Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Plant J ; 118(5): 1569-1588, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38412288

RESUMEN

Apple rust is a serious fungal disease affecting Malus plants worldwide. Infection with the rust pathogen Gymnosporangium yamadae induces the accumulation of anthocyanins in Malus to resist rust disease. However, the mechanism of anthocyanin biosynthesis regulation in Malus against apple rust is still unclear. Here, we show that MpERF105 and MpNAC72 are key regulators of anthocyanin biosynthesis via the ethylene-dependent pathway in M. 'Profusion' leaves under rust disease stress. Exogenous ethephon treatment promoted high expression of MpERF105 and MpNAC72 and anthocyanin accumulation in G. yamadae-infected M. 'Profusion' leaves. Overexpression of MpERF105 increased the total anthocyanin content of Malus plant material and acted by positively regulating its target gene, MpMYB10b. MpNAC72 physically interacted with MpERF105 in vitro and in planta, and the two form a protein complex. Coexpression of the two leads to higher transcript levels of MpMYB10b and higher anthocyanin accumulation. In addition, overexpression of MpERF105 or MpNAC72 enhanced the resistance of M. 'Profusion' leaves to apple rust. In conclusion, our results elucidate the mechanism by which MpERF105 and MpNAC72 are induced by ethylene in G. yamadae-infected M. 'Profusion' leaves and promote anthocyanin accumulation by mediating the positive regulation of MpMYB10b expression.


Asunto(s)
Antocianinas , Basidiomycota , Regulación de la Expresión Génica de las Plantas , Malus , Enfermedades de las Plantas , Hojas de la Planta , Proteínas de Plantas , Antocianinas/metabolismo , Antocianinas/biosíntesis , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Hojas de la Planta/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Malus/microbiología , Malus/genética , Malus/metabolismo , Basidiomycota/fisiología , Etilenos/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-38518158

RESUMEN

Objective: Non-arteritic anterior ischemic optic neuropathy (NAION) is a prevalent acute optic neuropathy. This article provides a comprehensive overview of the research advancements in regional optic disc structural changes and local risk factors among NAION patients, aiming to establish a foundation for clinical diagnosis, treatment, and future follow-up investigations. Methods: One English database and two Chinese databases were utilized for the purpose of conducting a comprehensive literature search, followed by meticulous analysis. The investigation encompassed an in-depth exploration of the optic disc's structural composition, as well as a thorough examination of the distinctive characteristics exhibited by NAION optic discs. Furthermore, this study aimed to elucidate the intricate relationship between NAION and ODD (Optic Disc Drusen) alongside PHOMS (Peripapillary Hyperreflective Ovoid Mass-like Structures). Results: A total of 44 English articles were retrieved from Pubmed, including case reports, clinical trials, and reviews. Keywords retrieved included NAION, optic disc, optic disc drusen, PHOMS. Conclusion: The risk factors of NAION include systemic factors such as hypertension, diabetes, and nocturnal hypotension and local factors such as small optic cup, crowded optic discs, ODD and PHOMS. Among them, ODD and PHOMS are the local anatomical changes of the optic disc, and their relationship with the occurrence of NAION has received more and more attention in recent years. NAION is more likely to occur in eyes with ODD and PHOMS, and NAION patients with ODD and PHOMS have a high prevalence. In recent years, optical coherence tomography (OCT) and optical coherence tomography angiography(OCTA) can provide accurate anatomical imaging and microvascular imaging. Help us better observe the local structural changes and local-related risk factors. Although ODD and PHOMS are closely associated with the occurrence and progression of NAION, research on their relationship is still in its nascent stages. Specifically, further investigation is needed to determine whether the presence of ODD and PHOMS affects the prognosis of NAION patients, including potential influences on lateral eye involvement.This article summarizes the changes in optic disc structure and local risk factors in NAION patients in order to clinical decision making in NIAON patients and provide a basis for further Research on the relationship between the occurrence of NIAON and optic disc structure.

3.
New Phytol ; 238(6): 2524-2544, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36942952

RESUMEN

The anthocyanin content increases in Malus spectabilis leaves under low-nitrogen conditions. Noncoding RNAs are indicated to play key regulatory roles in anthocyanin biosynthesis. However, the functional roles of noncoding RNAs in anthocyanin biosynthesis under low-nitrogen conditions remain elusive. In this study, miR858 was screened as a key regulator of anthocyanin biosynthesis under low-nitrogen conditions through whole-transcriptome sequencing. Then, we used miR858 as an entry point to explore the regulatory network of lncRNA-miRNA-mRNA by dual-luciferase reporter assays and GUS histochemical staining assays, as well as to identify the mechanism of this regulatory network in anthocyanin biosynthesis by both transient and stable transformation experiments in Malus. MiR858 overexpression increased total anthocyanin content. MiR858 acted by negatively regulating its target gene, MsMYB62-like, under the low-nitrogen condition. MsMYB62-like inhibited the expression of MsF3'H, thereby negatively regulating anthocyanin biosynthesis. In addition, eTM858-1 and eTM858-2 were identified as endogenous target mimics of miR858 that bind to miR858 to prevent cleavage of MsMYB62-like and thereby negatively regulate anthocyanin biosynthesis. The results clarify the mechanism through which the eTM-miR858-MYB62-like module regulates anthocyanin biosynthesis in Malus under low-nitrogen conditions.


Asunto(s)
Malus , Malus/genética , Malus/metabolismo , Antocianinas/metabolismo , Nitrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36012317

RESUMEN

Anthocyanins belong to a group of flavonoids, which are the most important flower pigments. Clarifying the potential anthocyanins biosynthesis molecular mechanisms could facilitate artificial manipulation of flower pigmentation in plants. In this paper, we screened a differentially expressed gene, MhTCP4, from the transcriptome data of Malus halliana petals at different development stages and explored its role in anthocyanins biosynthesis. The transcriptome data and qRT-PCR analysis showed that the expression level of MhTCP4 gradually decreased from the flower color fades. Tissue specific expression analysis showed MhTCP4 was expressed in the petal, leaf, and fruit of M. halliana, and was highly expressed in the scarlet petal. Overexpression of MhTCP4 promoted anthocyanins accumulation and increased pigments in infected parts of M. 'Snowdrift' and M. 'Fuji' fruit peels. In contrast, when endogenous MhTCP4 was silenced, the anthocyanins accumulation was inhibited and pigments decreased in the infected peels. The qRT-PCR analysis revealed that overexpression or silence of MhTCP4 caused expression changes of a series of structural genes included in anthocyanins biosynthesis pathway. The yeast two-hybrid assays indicated that MhTCP4 did not interact with MhMYB10. Furthermore, the yeast one-hybrid assays indicated that MhTCP4 did not directly bind to the promoter of MhMYB10, but that of the anthocyanins biosynthesis genes, MhCHI and MhF3'H. Dual luciferase assays further confirmed that MhTCP4 can strongly activate the promoters of MhCHI and MhF3'H in tobacco. Overall, the results suggest that MhTCP4 positively regulates anthocyanins biosynthesis by directly activated MhCHI and MhF3'H in M. halliana flowers.


Asunto(s)
Malus , Antocianinas/metabolismo , Flores , Regulación de la Expresión Génica de las Plantas , Malus/metabolismo , Pigmentación/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo
5.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35269793

RESUMEN

Pericarp color is an important economic characteristic of Zanthoxylum bungeanum. Anthocyanins are the main reason for the pericarp's red appearance in Z. bungeanum. In this study, through the combined analysis of the metabolome and transcriptome, HY5, whose expression is highly correlated to changes in the anthocyanin content, was screened and identified. Under natural ripening conditions, the Z. bungeanum fruit gradually changed in color from green to red, while bagging resulted in the fruit maintaining its green color. After unbagging, the fruit gradually turned red, and the ZbHY5 expression and anthocyanin content increased. In addition, the leaves changed from green to red after exposure to UV-B radiation, and the ZbHY5 expression and anthocyanin content increased. The transient overexpression of ZbHY5 deepened the redness of the Z. bungeanum leaves and promoted the expression of ZbHY5 and ZbMYB113 as well as anthocyanin accumulation. Bimolecular fluorescence complementation (BIFC) showed that there was an interaction between ZbHY5 and ZbMYB113. These results revealed that under UV-B irradiation, ZbHY5 might regulate the expression levels of the structural genes related to anthocyanin biosynthesis through combination with ZbMYB113, thereby affecting anthocyanin accumulation. This finding provides useful insights for further studies focusing on UV-B-induced anthocyanin accumulation in Z. bungeanum.


Asunto(s)
Antocianinas , Zanthoxylum , Antocianinas/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma , Zanthoxylum/genética , Zanthoxylum/metabolismo
6.
Molecules ; 27(13)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35807546

RESUMEN

Red Malus 'Royalty' fruits are rich in anthocyanins. This study aimed to obtain the optimal parameters for the extraction and separation of anthocyanins from Malus 'Royalty' fruits and to evaluate the inhibitory effect of the enriched anthocyanin fraction on gastric cancer cells. Ultrasonic-assisted extraction was used for the extraction of the anthocyanins of Malus 'Royalty' fruit, and the extraction results showed that the optimum parameters were an extraction temperature of 20 °C, a solid-liquid ratio of 1:6 (g/mL), ethanol and formic acid contents of 70% and 0.4%, respectively, an extraction time of 40 min, and an ultrasonic power of 300 W. The optimum extraction parameters to achieve the highest anthocyanin yield by a single-factor experiment coupled with response surface methodology were identified. The separation results showed that the AB-8 macroporous resin was a better purifying material, with 60% ethanol as an adsorbent, and the adsorption-desorption equilibrium times were 6 h and 1 h, respectively. Cyanidin-3-galactoside was the main body composition separation of anthocyanins by a high-performance liquid chromatography-diode array detector. The antitumor activity results showed that the anthocyanins of Malus 'Royalty' fruits have a significant inhibitory effect on the gastric cancer cell line BGC-803. The in vitro cell viability test of CCK-8 showed that the inhibitory effect on tumor cells was more significant with the increased anthocyanin concentration, with a half maximal inhibitory concentration (IC50) value of 105.5 µg/mL. The cell morphology was observed by an inverted microscope, and it was found that the backbone of BGC-803 treated with a high concentration of anthocyanins was disintegrated and the nucleoplasm was concentrated. The mechanism of apoptosis was analyzed by Western blotting, and the results showed that with increasing anthocyanin concentration in the medium, the expression levels of the proapoptotic proteins Bax and Bak increased, and the expression levels of the antiapoptotic proteins Bcl-2 and Bcl-xL decreased, which coordinated the regulation of cell apoptosis. This research suggests that the enriched anthocyanin fraction from Malus 'Royalty' fruits have potential antitumor and adjuvant therapeutic effects on gastric cancer.


Asunto(s)
Malus , Neoplasias Gástricas , Antocianinas/análisis , Cromatografía Líquida de Alta Presión/métodos , Etanol/metabolismo , Frutas/química , Humanos , Malus/metabolismo , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Neoplasias Gástricas/tratamiento farmacológico
8.
Clin Case Rep ; 11(8): e7799, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37583565

RESUMEN

Key Clinical Message: A 50-year-old man with a mass located in the left kidney was described by multimodal images, including ultrasonography, computed tomography, and magnetic resonance imaging. After surgical resection of the mass, pathological examination confirmed succinate dehydrogenase-deficient renal cell carcinoma. Abstract: Succinate dehydrogenase-deficient renal cell carcinoma (SDH-deficient RCC) is a malignant tumor in the kidney associated with the loss of mitochondrial enzyme II. Due to its rarity, SDH-deficient RCC is frequently misdiagnosed. We present multimodal imaging and pathologic findings in a 50-year-old male with SDH-deficient RCC.

10.
Front Microbiol ; 14: 1152050, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37206329

RESUMEN

Malus plants are frequently devastated by the apple rust caused by Gymnosporangium yamadae Miyabe. When rust occurs, most Malus spp. and cultivars produce yellow spots, which are more severe, whereas a few cultivars accumulate anthocyanins around rust spots, forming red spots that inhibit the expansion of the affected area and might confer rust resistance. Inoculation experiments showed that Malus spp. with red spots had a significantly lower rust severity. Compared with M. micromalus, M. 'Profusion', with red spots, accumulated more anthocyanins. Anthocyanins exhibited concentration-dependent antifungal activity against G. yamadae by inhibiting teliospores germination. Morphological observations and the leakage of teliospores intracellular contents evidenced that anthocyanins destroyed cell integrity. Transcriptome data of anthocyanins-treated teliospores showed that differentially expressed genes were enriched in cell wall and membrane metabolism-related pathways. Obvious cell atrophy in periodical cells and aeciospores was observed at the rust spots of M. 'Profusion'. Moreover, WSC, RLM1, and PMA1 in the cell wall and membrane metabolic pathways were progressively downregulated with increasing anthocyanins content, both in the in vitro treatment and in Malus spp. Our results suggest that anthocyanins play an anti-rust role by downregulating the expression of WSC, RLM1, and PMA1 to destroy the cell integrity of G. yamadae.

11.
Front Plant Sci ; 13: 822340, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35178062

RESUMEN

The "Spring-red-leaf" crabapple cultivar has young red leaves and mature green leaves. However, the mechanism of anthocyanin biosynthesis in crabapple leaves in spring remains unknown. In this study, Illumina RNA sequencing (RNA-Seq) was performed on Malus 'Radiant' leaf tissues in different stages of development. Twenty-two genes in the anthocyanin biosynthesis pathway and 44 MYB transcription factors (TFs) were significantly enriched among differentially expressed genes (DEGs). Three R2R3-MYB TFs in subgroup 22 of the MYB TF family, MrMYB44-like1, MrMYB44-like2, and MrMYB44-like3, were highly expressed in green leaves according to RNA-Seq and quantitative real-time quantitative PCR results. Their expression levels were negatively correlated with anthocyanin content. In transient assays, overexpression of MrMYB44-like1, MrMYB44-like2, or MrMYB44-like3 inhibited anthocyanin accumulation and reduced pigment in leaf disks of M. 'Radiant' and fruit peels of M. domestica 'Fuji.' When the conserved region of the three MrMYB44-likes was silenced, the anthocyanin biosynthesis pathway was activated and pigments increased in both tissues. Moreover, bimolecular fluorescence complementation assays showed MrMYB44-likes interacted with MrWRKY6 to form protein complexes that regulated anthocyanin biosynthesis.

12.
RSC Adv ; 10(32): 18953-18958, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35518292

RESUMEN

Herein, facile and enantioselective approaches to synthesize the core phthalide tetrahydroisoquinoline scaffold of (-)-ß-hydrastine via both a CF3COOH-catalyzed (86% ee) and KHMDS-catalyzed (78% ee) epoxide ring-opening/transesterification cascade cyclization from chiral epoxide under very mild conditions are described. The key elements include a highly enantioselective epoxidation using the Shi ketone catalyst and an intramolecular CF3COOH-catalyzed cascade cyclization in one pot, and a late-stage C-3' epimerization under MeOK/MeOH conditions as the key steps to achieve the first total synthesis of (-)-ß-hydrastine (up to 81% ee).

13.
Front Plant Sci ; 11: 576054, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072152

RESUMEN

The flower color of many horticultural plants fades from red to white during the development stages, affecting ornamental value. We selected Malus halliana, a popular ornamental species, and analyzed the mechanisms of flower color fading using RNA sequencing. Forty-seven genes related to anthocyanin biosynthesis and two genes related to anthocyanin transport were identified; the expression of most of these genes declined dramatically with flower color fading, consistent with the change in the anthocyanin content. A number of transcription factors that might participate in anthocyanin biosynthesis were selected and analyzed. A phylogenetic tree was used to identify the key transcription factor. Using this approach, we identified MhMYB10 as directly regulating anthocyanin biosynthesis. MhMYB10 expression was strongly downregulated during flower development and was significantly positively related to the expression of anthocyanin biosynthetic genes and anthocyanin content in diverse varieties of Malus. To analyze the methylation level during flower development, the MhMYB10 promoter sequence was divided into 12 regions. The methylation levels of the R2 and R8 increased significantly as flower color faded and were inversely related to MhMYB10 expression and anthocyanin content. Therefore, we deduce that the increasing methylation activities of these two regions repressed MhMYB10 expression.

14.
Org Lett ; 21(17): 7149-7153, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31449423

RESUMEN

An acid-catalyzed stereoselective epoxide ring-opening/intramolecular transesterification cascade cyclization reaction and N-Boc deprotection was found to be a successful strategy to construct the phthalide tetrahydroisoquinoline skeleton in one pot. Based on this strategy, the unified and highly diastereoselective routes for the total syntheses of (±)-ß-Noscapine and (±)-ß-Hydrastine were exploited.

15.
J Food Biochem ; 43(11): e13028, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31475373

RESUMEN

The study aims to analyze the phenolic compounds in Malus spp. and evaluate their antioxidant and pro-apoptotic effects in BGC-803 gastric cancer cells. The results showed that cyanidin-3-galactoside was the main polyphenol in Malus "Royalty" (MR), while catechin, epicatechin, and proanthocyanidin B1 and B2 contents were higher in Malus "Cinnabar" (MC) and Malus micromalus (MM) than in MR fruits. The total polyphenol content, total flavonoid content, and antioxidative properties of Malus spp. fruits followed an order of MR > MC > MM. Fruit extracts could inhibit BGC-803 cells growth and induce apoptosis, with IC50 values of 0.47, 0.36, and 0.31 mg/ml for MR, MC, and MM, respectively. Furthermore, fruit extracts induced cell apoptosis through increasing Bcl-2 and Bcl-xl (pro-apoptosis) expression and inhibiting Bax and Bak (anti-apoptosis) expression, thereby accelerating cell apoptosis. Taken together, these results demonstrate that red fruits (i.e., MR and MC) were more effective against cancer cells than green fruits (i.e., MM). PRACTICAL APPLICATIONS: Fruits of Malus spp. are ≤5 cm in size, considerably smaller than apples. They are rich in various natural bioactive compounds that are often consumed as a dietary supplement or used as natural raw materials for function food. In the current study, it is comprehensively characterized profile and bioactivity of phenolic metabolites in Malus spp. fruits of different colors, and found that red fruits are more effective in reducing the free radicals and inducing cancer cells apoptosis than green fruits. These findings are valuable for food technologists and food manufacturers, especially those who produce crabapple supplement. The study investigated the molecular mechanism of how Malus spp. fruits exert anti-cancer functions. This lays a theoretical foundation for future research on developing anti-cancer function food and provides helpful guidance for fruit market management and fruit processing industry.


Asunto(s)
Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Malus/química , Fenoles/farmacología , Extractos Vegetales/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Línea Celular Tumoral , Frutas/química , Humanos , Fenoles/química , Fenoles/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA