flow cytometry studies. The methacholine challenge assesses airway hyperresponsiveness. In 16HBE cell experiments, we selectively inhibited YAP and FOXM1 by VP and RCM1, respectively, and detected the expression of YAP and FOXM1. RESULTS: The experimental studies have confirmed the YAP/FOXM1 pathway plays a vital role in the differentiation and proliferation of airway club cells into goblet cells and lung inflammation. Poly(I:C) upregulated the expression of FOXM1 by activating transcription factor YAP in mice airway epithelial cells and then promoted the expression of downstream transcription factors SPDEF/MUC5AC, resulting in airway mucus hypersecretion and hyperresponsiveness. In addition, Poly(I:C) facilitates the expression of inflammatory factors in lung tissue. All of these events induce asthma exacerbations. The in vitro studies have confirmed that YAP positively regulates FOXM1 in airway epithelial cells. CONCLUSION: Poly(I:C) promotes airway epithelial goblet cell hyperplasia, mucus hypersecretion, and airway hyperresponsiveness. It also upregulates the expression of inflammatory factors in lung tissue and BALF in asthmatic mice by the YAP/FOXM1 pathway, resulting in asthma attacks.


Asunto(s)
Asma , Neumonía , Animales , Ratones , Células Caliciformes/patología , Ratones Endogámicos BALB C , Hiperplasia/patología , Pulmón/patología , Asma/metabolismo , Líquido del Lavado Bronquioalveolar , Factores de Transcripción , Pyroglyphidae , Modelos Animales de Enfermedad , Inflamación/patología
17.
Chemphyschem ; 24(15): e202300257, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37309297

RESUMEN

The achievement of the rule-breaking planar hypercoordinate motifs (carbon and other elements) is mainly attributed to a practical electronic stabilization mechanism, where the bonding of the central atom pz π electrons is a crucial issue. We have demonstrated that strong multiple bonds between the central atom and partial ligands can be an effective approach to explore stable planar hypercoordinate species. A set of planar tetra-, penta- and hexa-coordinate silicon clusters were herein found to be the lowest-energy structure, which can be viewed as decorating SiO3 by alkali metals in the MSiO3 - , M2 SiO3 and M3 SiO3 + (M=Li, Na) clusters. The strong charge transfer from M atoms to SiO3 effectively results in [M]+ SiO3 2- , [M2 ]2+ SiO3 2- and [M3 ]3+ SiO3 2- salt complexes, where the Si-O multiple bonding and structural integrity of the Benz-like SiO3 framework is maintained better than the corresponding SiO3 2- motifs. The bonding between M atoms and SiO3 motif is best described as M+ forming a few dative interactions by employing its vacant s, p, and high-lying d orbitals. These considerable M←SiO3 interactions and Si-O multiple bonding give rise to the highly stable planar hypercoordinate silicon clusters.

18.
Cell Commun Signal ; 21(1): 361, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110975

RESUMEN

Getah virus (GETV) was becoming more serious and posing a potential threat to animal safety and public health. Currently, there is limited comprehension regarding the pathogenesis and immune evasion mechanisms employed by GETV. Our study reveals that GETV infection exhibits the capacity for interferon antagonism. Specifically, the nonstructural protein nsP2 of GETV plays a crucial role in evading the host immune response. GETV nsP2 effectively inhibits the induction of IFN-ß by blocking the phosphorylation and nuclear translocation of IRF3. Additionally, GETV nsP2 hinders the phosphorylation of STAT1 and its nuclear accumulation, leading to significantly impaired JAK-STAT signaling. Furthermore, the amino acids K648 and R649, situated in the C-terminal region of GETV nsP2, play a crucial role in facilitating nuclear localization. Not only do they affect the interference of nsP2 with the innate immune response, but they also exert an influence on the pathogenicity of GETV in mice. In summary, our study reveals novel mechanisms by which GETV evades the immune system, thereby offering a foundation for comprehending the pathogenic nature of GETV. Video Abstract.


Asunto(s)
Alphavirus , Interferones , Animales , Ratones , Línea Celular , Inmunidad Innata , Evasión Inmune
19.
Langmuir ; 39(30): 10565-10575, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37474454

RESUMEN

The difficulty of short-process bonded Nd-Fe-B magnet waste recycling lies in the effective removal of the cured polymer matrix while protecting the magnetic powder. In this study, the polymer matrix in bonded Nd-Fe-B magnet waste was destroyed using sodium hydroxide ethanol solution, and the effect of the recycling process on the magnetic powders was studied. The nonmagnetic polymer matrix was removed, while the magnetic phase was not destroyed. The carbon and oxygen contents of the recycled magnetic powders decreased by 92.96 and 89.30%, respectively, while the MS (saturation magnetization), Mr (remanence), and Hcj (coercivity) values of the recycled magnetic powders were 99.8, 98.5, and 95.9% of the original magnetic powders, respectively. The curing and decomposition processes of the polymer matrix were also analyzed. During the curing process, dicyandiamide and bisphenol A epoxy resin acted as bridges and skeletons, respectively, finally forming a thermosetting three-dimensional network structure. In the alkaline alcohol solution, the bridges and skeletons were destroyed by the free hydroxyl groups and free hydrogen radicals in ethanol, and small molecular products were dissolved in the solution.

20.
Helicobacter ; 28(5): e13007, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37452727

RESUMEN

BACKGROUND: Helicobacter pylori (H. pylori) is closely associated with gastric diseases and has a high prevalence in China. Public platforms are considered common and important tools to publicize H. pylori-related information. This study aimed to assess and compare the content and quality of H. pylori-related videos on TikTok and Bilibili. MATERIALS AND METHODS: A search was performed on the TikTok and Bilibili platforms using the keyword "H. pylori". The source of upload was categorized as for-profit organizations, general users, health professionals, news agencies, nonprofit organizations, and science communicators. The Journal of American Medical Association (JAMA), Global Quality Scale (GQS), and modified DISCERN scores were used to evaluate the quality of the included videos. RESULTS: A total of 93 TikTok videos and 79 Bilibili videos were included and analyzed. TikTok videos had a significantly shorter duration than Bilibili videos (64 vs. 149 s, respectively; p < 0.001). The duration of the video showed a positive correlation with the modified DISCERN and GQS scores (p < 0.001, r = 0.388 and r = 0.437, respectively). The JAMA and modified DISCERN scores of the TikTok video were significantly higher in health professionals and nonprofit organizations than in other sources (p < 0.05). For Bilibili, science communicators had a significantly higher JAMA score than the other video sources (p < 0.001). The videos uploaded by news agencies received more views, comments, shares, and favorites than any other organization or individual (p < 0.001). CONCLUSIONS: In China, H. pylori-related videos from TikTok and Bilibili tended to provide the information regarding the transmission and eradication of H. pylori. However, many videos scored an average rating in content and quality and need to be improved. We recommend that the public obtain H. pylori-related information through videos uploaded by health professionals, nonprofit organizations, and science communicators.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Medios de Comunicación Sociales , Humanos , Helicobacter pylori/genética , Fuentes de Información , China , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA