Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 564(7734): 130-135, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30487606

RESUMEN

Dysfunctional T cells in the tumour microenvironment have abnormally high expression of PD-1 and antibody inhibitors against PD-1 or its ligand (PD-L1) have become commonly used drugs to treat various types of cancer1-4. The clinical success of these inhibitors highlights the need to study the mechanisms by which PD-1 is regulated. Here we report a mechanism of PD-1 degradation and the importance of this mechanism in anti-tumour immunity in preclinical models. We show that surface PD-1 undergoes internalization, subsequent ubiquitination and proteasome degradation in activated T cells. FBXO38 is an E3 ligase of PD-1 that mediates Lys48-linked poly-ubiquitination and subsequent proteasome degradation. Conditional knockout of Fbxo38 in T cells did not affect T cell receptor and CD28 signalling, but led to faster tumour progression in mice owing to higher levels of PD-1 in tumour-infiltrating T cells. Anti-PD-1 therapy normalized the effect of FBXO38 deficiency on tumour growth in mice, which suggests that PD-1 is the primary target of FBXO38 in T cells. In human tumour tissues and a mouse cancer model, transcriptional levels of FBXO38 and Fbxo38, respectively, were downregulated in tumour-infiltrating T cells. However, IL-2 therapy rescued Fbxo38 transcription and therefore downregulated PD-1 levels in PD-1+ T cells in mice. These data indicate that FBXO38 regulates PD-1 expression and highlight an alternative method to block the PD-1 pathway.


Asunto(s)
Proteínas F-Box/genética , Neoplasias/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T/inmunología , Ubiquitinación , Animales , Proteínas F-Box/metabolismo , Femenino , Células HEK293 , Humanos , Interleucina-2/inmunología , Lisina/metabolismo , Masculino , Melanoma Experimental/inmunología , Ratones , Receptor de Muerte Celular Programada 1/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Microambiente Tumoral
2.
Eur Spine J ; 33(5): 2022-2030, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38431753

RESUMEN

OBJECTIVE: To evaluate the correlation between dual-energy CT (DECT) virtual calcium free (VNCA), CT attenuation, the ratio and difference of VNCA to CT attenuation, and Pfirrmann grading of lumbar disc degeneration. METHODS: A retrospective analysis on 135 intervertebral discs from 30 patients who underwent DECT and MR. Discs was graded using the Pfirrmann system. ROIs on the sagittal plane assessed HU value, VNCA value, Rho value, Z value, R-VH value, and D-VH value. Correlation, grade differences, and multivariate regression models were assessed. Diagnostic performance and cut-off values were determined using AUC. RESULTS: VNCA (r = 0.589, P < 0.001), R-VH (r = 0.622, P < 0.001), and D-VH (r = 0.613, P < 0.001) moderately correlated with Pfirrmann grading. HU (r = 0.388, P < 0.001), Rho (r = 0.142, P = 0.102), and Z (r = -0.125, P = 0.153) showed a weak correlation. R-VH, D-VH, and VNCA had significantly higher correlation than HU. Statistically significant differences were observed in P values of VNCA, HU, R-VH, and D-VH in relative groups (P < 0.05), but not in Rho and Z values (P > 0.05). R-VH and D-VH had significant differences between Pfirrmann grades 1 and 2, and grades 2 and 3 (early stage) (P < 0.05). AUC readings of R-VH and D-VH (≥2, ≥3, ≥4) were higher. The multivariate model IVNCa + CT had the highest AUC. CONCLUSION: The new quantitative indices R-VH value and D-VH value of DECT have advantages over VNCA value and HU value in evaluating early-stage disc degeneration (≥2 grades, ≥3 grades). The multivariate model IVNCa + CT has the best AUC values for evaluating disc degeneration at all stages.


Asunto(s)
Degeneración del Disco Intervertebral , Vértebras Lumbares , Tomografía Computarizada por Rayos X , Humanos , Degeneración del Disco Intervertebral/diagnóstico por imagen , Masculino , Femenino , Persona de Mediana Edad , Adulto , Tomografía Computarizada por Rayos X/métodos , Estudios Retrospectivos , Vértebras Lumbares/diagnóstico por imagen , Anciano , Disco Intervertebral/diagnóstico por imagen
3.
Chin Med Sci J ; 39(1): 1-8, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38384000

RESUMEN

Objective To explore the influence of extracellular matrix protein ABI-interactor 3-binding protein (ABI3BP) on vesicular stomatitis virus (VSV) genome replication and innate immune signaling pathway.Methods The small interfering RNA (siRNA) was transfected to knock down ABI3BP gene in human skin fibroblast BJ-5ta cells. VSV-green fluorescent protein (VSV-GFP)-infected cell model was established. The morphological changes and F-actin stress fiber formation were detected on ABI3BP knockdown cells by phalloidin immunofluorescence staining. The mRNA level of virus replication was detected by RT-qPCR in BJ-5ta cells after VSV-GFP infection; western blotting was performed to detect the changes in interferon regulatory factor 3 (IRF3) and TANK-binding kinase 1 (TBK1) phosphorylation levels.Results The VSV-GFP-infected BJ-5ta cell model was successfully established. Efficient knockdown of ABI3BP in BJ-5ta cells was achieved. Phalloidin immunofluorescence staining revealed structural rearrangement of intracellular F-actin after ABI3BP gene knockdown. Compared with the control group, the gene copy number of VSV-GFP in ABI3BP knockdown cells increased by 2.2 - 3.5 times (P<0.01) and 2.2 - 4.0 times (P<0.01) respectively when infected with VSV of multiplicity of infection 0.1 and 1. The expression of viral protein significantly increased in ABI3BP knockdown cells after virus infection. The activation of type-I interferon pathway, as determined by phosphorylated IRF3 and phosphorylated TBK1, was significantly decreased in ABI3BP knockdown cells after VSV-GFP infection.Conclusions Extracellular matrix protein ABI3BP plays an important role in maintaining the formation and rearrangement of actin structure. ABI3BP gene deletion promotes RNA virus replication, and ABI3BP is an important molecule that maintains the integrity of type I interferon pathway.


Asunto(s)
Estomatitis Vesicular , Animales , Humanos , Estomatitis Vesicular/metabolismo , Actinas/genética , Actinas/metabolismo , Faloidina/metabolismo , Virus de la Estomatitis Vesicular Indiana/genética , Antivirales , Proteínas de la Matriz Extracelular/metabolismo , Proteínas Portadoras
4.
Nanotechnology ; 35(7)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37972394

RESUMEN

While lithium-ion batteries (LIBs) are approaching their energy limits, lithium metal batteries (LMBs) are undergoing intensive investigation for higher energy density. Coupling LiNi0.8Mn0.1Co0.1O2(NMC811) cathode with lithium (Li) metal anode, the resultant Li||NMC811 LMBs are among the most promising technologies for future transportation electrification, which have the potential to realize an energy density two times higher than that of state-of-the-art LIBs. To maximize their energy density, the Li||NMC811 LMBs are preferred to have their cathode loading as high as possible while their Li anode as thin as possible. To this end, we investigated the effects of different cathode active material loadings (2-14 mg cm-2) on the performance of the Li||NMC811 LMBs. Our study revealed that the cathode loadings have remarkably affected the cell performance, in terms of capacity retention and sustainable capacity. Cells with high cathode loadings are more liable to fade in capacity, due to more severe formation of the CEI and more sluggish ion transport. In this study, we also verified that the protection of the Li anode is significant for achieving better cell performance. In this regard, our newly developed Li-containing glycerol (LiGL) via molecular layer deposition (MLD) is promising to help boost the cell performance, which was controllably deposited on the Li anode.

5.
Nanotechnology ; 34(50)2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37732948

RESUMEN

This Focus aims at showcasing the significance of manipulating atomic and molecular layers for various applications. To this end, this Focus collects 15 original research papers featuring the applications of atomic layer deposition, chemical vapor deposition, wet chemistry, and some other methods for manipulations of atomic and molecular layers in lithium-ion batteries, supercapacitors, catalysis, field-effect transistors, optoelectronics, and others.

6.
Molecules ; 28(7)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37049952

RESUMEN

Non-alcoholic steatohepatitis (NASH) is a metabolic disorder that often leads to other severe liver diseases, yet treatment options are limited. Endoplasmic reticulum (ER) stress is an important pathogenetic mechanism of NASH and plays a key role in tandem steatosis as well as liver inflammation. This study aims to develop a progressive NASH model through sustained lipid accumulation and to elucidate its molecular mechanism through IRE1α/TRAF2 complex. Male SD rats were fed a high-fat diet (HFD) for 4, 8, and 12 weeks to induce progressive NASH. MRNA sequencing and PPI analysis were used to screen core genes. Transmission electron microscopy, immunofluorescence staining, ELISA, qRT-PCR, and Western blotting were used at each time point to compare differences between each index of progressive NASH at 4, 8, and 12 weeks. Sustained lipid accumulation led to structural disruption of the ER, a reduction in ER number, and an increase of lipid droplet aggregation in hepatocytes. Persistent lipid accumulation led to a persistent increase in mRNA and protein expression of the IRE1α/TRAF2 complex, IKK/IκB/NF-κB signaling pathway and ASK1/JNK1 signaling pathway, and TNF-α, IL-1ß, and IL-6 also continued to increase. Persistent lipid accumulation led to a persistent exacerbation of ER stress and inflammation in progressive NASH via the IRE1α/TRAF2 complex.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Masculino , Ratas , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Factor 2 Asociado a Receptor de TNF/genética , Factor 2 Asociado a Receptor de TNF/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Ratas Sprague-Dawley , Inflamación/metabolismo , Estrés del Retículo Endoplásmico , Lípidos , Hígado/metabolismo
7.
Nanotechnology ; 33(41)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-34730108

RESUMEN

Lithium-ion batteries (LIBs) have revolutionized our society in many respects, and we are expecting even more favorable changes in our lifestyles with newer battery technologies. In pursuing such eligible batteries, nanophase materials play some important roles in LIBs and beyond technologies. Stimulated by their beneficial effects of nanophase materials, we initiated this Focus. Excitingly, this Focus collects 13 excellent original research and review articles related to the applications of nanophase materials in various rechargeable batteries, ranging from nanostructured electrode materials, nanoscale interface tailoring, novel separators, computational calculations, and advanced characterizations.

8.
Nature ; 531(7596): 651-5, 2016 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-26982734

RESUMEN

CD8(+) T cells have a central role in antitumour immunity, but their activity is suppressed in the tumour microenvironment. Reactivating the cytotoxicity of CD8(+) T cells is of great clinical interest in cancer immunotherapy. Here we report a new mechanism by which the antitumour response of mouse CD8(+) T cells can be potentiated by modulating cholesterol metabolism. Inhibiting cholesterol esterification in T cells by genetic ablation or pharmacological inhibition of ACAT1, a key cholesterol esterification enzyme, led to potentiated effector function and enhanced proliferation of CD8(+) but not CD4(+) T cells. This is due to the increase in the plasma membrane cholesterol level of CD8(+) T cells, which causes enhanced T-cell receptor clustering and signalling as well as more efficient formation of the immunological synapse. ACAT1-deficient CD8(+) T cells were better than wild-type CD8(+) T cells at controlling melanoma growth and metastasis in mice. We used the ACAT inhibitor avasimibe, which was previously tested in clinical trials for treating atherosclerosis and showed a good human safety profile, to treat melanoma in mice and observed a good antitumour effect. A combined therapy of avasimibe plus an anti-PD-1 antibody showed better efficacy than monotherapies in controlling tumour progression. ACAT1, an established target for atherosclerosis, is therefore also a potential target for cancer immunotherapy.


Asunto(s)
Acetatos/farmacología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Colesterol/metabolismo , Inmunoterapia/métodos , Melanoma/tratamiento farmacológico , Melanoma/inmunología , Ácidos Sulfónicos/farmacología , Acetamidas , Acetatos/uso terapéutico , Acetil-CoA C-Acetiltransferasa/antagonistas & inhibidores , Acetil-CoA C-Acetiltransferasa/deficiencia , Acetil-CoA C-Acetiltransferasa/genética , Acetil-CoA C-Acetiltransferasa/metabolismo , Animales , Aterosclerosis/tratamiento farmacológico , Linfocitos T CD8-positivos/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Esterificación/efectos de los fármacos , Femenino , Sinapsis Inmunológicas/efectos de los fármacos , Sinapsis Inmunológicas/inmunología , Sinapsis Inmunológicas/metabolismo , Masculino , Melanoma/metabolismo , Melanoma/patología , Ratones , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal/efectos de los fármacos , Sulfonamidas , Ácidos Sulfónicos/uso terapéutico
9.
Molecules ; 27(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36234705

RESUMEN

Alkali metals (lithium, sodium, and potassium) are promising as anodes in emerging rechargeable batteries, ascribed to their high capacity or abundance. Two commonly experienced issues, however, have hindered them from commercialization: the dendritic growth of alkali metals during plating and the formation of solid electrolyte interphase due to contact with liquid electrolytes. Many technical strategies have been developed for addressing these two issues in the past decades. Among them, atomic and molecular layer deposition (ALD and MLD) have been drawing more and more efforts, owing to a series of their unique capabilities. ALD and MLD enable a variety of inorganic, organic, and even inorganic-organic hybrid materials, featuring accurate nanoscale controllability, low process temperature, and extremely uniform and conformal coverage. Consequently, ALD and MLD have paved a novel route for tackling the issues of alkali metal anodes. In this review, we have made a thorough survey on surface coatings via ALD and MLD, and comparatively analyzed their effects on improving the safety and stability of alkali metal anodes. We expect that this article will help boost more efforts in exploring advanced surface coatings via ALD and MLD to successfully mitigate the issues of alkali metal anodes.

10.
Nanotechnology ; 32(11): 115401, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33285537

RESUMEN

Ascribed to their higher capacity and lower cost compared to conventional LiCoO2, the Ni-rich layered LiNi0.6Mn0.2Co0.2O2 (NMC622) is now considered as one promising cathode for lithium-ion batteries (LIBs). However, it still suffers from some evident performance degradation, especially under high cutoff voltages (i.e., >4.3 V versus Li/Li+). The performance degradation typically is exhibited as capacity fading and voltage drop, mainly originating from an instable interface between the NMC622 and electrolyte as well as the evolution of the NMC structure. To improve the interfacial and structural stability of NMC cathodes, herein we deposited an ultrathin layer of Al2O3 coatings (<5 nm) conformally over NMC622 composite electrodes directly using atomic layer deposition (ALD). It was found that, under different upper cutoff voltages (4.3, 4.5, and 4.7 V), the ALD Al2O3 coatings enable enhanced performance of NMC622 cathodes with better cyclability and higher capacity. Particularly, the beneficial effects of the ALD Al2O3 coatings are more remarkable at higher upper cutoff voltages (4.5 and 4.7 V). Furthermore, the ALD coatings can significantly improve the rate capability of NMC622. To this end, we utilized a suite of characterization tools and performed a series of electrochemical tests to clarify the effects of the ALD Al2O3 coatings. This study revealed that the beneficial effects of the Al2O3 ALD coatings are multiple: (i) serving as an artificial layer of solid electrolyte interphase to mitigate undesirable interfacial reactions; (ii) acting as a physical barrier to inhibit metal dissolution of NMC; and (iii) forming a reinforced networked overcoating to boost the mechanical integrity of NMC cathodes. This study is favorable for designing high-performance NMC cathodes.

11.
J Pharmacol Exp Ther ; 373(2): 302-310, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32029577

RESUMEN

Cinnamaldehyde (Cin), a bioactive cinnamon essential oil from traditional Chinese medicine herb Cinnamomum cassia, has been reported to have multipharmacological activities including anti-inflammation. However, its role and molecular mechanism of anti-inflammatory activity in musculoskeletal tissues remains unclear. Here, we first investigated the effects and molecular mechanisms of Cin in human synoviocyte cells. Then in vivo therapeutic effect of Cin on collagen-induced arthritis (CIA) also studied. Cell Counting Kit CCK-8 assay was performed to evaluate the cell cytotoxicity. Proinflammatory cytokine expression was evaluated using quantitative polymerase chain reaction and ELISA. Protein expression was measured by western blotting. The in vivo effect of Cin (75 mg/kg per day) was evaluated in rats with CIA by gavage administration. Disease progression was assessed by clinical scoring, radiographic, and histologic examinations. Cin significantly inhibited interleukin (IL)-1ß-induced IL-6, IL-8, and tumor necrosis factor-α release from human synoviocyte cells. The molecular analysis revealed that Cin impaired IL-6-induced activation of Janus kinase 2 (JAK2), signal transducer and activator of transcription 1 (STAT1), and STAT3 signaling pathway by inhibiting the phosphorylation of JAK2, STAT1, and STAT3, without affecting NF-κB pathway. Cin reduced collagen-induced swollen paw volume of arthritic rats. The anti-inflammation effects of Cin were associated with decreased severity of arthritis, joint swelling, and reduced bone erosion and destruction. Furthermore, serum IL-6 level was decreased when Cin administered therapeutically to CIA rats. Cin suppresses IL-1ß-induced inflammation in synoviocytes through the JAK/STAT pathway and alleviated collagen-induced arthritis in rats. These data indicated that Cin might be a potential traditional Chinese medicine-derived, disease-modifying, antirheumatic herbal drug. SIGNIFICANCE STATEMENT: In this study, we found that cinnamaldehyde (Cin) suppressed proinflammatory cytokines secretion in rheumatology arthritis synoviocyte cells by Janus kinase/signal transducer and activator of transcription pathway. The in vivo results showed that Cin ameliorated collagen-induced arthritis in rats. These findings indicate that Cin is a potential traditional Chinese medicine-derived, disease-modifying, antirheumatic herbal drug.


Asunto(s)
Acroleína/análogos & derivados , Antiinflamatorios/farmacología , Artritis Experimental/tratamiento farmacológico , Quinasas Janus/fisiología , Factores de Transcripción STAT/fisiología , Sinoviocitos/efectos de los fármacos , Acroleína/farmacología , Acroleína/uso terapéutico , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citocinas/análisis , Femenino , Humanos , Interleucina-1beta/farmacología , FN-kappa B/metabolismo , Ratas , Ratas Endogámicas Lew , Transducción de Señal/efectos de los fármacos
12.
J Cell Biochem ; 120(5): 7527-7538, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30417502

RESUMEN

Gastric cancer (GC) is a worldwide health problem. Uncovering the underlining molecular mechanisms of GC is of vital significance. Here, we identified a novel oncogene WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) in GC. WWP1 could promote GC cell proliferation and migration in vitro and expedite GC growth in vivo. We also found out two microRNAs (miRNAs): miR-129-5p and -3p could both target WWP1. Interestingly, miR-129-5p bound to the CDS region of WWP1 mRNA. The miR-129 pairs (miR-129-5p and -3p) play pivotal roles in GC to suppress its proliferation and migration in vitro and slow down GC growth in vivo by repressing WWP1. In summary, we identified two tumor suppressive miRNAs which share the same precursor that could regulate the same oncogene WWP1 in GC. Our finding would add new route for GC research and treatment.

14.
Molecules ; 23(7)2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-29973492

RESUMEN

Glycyrrhhizic acid (GA), including 18α-glycyrrhizic acid (18α-GA) and 18ß-glycyrrhizic acid (18ß-GA), is the main active ingredient of licorice. GA is generally considered an effective pharmacological strategy protecting against hepatic disease; however, the optimal compatibility proportion of 18α-GA and 18ß-GA against alcoholic liver disease (ALD) and the underlying mechanism are not well established. Hence, this study was designed to explore the optimal compatibility proportion of 18α-GA and 18ß-GA against ALD, followed by investigating the underlying mechanisms. SD rats were administered 40% ethanol once a day, accompanied by treatment with different proportions of 18α-GA and 18ß-GA for four weeks. Then all rats were anesthetized with chloral hydrate and blood samples were taken from the abdominal aorta for biochemical assay. Livers were also collected and the liver function, lipid profile, ROS production, and mRNA and protein levels of related genes involved in lipid metabolism were assessed. The results showed that 18α-GA and 18ß-GA, particularly at a proportion of 4:6, significantly reduced liver damage, lipid accumulation, and oxidative stress in ethanol-induced rats, as indicated by the decreased levels of alanine aminotransferase (ALT) and aminotransferase (AST) in serum, improvement of liver histopathological changes, regulation of total cholesterol (TC), total triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), and modulation of superoxide dismutase (SOD), glutathione (GSH), and malonaldehyde (MDA). Moreover, the combination treatment with 18α-GA and 18ß-GA substantially reduced the mRNA and protein levels of sterol regulatory element-binding protein-1c (SREBP-1c) and acetyl-coal carboxylase (ACC); meanwhile, increased levels of peroxisome proliferators activated receptor-α (PPAR-α) and carnitine palmitoy transferase-1 (CTP-1) in the liver tissues of ethanol-induced rats. In conclusion, our results indicated that the optimal compatibility proportion of 18α-GA and 18ß-GA protecting against ALD was 4:6, and the mechanism was associated with the regulation of oxidative stress and lipid metabolism.


Asunto(s)
Ácido Glicirrínico/administración & dosificación , Metabolismo de los Lípidos/efectos de los fármacos , Hepatopatías Alcohólicas/prevención & control , Estrés Oxidativo/efectos de los fármacos , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Alanina Transaminasa/sangre , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Glicirrínico/química , Ácido Glicirrínico/farmacología , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/metabolismo , Estructura Molecular , Ratas , Ratas Sprague-Dawley , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
15.
Acc Chem Res ; 48(2): 341-8, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25581295

RESUMEN

CONSPECTUS: The field of nanoscience is delivering increasingly intricate yet elegant geometric structures incorporating an ever-expanding palette of materials. Atomic layer deposition (ALD) is a powerful driver of this field, providing exceptionally conformal coatings spanning the periodic table and atomic-scale precision independent of substrate geometry. This versatility is intrinsic to ALD and results from sequential and self-limiting surface reactions. This characteristic facilitates digital synthesis, in which the film grows linearly with the number of reaction cycles. While the majority of ALD processes identified to date produce metal oxides, novel applications in areas such as energy storage, catalysis, and nanophotonics are motivating interest in sulfide materials. Recent progress in ALD of sulfides has expanded the diversity of accessible materials as well as a more complete understanding of the unique chalcogenide surface chemistry. ALD of sulfide materials typically uses metalorganic precursors and hydrogen sulfide (H2S). As in oxide ALD, the precursor chemistry is critical to controlling both the film growth and properties including roughness, crystallinity, and impurity levels. By modification of the precursor sequence, multicomponent sulfides have been deposited, although challenges remain because of the higher propensity for cation exchange reactions, greater diffusion rates, and unintentional annealing of this more labile class of materials. A deeper understanding of these surface chemical reactions has been achieved through a combination of in situ studies and quantum-chemical calculations. As this understanding matures, so does our ability to deterministically tailor film properties to new applications and more sophisticated devices. This Account highlights the attributes of ALD chemistry that are unique to metal sulfides and surveys recent applications of these materials in photovoltaics, energy storage, and photonics. Within each application space, the benefits and challenges of novel ALD processes are emphasized and common trends are summarized. We conclude with a perspective on potential future directions for metal chalcogenide ALD as well as untapped opportunities. Finally, we consider challenges that must be addressed prior to implementing ALD metal sulfides into future device architectures.

16.
Nanotechnology ; 26(2): 020501, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25514439

RESUMEN

Targeted at fueling future transportation and sustaining smart grids, lithium-ion batteries (LIBs) are undergoing intensive investigation for improved durability and energy density. Atomic layer deposition (ALD), enabling uniform and conformal nanofilms, has recently made possible many new advances for superior LIBs. The progress was summarized by Liu and Sun in their latest review [1], offering many insightful views, covering the design of nanostructured battery components (i.e., electrodes and solid electrolytes), and nanoscale modification of electrode/electrolyte interfaces. This work well informs peers of interesting research conducted and it will also further help boost the applications of ALD in next-generation LIBs and other advanced battery technologies.

17.
ChemSusChem ; : e202400281, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573033

RESUMEN

Lithium metal batteries (LMBs) enable much higher energy density than lithium-ion batteries (LIBs) and thus hold great promise for future transportation electrification. However, the adoption of lithium metal (Li) as an anode poses serious concerns about cell safety and performance, which has been hindering LMBs from commercialization. To this end, extensive effort has been invested in understanding the underlying mechanisms theoretically and experimentally and developing technical solutions. In this review, we devote to providing a comprehensive review of the challenges, characterizations, and interfacial engineering of Li anodes in both liquid and solid LMBs. We expect that this work will stimulate new efforts and help peer researchers find new solutions for the commercialization of LMBs.

18.
Clin Case Rep ; 12(4): e8786, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38645604

RESUMEN

Key Clinical Message: This case report provides a rare case of idiopathic root resorption in maxillary first molar and suggests the importance of CBCT in the diagnosis and treatment outcome of complex endodontic diseases. Endodontic surgery is an effective method for treating teeth with persistent apical periodontitis. Abstract: Idiopathic root resorption is an unexplained root resorption when the patient experiences root resorption without any local or systemic factors. Early diagnosis and appropriate treatment are crucial for long-term outcomes.

19.
Brain Behav ; 14(7): e3608, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38956886

RESUMEN

INTRODUCTION: Cerebral ischemia reperfusion injury (CIRI) often leads to deleterious complications after stroke patients receive reperfusion therapy. Exercise preconditioning (EP) has been reported to facilitate brain function recovery. We aim to explore the specific mechanism of EP in CIRI. METHODS: Sprague-Dawley rats were randomized into Sham, middle cerebral artery occlusion (MCAO), and EP groups (n = 11). The rats in the EP group received adaptive training for 3 days (10 m/min, 20 min/day, with a 0° incline) and formal training for 3 weeks (6 days/week, 25 m/min, 30 min/day, with a 0° incline). Then, rats underwent MCAO surgery to establish CIRI models. After 48 h, neurological deficits and cerebral infarction of the rats were measured. Neuronal death and apoptosis in the cerebral cortices were detected. Furthermore, RNA sequencing was conducted to investigate the specific mechanism of EP on CIRI, and qPCR and Western blotting were further applied to confirm RNA sequencing results. RESULTS: EP improved neurological deficit scores and reduced cerebral infarction in MCAO rats. Additionally, pre-ischemic exercise also alleviated neuronal death and apoptosis of the cerebral cortices in MCAO rats. Importantly, 17 differentially expressed genes (DEGs) were identified through RNA sequencing, and these DEGs were mainly enriched in the HIF-1 pathway, cellular senescence, proteoglycans in cancer, and so on. qPCR and Western blotting further confirmed that EP could suppress TIMP1, SOCS3, ANGPTL4, CDO1, and SERPINE1 expressions in MCAO rats. CONCLUSION: EP can improve CIRI in vivo, the mechanism may relate to TIMP1 expression and HIF-1 pathway, which provided novel targets for CIRI treatment.


Asunto(s)
Infarto de la Arteria Cerebral Media , Condicionamiento Físico Animal , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & control , Daño por Reperfusión/terapia , Ratas , Masculino , Condicionamiento Físico Animal/fisiología , Infarto de la Arteria Cerebral Media/terapia , Infarto de la Arteria Cerebral Media/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Análisis de Secuencia de ARN , Modelos Animales de Enfermedad , Apoptosis , Precondicionamiento Isquémico/métodos
20.
Small Methods ; : e2400256, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708816

RESUMEN

Nickel (Ni)-rich cathodes are among the most promising cathode materials of lithium batteries, ascribed to their high-power density, cost-effectiveness, and eco-friendliness, having extensive applications from portable electronics to electric vehicles and national grids. They can boost the wide implementation of renewable energies and thereby contribute to carbon neutrality and achieving sustainable prosperity in the modern society. Nevertheless, these cathodes suffer from significant technical challenges, leading to poor cycling performance and safety risks. The underlying mechanisms are residual lithium compounds, uncontrolled lithium/nickel cation mixing, severe interface reactions, irreversible phase transition, anisotropic internal stress, and microcracking. Notably, they have become more serious with increasing Ni content and have been impeding the widespread commercial applications of Ni-rich cathodes. Various strategies have been developed to tackle these issues, such as elemental doping, adding electrolyte additives, and surface coating. Surface coating has been a facile and effective route and has been investigated widely among them. Of numerous surface coating materials, have recently emerged as highly attractive options due to their high lithium-ion conductivity. In this review, a thorough and comprehensive review of lithium-ion conductive coatings (LCCs) are made, aimed at probing their underlying mechanisms for improved cell performance and stimulating new research efforts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA