Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nano Lett ; 24(26): 8134-8142, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38900138

RESUMEN

Developing highly efficient and carbon monoxide (CO)-tolerant platinum (Pt) catalysts for the formic acid oxidation reaction (FAOR) is vital for direct formic acid fuel cells (DFAFCs), yet it is challenging due to the high energy barrier of direct intermediates (HCOO* and COOH*) as well as the CO poisoning issues associated with Pt alloy catalysts. Here we present a versatile biphasic strategy by creating a hexagonal/cubic crystalline-phase-synergistic PtPb/C (h/c-PtPb/C) catalyst to tackle the aforementioned issues. Detailed investigations reveal that h/c-PtPb/C can simultaneously facilitate the adsorption of direct intermediates while inhibiting CO adsorption, thereby significantly improving the activation and CO spillover. As a result, h/c-PtPb/C showcases an outstanding FAOR activity of 8.1 A mgPt-1, which is 64.5 times higher than that of commercial Pt/C and significantly surpasses monophasic PtPb. Moreover, the h/c-PtPb/C-based membrane electrode assembly exhibits an exceptional peak power density of 258.7 mW cm-2 for practical DFAFC applications.

2.
Nano Lett ; 24(4): 1205-1213, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38214250

RESUMEN

Amorphous nanomaterials have drawn extensive attention owing to their unique features, while amorphization on noble metal nanomaterials still remains formidably challenging. Herein, we demonstrate a universal strategy to synthesize amorphous Pd-based nanomaterials from unary to quinary metals through the introduction of phosphorus (P). The amorphous Pd-based nanoparticles (NPs) exhibit generally promoted oxygen reduction reaction (ORR) activity and durability compared with their crystalline counterparts. Significantly, the quinary P-PdCuNiInSn NPs, benefiting from the amorphous structure and multimetallic component effect, exhibit mass activities as high as 1.04 A mgPd-1 and negligible activity decays of 1.8% among the stability tests, which are much better than values for original Pd NPs (0.134 A mgPd-1 and 28.4%). Experimental and theoretical analyses collectively reveal that the synergy of P-induced amorphization and the expansion of metallic components can considerably lower the free energy changes in the rate-determined step, thereby explaining the positive correlation with the catalytic activity.

3.
Pharmacol Res ; 205: 107263, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38876442

RESUMEN

Pressure overload-induced pathological cardiac hypertrophy eventually leads to heart failure (HF). Unfortunately, lack of effective targeted therapies for HF remains a challenge in clinical management. Mixed-lineage leukemia 4 (MLL4) is a member of the SET family of histone methyltransferase enzymes, which possesses histone H3 lysine 4 (H3K4)-specific methyltransferase activity. However, whether and how MLL4 regulates cardiac function is not reported in adult HF. Here we report that MLL4 is required for endoplasmic reticulum (ER) stress homeostasis of cardiomyocytes and protective against pressure overload-induced cardiac hypertrophy and HF. We observed that MLL4 is increased in the heart tissue of HF mouse model and HF patients. The cardiomyocyte-specific deletion of Mll4 (Mll4-cKO) in mice leads to aggravated ER stress and cardiac dysfunction following pressure overloading. MLL4 knockdown neonatal rat cardiomyocytes (NRCMs) also display accelerated decompensated ER stress and hypertrophy induced by phenylephrine (PE). The combined analysis of Cleavage Under Targets and Tagmentation sequencing (CUT&Tag-seq) and RNA sequencing (RNA-seq) data reveals that, silencing of Mll4 alters the chromatin landscape for H3K4me1 modification and gene expression patterns in NRCMs. Interestingly, the deficiency of MLL4 results in a marked reduction of H3K4me1 and H3K27ac occupations on Thrombospondin-4 (Thbs4) gene loci, as well as Thbs4 gene expression. Mechanistically, MLL4 acts as a transcriptional activator of Thbs4 through mono-methylation of H3K4 and further regulates THBS4-dependent ER stress response, ultimately plays a role in HF. Our study indicates that pharmacologically targeting MLL4 and ER stress might be a valid therapeutic approach to protect against cardiac hypertrophy and HF.


Asunto(s)
Estrés del Retículo Endoplásmico , Insuficiencia Cardíaca , N-Metiltransferasa de Histona-Lisina , Ratones Endogámicos C57BL , Miocitos Cardíacos , Animales , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/etiología , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Masculino , Humanos , Ratones Noqueados , Ratas , Ratones , Células Cultivadas , Cardiomegalia/metabolismo , Cardiomegalia/genética , Ratas Sprague-Dawley , Trombospondinas
4.
Sheng Li Xue Bao ; 74(3): 461-468, 2022 Jun 25.
Artículo en Zh | MEDLINE | ID: mdl-35770643

RESUMEN

Histone methylation is one of the key post-translational modifications that plays a critical role in various heart diseases, including diabetic cardiomyopathy. A great deal of evidence has shown that histone methylation is closely related to hyperglycemia, insulin resistance, lipid and advanced glycation end products deposition, inflammatory and oxidative stress, endoplasmic reticulum stress and cell apoptosis, and these pathological factors play an important role in the pathogenesis of diabetic cardiomyopathy. In order to provide a novel theoretical basis and potential targets for the treatment of diabetic cardiomyopathy from the perspective of epigenetics, this review discussed and elucidated the association between histone methylation and the pathogenesis of diabetic cardiomyopathy in details.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/patología , Histonas , Humanos , Metilación , Estrés Oxidativo , Procesamiento Proteico-Postraduccional
5.
Small ; 13(18)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28266795

RESUMEN

Atomically thin hexagonal boron nitride (h-BN) is gaining significant attention for many applications such as a dielectric layer or substrate for graphene-based devices. For these applications, synthesis of high-quality and large-area h-BN layers with few defects is strongly desirable. In this work, the aligned growth of millimeter-size single-crystal h-BN domains on epitaxial Ni (111)/sapphire substrates by ion beam sputtering deposition is demonstrated. Under the optimized growth conditions, single-crystal h-BN domains up to 0.6 mm in edge length are obtained, the largest reported to date. The formation of large-size h-BN domains results mainly from the reduced Ni-grain boundaries and the improved crystallinity of Ni film. Furthermore, the h-BN domains show well-aligned orientation and excellent dielectric properties. In addition, the sapphire substrates can be repeatedly used with almost no limit. This work provides an effective approach for synthesizing large-scale high-quality h-BN layers for electronic applications.

6.
Exp Physiol ; 102(7): 779-790, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28383821

RESUMEN

NEW FINDINGS: What is the central question of this study? The present study investigated the relationship between H2 S and NO in regulation of gastric fundus tension. What is the main finding and its importance? Endogenous or exogenous H2 S and NO have opposite effects on fundus tension, and H2 S-induced gastric fundus tension enhancements are mediated by inhibition of NO generation through the phosphoinositide 3-kinase/Akt pathway. These results are very important in exploring the mechanism of physiological accommodation and accommodation disorder. Hydrogen sulphide (H2 S) is considered a new gasotransmitter, along with NO and CO. It was recently confirmed that H2 S and NO play important roles in the regulation of gastrointestinal smooth muscle tension. The present study was designed to elucidate the interactions between H2 S and NO with respect to the regulation of gastric fundus smooth muscle tension using Western blotting, physiological and electrochemical techniques. Real-time H2 S and NO generation was detected in gastric smooth muscle tissue. NaHS, an H2 S donor, enhanced fundus smooth muscle tension, whereas SNP, an NO donor, decreased fundus smooth muscle tension in a dose-dependent manner. NaHS-induced increases in fundus smooth muscle tension were suppressed by l-NAME, an NO synthase inhibitor. Aminooxyacetic acid (AOAA), a cystathionine ß-synthase inhibitor, exerted inhibitory effects on fundus smooth muscle tension; these effects were also suppressed by l-NAME. Real-time NO generation was significantly potentiated by AOAA. Endothelial nitric oxide synthase (eNOS) phosphorylation at serine 1177 and Akt phosphorylation at serine 308 and threonine 473 were significantly inhibited by NaHS. LY294002, a phosphoinositide 3-kinase inhibitor, blocked these NaHS-mediated effects. However, eNOS phosphorylation at serine 1177 and Akt phosphorylation at serine 308 and threonine 473 were significantly potentiated by AOAA. Cystathionine ß-synthase siRNA interference significantly increased eNOS phosphorylation at serine 1177 and Akt phosphorylation at serine 308 and threonine 473. Cystathionine ß-synthase siRNA interference also increased total eNOS protein expression levels but did not significantly change total Akt kinase protein expression levels. These results suggest that H2 S-induced enhancement of gastric fundus tension is mediated by inhibition of NO generation through the phosphoinositide 3-kinase/Akt pathway.


Asunto(s)
Fundus Gástrico/efectos de los fármacos , Sulfuro de Hidrógeno/farmacología , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Transducción de Señal , Animales , Masculino , Ratones , Tono Muscular/efectos de los fármacos , Músculo Liso/fisiología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
7.
Nano Lett ; 14(1): 18-23, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24341833

RESUMEN

We report the facile fabrication of three-dimensional (3D) silicon/hematite core/shell nanowire arrays decorated with gold nanoparticles (AuNPs) and their potential application for sunlight-driven solar water splitting. The hematite and AuNPs respectively play crucial catalytic and plasmonic photosensitization roles, while silicon absorbs visible light and generates high photocurrent. Under simulated solar light illumination, solar water splitting with remarkable efficiency is achieved with no external bias applied. Such a nanocomposite photoanode design offers great promise for unassisted sunlight-driven water oxidation, and further stability and efficiency improvements to the device will lead to exciting prospects for practical solar water splitting and artificial photosynthesis.

8.
Nano Lett ; 14(8): 4212-9, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25036852

RESUMEN

Inspired by metal corrosion in air, we demonstrate that metal-catalyzed electroless etching (MCEE) of silicon can be performed simply in aerated HF/H2O vapor for facile fabrication of three-dimensional silicon nanostructures such as silicon nanowires (SiNW) arrays. Compared to MCEE commonly performed in aqueous HF solution, the present pseudo gas phase etching offers exceptional simplicity, flexibility, environmental friendliness, and scalability for the fabrication of three-dimensional silicon nanostructures with considerable depths because of replacement of harsh oxidants such as H2O2 and AgNO3 by environmental-green and ubiquitous oxygen in air, minimum water consumption, and full utilization of HF.

9.
Aging (Albany NY) ; 15(19): 10627-10639, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37819785

RESUMEN

BACKGROUND: A mouse model of myocardial ischemia-reperfusion (I/R) is widely used to study myocardial ischemia-reperfusion injury (I/RI). However, few studies focus on the direct comparison of the extent of pathological events resulting from variant durations of ischemia and reperfusion process. METHODS: A mouse model of I/RI was established by ligation and perfusion of the left anterior descending coronary artery (LAD), and the dynamic changes were recorded by electrocardiogram at different stages of I/R. Subsequently, reperfusion duration was used as a variable to directly compare the phenotypes of different myocardial injury degrees induced by 3 h, 6 h and 24 h reperfusion from myocardial infarct size, myocardial apoptosis, myocardial enzyme, and inflammatory cytokine levels. RESULTS: All mice subjected to myocardial I/R surgery showed obvious myocardial infarction, extensive myocardial apoptosis, dynamic changes in serum myocardial enzyme and inflammatory cytokines, at least for the first 24 h of reperfusion. The infarct size and apoptosis rates gradually increased with the extension of reperfusion time. The peaks of serum myocardial enzyme and inflammatory cytokines occurred at 6 h and 3 h of reperfusion, respectively. We also established I/R mice models with 30 and 60 mins of ischemia. After 21 days of remodeling, longer periods of ischemia increased the degree of fibrosis and reduced cardiac function. CONCLUSIONS: In summary, we conclude that reperfusion durations of 3 h, 6 h, and 24 h induces different injury phenotypes in ischemia-reperfusion mouse model. At the same time, the ischemia duration before reperfusion also affects the degree of cardiac remodeling.


Asunto(s)
Enfermedad de la Arteria Coronaria , Infarto del Miocardio , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Ratones , Animales , Daño por Reperfusión Miocárdica/patología , Infarto del Miocardio/patología , Citocinas , Fenotipo , Reperfusión , Apoptosis
10.
J Cardiovasc Transl Res ; 16(5): 1032-1049, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36947365

RESUMEN

Angiogenesis occurred after myocardial infarction (MI) protects heart failure (HF). The aim of our study was to explore function of histone methyltransferase KMT2D (MLL4, mixed-lineage leukemia 4) in angiogenesis post-MI. Western blotting showed that KMT2D protein expression was elevated in MI mouse myocardial. Cardiomyocyte-specific Kmt2d-knockout (Kmt2d-cKO) mice were generated, and echocardiography and immunofluorescence staining detected significantly attenuated cardiac function and insufficient angiogenesis following MI in Kmt2d-cKO mice. Cross-talk assay suggested that Kmt2d-KO H9c2-derived conditioned medium attenuates EA.hy926 EC function. ELISA further identified that VEGF-A released from Kmt2d-KO H9c2 was significantly reduced. CUT&Tag and RT-qPCR revealed that KMT2D deficiency reduced Vegf-a mRNA expression and enrichment of H3K4me1 on the Vegf-a promoter. Moreover, KMT2D silencing in ECs also suppressed endothelial function. Our study indicates that KMT2D depletion in both cardiomyocytes and ECs attenuates angiogenesis and that loss of KMT2D exacerbates heart failure after MI in mice.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Animales , Ratones , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Histona Metiltransferasas/genética , Histona Metiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Activación Transcripcional , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
11.
J Cardiovasc Transl Res ; 16(3): 644-661, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36689154

RESUMEN

Acupuncture point specificity has been recognized as a key scientific issue in traditional Chinese medicine (TCM), but there is limited clinical trial or animal study to verify the characteristics of PC6, BL15, and ST36 in the protection from myocardial injury. We aimed to compare the effects among these three acupoints on the acute myocardial infarction mice model and to explore possible mechanisms for the first time. We found that PC6 is the most appropriate acupoint to deliver efficacy and safety to treat acute MI in mice. BL15 stimulation improved the systolic function, but increased the risk of arrhythmia. ST36 only slightly attenuated systolic function and had no effect on arrhythmia during MI. RNA profiles of skin tissue in local acupoints demonstrated that the most altered DEGs and related pathways may partly support its best effects of PC6 treatment on MI injury, and support the observed phenomenon of the acupoint specificity.


Asunto(s)
Infarto del Miocardio , Isquemia Miocárdica , Ratones , Animales , Puntos de Acupuntura , Isquemia Miocárdica/terapia , Infarto del Miocardio/terapia , Modelos Animales de Enfermedad
12.
Nanoscale ; 15(42): 17036-17044, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37846513

RESUMEN

The electronic contact between two-dimensional (2D) transition metal dichalcogenide (TMD) semiconductors and metal electrodes is a formidable challenge due to the undesired Schottky barrier, which severely limits the electrical performance of TMD devices and impedes the exploration of their unconventional physical properties and potential electronic applications. In this study, we report a two-step chemical vapor deposition (CVD) growth of 2D TaSe2-WSe2 metal-semiconductor heterostructures. Raman mapping confirms the precise spatial modulation of the as-grown 2D TaSe2-WSe2 heterostructures. Transmission electron microscopy (TEM) characterization reveals that this two-step method provides a high-quality and clean interface of the 2D TaSe2-WSe2 heterostructures. Meanwhile, the upper 1T-TaSe2 is formed heteroepitaxially on/around the pre-synthesized 2H-WSe2 monolayers, exhibiting an epitaxial relationship of (20-20)TaSe2//(20-20)WSe2 and [0001]TaSe2//[0001]WSe2. Furthermore, characterization studies using a Kelvin probe force microscope (KPFM) and electrical transport measurements present compelling evidence that the 2D metal-semiconductor heterostructures under investigation can improve the performance of electrical devices. These results bear substantial significance in augmenting the properties of field-effect transistors (FETs), leading to notable improvements in FET mobility and on/off ratio. Our study not only broadens the horizons of direct growth of high-quality 2D metal-semiconductor heterostructures but also sheds light on potential applications in future high-performance integrated circuits.

13.
Nanoscale ; 14(20): 7579-7588, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35506868

RESUMEN

Synthesis of high-quality ZnO/ZnS heterostructures with tunable phase and controlled structures is in high demand due to their adjustable band gap and efficient electron-hole pair separation. In this report, for the first time, remote heteroepitaxy of single-crystalline ZnO/ZnS core/shell nanowire arrays has been realized using amorphous HfO2 as the buffer layer. Zinc blende or wurtzite ZnS epilayer can be efficiently fabricated under the same thermal deposition condition by adjusting the buffer layer thickness, even among the same batch of products, respectively. Structural characterization reveals "(01-10)ZnOwz//(2-20)ZnSZB, [0001]ZnOWZ//[001]ZnSZB" and "(01-10)ZnOWZ//(01-10)ZnSWZ, [0002]ZnOWZ//[0002]ZnSWZ" epitaxial relationships between the core and the shell, respectively. The cathodoluminescence measurement demonstrates that the tuning of the optical properties can be accomplished by preparing a heterostructure with HfO2, in which a strong green emission increases at the expense of the quenching of UV emission. In addition, the core/shell heterostructure based Schottky diode exhibits an asymmetrical rectifying behavior and an outstanding photo-electronic switching-effect. We believe that the aforementioned results could provide fundamental insights for epitaxial growth of structure-tunable ZnO/ZnS heterostructures on the nanoscale. Furthermore, this promising route buffered by the high-k material can broaden the options for fabricating heterojunctions and promote their application in photoelectric nanodevices.

14.
Front Cell Dev Biol ; 10: 946484, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35938163

RESUMEN

Histone H3 lysine 4 (H3K4) methyltransferase 2D (KMT2D) plays an important role in cell development in early life. However, the function of KMT2D in adult cells such as cardiomyocytes or neurons has not been reported. In this study, cardiomyocyte-specific KMT2D knockout (KMT2D-cKO) and control (KMT2D-Ctl) mice were exposed to sham or myocardial ischemia (MI) surgery. Depletion of KMT2D aggravated the ischemic area, led to the increased mortality (26.5% in KMT2D-cKO vs 12.5% in KMT2D-Ctl) of the mice, and weakened the left ventricular systolic function. RNA-seq analysis in cardiac tissues identified genes whose expression was changed by MI and KMT2D deletion. Combined with the genome-wide association study (GWAS) analysis, cardiac disease-associated genes Rasd1, Thsd7a, Ednra, and Tns1 were identified. The expression of the Rasd1 was significantly decreased by MI or the loss of KMT2D in vivo. Meanwhile, ChIP assays demonstrated that either MI or loss of KMT2D attenuated monomethylated H3K4 (H3K4me1) enrichment on the enhancer of Rasd1. By generating a KMT2D knockout (H9C2-KO) H9C2 monoclone, we verified that the expression of Rasd1 was controlled by KMT2D, and the expression of Rasd1 was decreased by serum starvation but not low-(O2) treatment in H9C2 cells. KMT2D has a protective effect on ischemic myocardium by regulating cardiac disease-associated genes including Rasd1. KMT2D is required for the H3K4me1 deposition on the enhancer of Rasd1. Our data for the first time suggest that KMT2D-mediated Rasd1 expression may play an important protective effect on adult cells during nutritional deficiency caused by ischemic injury.

15.
Chin Med ; 17(1): 52, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484628

RESUMEN

BACKGROUND: Acupuncture at Neiguan (PC6) has long been used for treating cardiovascular diseases, but its antiarrhythmic effect and the underlying mechanisms have not yet been well investigated, especially regarding premature ventricular complexes (PVCs) that occur post-myocardial infarction (MI). The purpose of this study was to study the antiarrhythmic effect of manual acupuncture applied to PC6 for a relatively long period (28 days) and to elucidate the mechanism in mice. METHODS: An MI mouse model was generated by ligating the left anterior descending coronary artery in male C57/BL6 mice (n = 31). Manual acupuncture at PC6 was applied seven times weekly for 4 weeks. The state of myocardial injury was characterized by electrocardiography (ECG) and echocardiography. Inflammation was detected by ELISA and immunohistochemical stanning. Fibrosis was evaluated by Masson's trichrome staining. RNA sequencing was used to explore the differentially expressed genes (DEGs) among the different groups after treatment. RESULTS: Acupuncture at PC6 lowered the incidence of spontaneous PVCs after MI injury (1/9, 11%) compared to that in mice without acupuncture treatment (6/9, 67%) and improved the ejection fraction from 31.77% in the MI mice to 44.18% in the MI + PC6 mice. Fibrosis was reduced after PC6 treatment. RNA-seq showed many DEGs involved in the immune system and inflammatory response pathway. Further studies confirmed that inflammation at the circulation level and cardiac tissue was inhibited in MI + PC6 mice, accompanied by suppressed sympathetic activation. CONCLUSIONS: In conclusion, 28-day treatment of acupuncture at PC6 reduced spontaneous PVCs and improved systolic function, possibly by suppressing inflammatory response-mediated fibrosis and sympathetic hyperactivity.

16.
Angew Chem Int Ed Engl ; 50(42): 9861-5, 2011 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-21905189

RESUMEN

Nanowire solar cells: Pt nanoparticle (PtNP) decorated C/Si core/shell nanowire photoelectrochemical solar cells show high conversion efficiency of 10.86 % and excellent stability in aggressive electrolytes under 1-sun AM 1.5 G illumination. Superior device performance is achieved by improved surface passivation of the nanowires by carbon coating and enhanced interfacial charge transfer by PtNPs.


Asunto(s)
Suministros de Energía Eléctrica , Nanocables/química , Silicio/química , Energía Solar , Carbono/química , Nanopartículas del Metal/química , Tamaño de la Partícula , Procesos Fotoquímicos , Platino (Metal)/química , Propiedades de Superficie
17.
Nanoscale ; 13(26): 11525-11533, 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34180928

RESUMEN

II-VI semiconductor heterojunctions show huge potential for application in nanodevice fabrication due to their type-II alignments owing to the better spatial separation of electrons and holes. However, the hetero-epitaxial growth of high-quality heterostructures is still a challenge, especially for materials with large lattice mismatch. In this work, well-aligned single-crystalline ZnO/ZnS core/shell nanorod arrays were obtained by introducing an Al2O3 buffer layer. It is interesting that the nature of the ZnS layer varies with the thickness of the Al2O3 layer. When Al2O3 is less than 2 nm, the interaction between the substrate and epilayer is strong enough to penetrate through the buffer layer, enabling the growth of ZnS on Al2O3-coated ZnO nanorod arrays. On the basis of detailed characterization, a rational growth mechanism of the core/shell heterostructure is proposed, in which the Al2O3 interlayer can eliminate voids due to the Kirkendall effect around the interface and accommodate a misfit dislocation between the inner ZnO and outer ZnS, resulting in more sufficient strain relaxation in the epitaxy. In addition, cathodoluminescence measurements demonstrate that the optical properties of the ZnO/ZnS heterostructure could be effectively improved by taking advantage of the thin Al2O3. The I-V curves characterized by PeakForce tunneling atomic force microscopy reveal that the heterostructure shows a typical rectifying behavior and good photoresponse to ultraviolet light. These findings may provide a reasonable and effective strategy for the growth of highly lattice-mismatched heterostructure arrays buffered by the Al2O3 layer, broadening the options for fabricating heterojunctions and promoting their applications in optoelectronic devices.

18.
ACS Nano ; 14(8): 9917-9928, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32706236

RESUMEN

Effective multimodality phototheranostics under deep-penetration laser excitation is highly desired for tumor medicine, which is still at a deadlock due to lack of versatile photosensitizers with absorption located in the long-wavelength region. Herein, we demonstrate a stable organic photosensitizer nanoparticle based on molecular engineering of benzo[c]thiophene (BT)-based photoactivated molecules with strong wavelength-tunable absorption in the near-infrared region. Via molecular design, the absorption and singlet oxygen generation of BT molecules would be reliably tuned. Importantly, the nanoparticles with a red-shifted absorption peak of 843 nm not only show over 10-fold reactive oxygen species yield compared with indocyanine green but also demonstrate a notable photothermal effect and photoacoustic signal upon 808 nm excitation. The in vitro and in vivo experiments substantiate good multimodal anticancer efficacy and imaging performance of BT theranostics. This work provides an organic photosensitizer nanoparticle with long-wavelength excitation and high photoenergy conversion efficiency for multimodality phototherapy.


Asunto(s)
Nanopartículas , Fármacos Fotosensibilizantes , Fototerapia , Especies Reactivas de Oxígeno , Nanomedicina Teranóstica
19.
Nanoscale Adv ; 1(7): 2606-2611, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-36132733

RESUMEN

Vertical heterostructures based on two-dimensional (2D) layered materials are ideal platforms for electronic structure engineering and novel device applications. However, most of the current heterostructures focus on layered crystals with a similar lattice. In addition, the heterostructures made by 2D materials with different structures are rarely investigated. In this study, we successfully fabricated vertical heterostructures by combining orthorhombic SnSe/hexagonal In2Se3 vertical heterostructures using a two-step physical vapor deposition (PVD) method. Structural characterization reveals that the heterostructures are formed of vertically stacked SnSe on the top of the In2Se3 film, and vertical heterostructures possess high quality, where In2Se3 exposed surface is the (0001) plane and SnSe prefers growing along the [100] direction. Raman maps confirm the precise spatial modulation of the as-grown SnSe/In2Se3 heterostructures. In addition, high-performance photodetectors based on the vertical heterostructures were fabricated directly on the substrate, which showed a broadband response, reversibility and stability. Compared with the dark current, the device demonstrated one order magnification of photocurrent, about 186 nA, under 405 nm laser illumination and power of 1.5 mW. Moreover, the device shows an obvious increase in the photocurrent intensity with the changing incident laser power, where I ph ∝ P 0.7. Also, the device demonstrated a high responsivity of up to 350 mA W-1 and a fast response time of about 139 ms. This study broadens the horizon for the synthesis and application of vertical heterostructures based on 2D layered materials with different structures and further develops exciting technologies beyond the reach of the existing materials.

20.
ACS Appl Bio Mater ; 2(6): 2643-2649, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35030718

RESUMEN

Although piperine-an extract from pepper-has a mild chemotherapeutic effect, its poor water solubility has limited its applications for cancer therapy. With self-assembling of piperine into nanoparticles along with PEG (Pip NPs), both the water dispersibility and the chemotherapeutic efficacy can be substantially enhanced. It is further shown that the NPs can generate reactive oxygen species (ROS) with or without additional white light irradiation. Interestingly, the Pip NP induced cell death can be suppressed by ferroptosis inhibitors such as liproxstatin-1 and deferoxamine. Lipid ROS production is also observed in Pip NP treated cells. In addition to their cancer cell killing ability, the Pip NPs also show strong green fluorescence. These multiple functions make the Pip NPs a promising and low-cost nanotheranostic agent with herbal origin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA