Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 155, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38538986

RESUMEN

The prostate is a vital accessory gonad in the mammalian male reproductive system. With the ever-increasing proportion of the population over 60 years of age worldwide, the incidence of prostate diseases, such as benign prostatic hyperplasia (BPH) and prostate cancer (PCa), is on the rise and is gradually becoming a significant medical problem globally. The notch signaling pathway is essential in regulating prostate early development. However, the potential regulatory mechanism of Notch signaling in prostatic enlargement and hyperplasia remains unclear. In this study, we proved that overactivation of Notch1 signaling in mouse prostatic epithelial cells (OEx) led to prostatic enlargement via enhancing proliferation and inhibiting apoptosis of prostatic epithelial cells. Further study showed that N1ICD/RBPJ directly up-regulated the androgen receptor (AR) and enhanced prostatic sensitivity to androgens. Hyper-proliferation was not found in orchidectomized OEx mice without androgen supply but was observed after Dihydrotestosterone (DHT) supplementation. Our data showed that the number of mitochondrion in prostatic epithelial cells of OEx mice was increased, but the mitochondrial function was impaired, and the essential activity of the mitochondrial respiratory electron transport chain was significantly weakened. Disordered mitochondrial number and metabolic function further resulted in excessive accumulation of reactive oxygen species (ROS). Importantly, anti-oxidant N-Acetyl-L-Cysteine (NAC) therapy could alleviate prostatic hyperplasia caused by the over-activation of Notch1 signaling. Furthermore, we observed the incremental Notch signaling activity in progenitor-like club cells in the scRNA-seq data set of human BPH patients. Moreover, the increased number of TROP2+ progenitors and Club cells was also confirmed in our OEx mice. In conclusion, our study revealed that over-activated Notch1 signaling induces prostatic enlargement by increasing androgen receptor sensitivity, disrupting cellular mitochondrial metabolism, increasing ROS, and a higher number of progenitor cells, all of which can be effectively rescued by NAC treatment.


Asunto(s)
Hiperplasia Prostática , Animales , Humanos , Masculino , Ratones , Andrógenos/metabolismo , Mamíferos/metabolismo , Mitocondrias/metabolismo , Próstata/metabolismo , Hiperplasia Prostática/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Transducción de Señal
2.
Cancer Cell Int ; 23(1): 227, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37779195

RESUMEN

BACKGROUND: Glioma is the most common and lethal type of brain tumor, and it is characterized by unfavorable prognosis and high recurrence rates. The reprogramming of energy metabolism and an immunosuppressive tumor microenvironment (TME) are two hallmarks of tumors. Complex and dynamic interactions between neoplastic cells and the surrounding microenvironment can generate an immunosuppressive TME, which can accelerate the malignant progression of glioma. Therefore, it is crucial to explore associations between energy metabolism and the immunosuppressive TME and to identify new biomarkers for glioma prognosis. METHODS: In our work, we analyzed the co-expression relationship between glycolytic genes and immune checkpoints based on the transcriptomic data from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) and found the correlation between HK3 expression and glioma tumor immune status. To investigate the biological role of HK3 in glioma, we performed bioinformatics analysis and established a mouse glioblastoma (GBM) xenograft model. RESULTS: Our study showed that HK3 significantly stimulated immune cell infiltration into the glioma TME. Tissue samples with higher HK3 expressive level showed increasing levels of immune cells infiltration, including M2 macrophages, neutrophils, and various subtypes of activated memory CD4+ T cells. Furthermore, HK3 expression was significantly increasing along with the elevated tumor grade, had a higher level in the mesenchymal subtype compared with those in other subtypes of GBM and could independently predict poor outcomes of GBM patients. CONCLUSION: The present work mainly concentrated on the biological role of HK3 in glioma and offered a novel insight of HK3 regulating the activation of immune cells in the glioma microenvironment. These findings could provide a new theoretical evidence for understanding the metabolic molecular within the glioma microenvironment and identifying new therapeutic targets.

3.
Cancer Cell Int ; 23(1): 156, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37542290

RESUMEN

BACKGROUND: N6-methyladenosine (m6A), 5-methylcytosine (m5C) and N1-methyladenosine (m1A) are the main RNA methylation modifications involved in the progression of cancer. However, it is still unclear whether RNA methylation-related long noncoding RNAs (lncRNAs) affect the prognosis of glioma. METHODS: We summarized 32 m6A/m5C/m1A-related genes and downloaded RNA-seq data and clinical information from The Cancer Genome Atlas (TCGA) database. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were used to identify differentially expressed (DE-) RNA methylation-related lncRNAs in order to construct a prognostic signature of glioma and in order to determine their correlation with immune function, immune therapy and drug sensitivity. In vitro and in vivo assays were performed to elucidate the effects of RNA methylation-related lncRNAs on glioma. RESULTS: A total of ten RNA methylation-related lncRNAs were used to construct a survival and prognosis signature, which had good independent prediction ability for patients. It was found that the high-risk group had worse overall survival (OS) than the low-risk group in all cohorts. In addition, the risk group informed the immune function, immunotherapy response and drug sensitivity of patients with glioma in different subgroups. Knockdown of RP11-98I9.4 and RP11-752G15.8 induced a more invasive phenotype, accelerated cell growth and apparent resistance to temozolomide (TMZ) both in vitro and in vivo. We observed significantly elevated global RNA m5C and m6A levels in glioma cells. CONCLUSION: Our study determined the prognostic implication of RNA methylation-related lncRNAs in gliomas, established an RNA methylation-related lncRNA prognostic model, and elucidated that RP11-98I9.4 and RP11-752G15.8 could suppress glioma proliferation, migration and TMZ resistance. In the future, these RNA methylation-related lncRNAs may become a new choice for immunotherapy of glioma.

4.
Langmuir ; 39(37): 13325-13334, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37612781

RESUMEN

Titanium carbide MXene quantum dots (MQDs) possess intrinsic regulatory properties and selective toxicity to cancer cells. Here, MDQs were selected for the modification of hydroxyapatite (HA) microspheres, and MXene quantum dots-modified hydroxyapatite (MQDs-HA) hollow microspheres with controllable shapes and sizes were prepared as bone drug carriers. The results show that the prepared MQDs-HA hollow microspheres had a large BET surface area (231.2 m2/g), good fluorescence, and low toxicity. In addition, MQDs-HA showed a mild storage-release behavior and good responsiveness of pH and near-infrared (NIR). Thus, the MQDs-HA hollow microspheres have broad application prospects in the field of drug delivery and photothermal therapy.


Asunto(s)
Portadores de Fármacos , Puntos Cuánticos , Portadores de Fármacos/toxicidad , Microesferas , Puntos Cuánticos/toxicidad , Durapatita/toxicidad , Concentración de Iones de Hidrógeno
5.
Angew Chem Int Ed Engl ; 61(52): e202212555, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36300723

RESUMEN

ω-Transaminases (ω-TAs) show considerable potential for the synthesis of chiral amines. However, their low catalytic efficiency towards bulky substrates limits their application, and complicated catalytic mechanisms prevent precise enzyme design. Herein, we address this challenge using a mechanism-guided computational enzyme design strategy by reprograming the transition and ground states in key reaction steps. The common features among the three high-energy-barrier steps responsible for the low catalytic efficiency were revealed using quantum mechanics (QM). Five key residues were simultaneously tailored to stabilize the rate-limiting transition state with the aid of the Rosetta design. The 14 top-ranked variants showed 16.9-143-fold improved catalytic activity. The catalytic efficiency of the best variant, M9 (Q25F/M60W/W64F/I266A), was significantly increased, with a 1660-fold increase in kcat /Km and a 1.5-26.8-fold increase in turnover number (TON) towards various indanone derivatives.


Asunto(s)
Aminas , Transaminasas , Transaminasas/química , Aminas/química , Catálisis
6.
Mol Cancer ; 20(1): 148, 2021 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-34774049

RESUMEN

The Drug Response Gene Expression Associated Map, also referred as "DREAM" ( http://bio-big-data.cn:8080/DREAM ), is a manually curated database of experimentally supported protein-coding RNAs and drugs associations in human cancers. The current version of the DREAM documents 3048 entries about scientific literatures supported drug sensitivity or drug intervention related protein-coding RNAs from PubMed database and 195 high-throughput microarray data about drug sensitivity or drug intervention related protein-coding RNAs data from GEO database. Each entry in DREAM database contains detailed information on protein-coding RNA, drug, cancer, and other information including title, PubMed ID, journal, publish time. The DREAM database also provides some data visualization and online analysis services such as volcano plot, GO/KEGG enrichment function analysis, and novel drug discovery analysis. We hope the DREAM database should serve as a valuable resource for clinical practice and basic research, which could help researchers better understand the effects of protein-coding RNAs on drug response in human cancers.


Asunto(s)
Bases de Datos Genéticas , Descubrimiento de Drogas , Regulación de la Expresión Génica/efectos de los fármacos , Sistemas de Lectura Abierta , ARN Mensajero/genética , Descubrimiento de Drogas/métodos , Humanos
7.
Br J Cancer ; 125(10): 1420-1431, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34548638

RESUMEN

BACKGROUND: Prostate cancer (Pca) is the most common cancer type among males worldwide. Dysregulation of Ca2+ signaling plays important roles during Pca progression. However, there is lack of information about the role of endolysosomal Ca2+ -permeable channels in Pca progression. METHODS: The expression pattern of MCOLN2 was studied by immunohistochemistry and western blot. Cell viability assay, transwell assay and in vivo tumorigenesis were performed to evaluate the functional role of MCOLN2. Downstream targets of MCOLN2 were investigated by cytokine array, enzyme-linked immunosorbent assay, Ca2+ release experiments and luciferase reporter assays. RESULTS: We report that MCOLN2 expression is significantly elevated in Pca tissues, and associated with poor prognosis. Overexpression of MCOLN2 promoted Pca cells proliferation, migration and invasion. Importantly, knockdown of MCOLN2 inhibited Pca xenograft tumor growth and bone lesion development in vivo. In addition, MCOLN2 promoted the production and release of IL-1ß. Moreover, luciferase reporter assay and western blot revealed that MCOLN2 promoted Pca development by regulating the IL-1ß/NF-κB pathway. CONCLUSION: In summary, MCOLN2 is crucially involved in Pca progression. Mechanistically, MCOLN2 regulates Pca progression via IL-1ß/NF-κB pathway. Our study highlights an intriguing possibility of targeting MCOLN2 as potential therapeutic strategy in Pca treatment.


Asunto(s)
Interleucina-1beta/metabolismo , FN-kappa B/metabolismo , Neoplasias de la Próstata/patología , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo , Regulación hacia Arriba , Animales , Señalización del Calcio , Línea Celular Tumoral , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Trasplante de Neoplasias , Células PC-3 , Pronóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo
8.
J Biomed Sci ; 28(1): 30, 2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888112

RESUMEN

A brain organoid is a self-organizing three-dimensional tissue derived from human embryonic stem cells or pluripotent stem cells and is able to simulate the architecture and functionality of the human brain. Brain organoid generation methods are abundant and continue to improve, and now, an in vivo vascularized brain organoid has been encouragingly reported. The combination of brain organoids with immune-staining and single-cell sequencing technology facilitates our understanding of brain organoids, including the structural organization and the diversity of cell types. Recent publications have reported that brain organoids can mimic the dynamic spatiotemporal process of early brain development, model various human brain disorders, and serve as an effective preclinical platform to test and guide personalized treatment. In this review, we introduce the current state of brain organoid differentiation strategies, summarize current progress and applications in the medical domain, and discuss the challenges and prospects of this promising technology.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Organoides/crecimiento & desarrollo , Células Madre Pluripotentes/metabolismo , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Humanos
9.
Langmuir ; 36(5): 1298-1304, 2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-31957452

RESUMEN

Conductive microwrinkles present a superior performance in ultrasensitive sensing, smart controlling, as well as energy conservation because of their unique structures. These wrinkles are usually prepared by the deposition of a thin conductive stiff layer on a soft substrate under a certain strain. However, traditional conductive materials may encounter some deficiencies, such as fragility or poor dispersity, in any solvent. To promote the applicability of conductive microwrinkles, here, we adopt a new two-dimensional nanomaterial Ti3C2Tx MXene as the conductive stiff layer to construct the microwrinkles. By combining the spraying and inflating techniques, the hierarchical complex and delicate Ti3C2Tx-polyurethane (Ti3C2Tx-PU) microwrinkles have become facilely available. The characteristic wavelength and amplitude of the microwrinkles could be easily adjusted by altering the inflating height of the PU film or the spraying volume of the Ti3C2Tx solution. Because the as-prepared Ti3C2Tx wrinkles could sensitively generate deformation inducing a resistance change under a force, these structures are also assembled to detect the applied force. The Ti3C2Tx force sensors showed quick response to a tiny force and stable reliability over hundreds of cycles, which hold a promising potential to monitor or employ the microforce.

10.
Int J Cancer ; 145(2): 517-530, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30613962

RESUMEN

Mutualistic and dynamic communication between tumour cells and the surrounding microenvironment accelerates the initiation, progression, chemoresistance and immune evasion of glioblastoma (GBM). However, the immunosuppressive mechanisms of GBM has not been thoroughly elucidated to date. We enrolled six microenvironmental signatures to identify glioma microenvironmental genes. The functional enrichment analysis such as ssGSEA, ESTIMATE algorithm, Gene Ontology, Pathway analysis is conducted to discover the potential function of microenvironmental genes. In vivo and in vitro experiments are used to verify the immunologic function of LGALS1 in GBM. We screen eight glioma microenvironmental genes from glioma databases, and discover a key immunosuppressive gene (LGALS1 encoding Galectin-1) exhibiting obviously prognostic significance among glioma microenvironmental genes. Gliomas with different LGALS1 expression have specific genomic variation spectrums. Immunosuppression is a predominate characteristic in GBMs with high expression of LGALS1. Knockdown of LGALS1 remodels the GBM immunosuppressive microenvironment by down regulating M2 macrophages and myeloid-derived suppressor cells (MDSCs), and inhibiting immunosuppressive cytokines. Our results thus implied an important role of microenvironmental regulation in glioma malignancy and provided evidences of LGALS1 contributing to immunosuppressive environment in glioma and that targeting LGALS1 could remodel immunosuppressive microenvironment of glioma.


Asunto(s)
Citocinas/metabolismo , Galectina 1/genética , Glioblastoma/inmunología , Macrófagos/metabolismo , Células Supresoras de Origen Mieloide/metabolismo , Animales , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Heterogeneidad Genética , Glioblastoma/genética , Humanos , Fenómenos Inmunogenéticos , Terapia de Inmunosupresión , Ratones , Trasplante de Neoplasias , Pronóstico , Programas Informáticos , Microambiente Tumoral , Regulación hacia Arriba
11.
J Pathol ; 245(2): 222-234, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29537081

RESUMEN

Colorectal cancer (CRC) is the third most common cancer worldwide, with more than 1.3 million new cases and 690 000 deaths each year. In China, the incidence of CRC has increased dramatically due to dietary and lifestyle changes, to become the fifth leading cause of cancer-related death. Here, we performed whole-exome sequencing in 50 rectal cancer cases among the Chinese population as part of the International Cancer Genome Consortium research project. Frequently mutated genes and enriched pathways were identified. Moreover, a previously unreported gene, PCDHB3, was found frequently mutated in 5.19% cases. Additionally, PCDHB3 expression was found decreased in 81.6% of CRC tissues and all eight CRC cell lines tested. Low expression and cytoplasmic localization of PCDHB3 predict poor prognosis in advanced CRC. Copy number decrease and/or CpG island hypermethylation contributes to the pervasive decreased expression of PCDHB3. PCDHB3 inhibits CRC cell proliferation, migration, and epithelial-mesenchymal transition. The tumor-suppressive effects of PCDHB3 are partially due to inhibition of NF-κB transcriptional activity through K63 deubiquitination of p50 at lysine 244/252, which increases the binding affinity of inactive p50 homodimer to κB DNA, resulting in competitive inhibition of the transcription of NF-κB target genes by p65 dimers. Our study identified PCDHB3 as a novel tumor suppressor in CRC via inhibition of the NF-κB pathway, and its expression and localization may serve as prognostic markers for advanced CRC. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Biomarcadores de Tumor/genética , Cadherinas/genética , Neoplasias Colorrectales/genética , Secuenciación del Exoma , Silenciador del Gen , Genes Supresores de Tumor , Mutación , Adulto , Anciano , Animales , Pueblo Asiatico/genética , Biomarcadores de Tumor/metabolismo , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , China , Neoplasias Colorrectales/etnología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Islas de CpG , Metilación de ADN , Regulación hacia Abajo , Femenino , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , FN-kappa B/genética , FN-kappa B/metabolismo , Fenotipo , Protocadherinas
12.
Carcinogenesis ; 39(3): 389-396, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29432532

RESUMEN

Gliomas are characterized by a malignant phenotype with proliferation, cell cycle arrest and invasion. To explore the biological consequences of epigenetically regulated miRNAs, we performed a microarray-based screening (whose expression was affected by 5-AZA treatment) followed by bisulfite sequencing validation. We found that miR-134 as an epigenetically regulated suppressor gene with prognostic value in gliomas. MicroRNA-134 was downregulated in high-grade gliomas, especially in GBM samples. Functional studies in vitro and in vivo in mouse models showed that overexpression of miR-134 was sufficient to reduce cell cycle arrest, cell proliferation and invasion. Target analysis and functional assays correlated the malignant phenotype with miR-134 target gene KRAS, an established upstream regulator of ERK and AKT pathways. Overall, our results highlighted a role for miR-134 in explaining the malignant phenotype of gliomas and suggested its relevance as a target to develop for early diagnostics and therapy.


Asunto(s)
Neoplasias Encefálicas/patología , Regulación Neoplásica de la Expresión Génica/genética , Glioma/patología , MicroARNs/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Neoplasias Encefálicas/genética , Silenciador del Gen , Glioma/genética , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos BALB C , Fenotipo
13.
J Environ Sci (China) ; 54: 196-205, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28391929

RESUMEN

17α-Ethynylestradiol (EE2) in natural waters may cause adverse effects on organisms due to its high estrogenic potency. Laboratory studies were performed to study the effects of a local humic acid (LHA), fulvic acid (LFA) and Aldrich humic acid (AHA) on the photochemical behavior and estrogenic potency of EE2. Here photolytic experiments demonstrated that pure aqueous EE2 could undergo direct and self-sensitized photodegradation at a global rate of 0.0068hr-1. Photodegradation rate of EE2 in 5.0mg/L dissolved humic substances (DHS) was determined to be 0.0274, 0.0296 and 0.0254hr-1 for LHA, LFA and AHA, respectively. Reactive oxygen species (ROS) and triplet dissolved humic substances (3DHS*) scavenging experiments indicated that the promotion effect of DHS on EE2 photodegradation was mainly aroused by the reactions of HO (35%-50%), 1O2 (<10%) and 3DHS* (22%-34%). However, the photodegradation of EE2 could also be inhibited when DHS exceeded the threshold of 10mg/L. Three hydroxylation products of EE2 were identified using GC-MS and their formation pathways were also proposed. In vitro estrogenicity tests showed that EE2 was transformed into chemicals without estrogenic potency. These findings could extend our knowledge on the photochemical behaviors of steroid estrogens in sunlit natural waters.


Asunto(s)
Etinilestradiol/química , Sustancias Húmicas , Procesos Fotoquímicos , Contaminantes Químicos del Agua/química , Cinética , Fotólisis , Luz Solar
14.
Tumour Biol ; 37(11): 15333-15339, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27704357

RESUMEN

Gliomas are the most common primary intracranial malignant tumors in adults. Surgical resection followed by optional radiotherapy and chemotherapy is the current standard therapy for glioma patients. Vimentin, a protein of intermediate filament family, could maintain the cellular integrity and participate in several cell signal pathways to modulate the motility and invasion of cancer cells. The purpose of the present research was to identify the relationship between vimentin expression and clinical characteristics and detect the prognostic and predictive ability of vimentin in patients with glioma. To determine the expression of vimentin in glioma tissues, paraffin-embedded blocks from glioma patients by surgical resection were obtained and evaluated by immunohistochemistry. To further investigate the association of vimentin expression with survival, we employed mRNA expression of vimentin genes from the Chinese Glioma Genome Atlas (CGGA) and the GSE 16011 dataset. Kaplan-Meier analysis and Cox regression model were used to statistical analysis. We detected positive vimentin straining in 84 % of high-grade compared to 47 % in low-grade glioma patients. Additionally, vimentin mRNA expression was correlated with glioma grade in both CGGA and GSE16011 dataset. Patients with low vimentin expression have longer survival than high expression. In multivariate analysis, vimentin was an independent significant prognostic factor for high-grade glioma patients. We also identified that glioblastoma patients with low vimentin expression had a better response to temozolomide therapy. Vimentin expression has a significant association with tumor grade and overall survival of high-grade glioma patients. Low vimentin expression may benefit from temozolomide therapy.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Dacarbazina/análogos & derivados , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioma/metabolismo , Glioma/patología , Vimentina/metabolismo , Adulto , Antineoplásicos Alquilantes/farmacología , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Dacarbazina/uso terapéutico , Femenino , Estudios de Seguimiento , Glioma/tratamiento farmacológico , Humanos , Técnicas para Inmunoenzimas , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Pronóstico , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tasa de Supervivencia , Temozolomida , Vimentina/genética
15.
Mol Cancer ; 13: 258, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25431208

RESUMEN

BACKGROUND: OTUB1 (OTU deubiquitinase, ubiquitin aldehyde binding 1) is a deubiquitinating enzyme (DUB) that belongs to the OTU (ovarian tumor) superfamily. The aim of this study was to clarify the role of OTUB1 in colorectal cancer (CRC) and to identify the mechanism underlying its function. METHODS: Two hundred and sixty CRC samples were subjected to association analysis of OTUB1 expression and clinicopathological variables using immunohistochemical (IHC) staining. Overexpression of OTUB1 was achieved in SW480 and DLD-1 cells, and downregulation of OTUB1 was employed in SW620 cells. Then, migration and invasion assays were performed, and markers of the epithelial-mesenchymal transition (EMT) were analyzed. In addition, hepatic metastasis models in mice were used to validate the function of OTUB1 in vivo. RESULTS: OTUB1 was overexpressed in CRC tissues, and the expression level of OTUB1 was associated with metastasis. A high expression level of OTUB1 was also associated with poor survival, and OTUB1 served as an independent prognostic factor in multivariate analysis. OTUB1 also promoted the metastasis of CRC cell lines in vitro and in vivo by regulating EMT. CONCLUSIONS: OTUB1 promotes CRC metastasis by facilitating EMT and acts as a potential distant metastasis marker and prognostic factor in CRC. Targeting OTUB1 may be helpful for the treatment of CRC.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Cisteína Endopeptidasas/genética , Metástasis de la Neoplasia/genética , Animales , Línea Celular , Línea Celular Tumoral , Movimiento Celular/genética , Neoplasias Colorrectales/patología , Enzimas Desubicuitinizantes , Regulación hacia Abajo/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Células HCT116 , Células HEK293 , Células HT29 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Pronóstico
16.
Gastroenterology ; 145(2): 426-36.e1-6, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23583431

RESUMEN

BACKGROUND & AIMS: Altered functions of microRNAs (miRNAs) have been associated with colorectal cancer (CRC). miR-212 is transcribed from a stable intron of a non-protein coding gene, and is reportedly down-regulated in different tumor types. We investigated the role of miR-212 in colorectal carcinogenesis and progression. METHODS: We analyzed the expression of miR-212 by real-time polymerase chain reaction (PCR) analysis of colorectal cell lines and 180 paired tumor samples and surrounding healthy tissue. We overexpressed and knocked down miR-212 in CRC cell lines and assessed the in vitro effects. We also studied the effects of miR-212 overexpression on metastasis of tumors grown from HCT116 cells in nude mice. RESULTS: Overexpression of miR-212 inhibited CRC cell migration and invasion in vitro and formation of intrahepatic and pulmonary metastasis in vivo. We identified manganese superoxide dismutase (MnSOD) messenger RNA as a direct target of miR-212, and observed an inverse correlation between the level of miR-212 and MnSOD protein in colorectal tumor samples. MnSOD was required for down-regulation of epithelial markers and up-regulation of mesenchymal markers in CRC cells, indicating that it promoted the epithelial-mesenchymal transition. Overexpression of miR-212 reduced the levels of MnSOD to block the epithelial-mesenchymal transition process. Loss of heterozygosity and promoter hypermethylation each contributed to the down-regulation of miR-212. Reduced levels of miR-212 were associated with a more aggressive tumor phenotype and short disease-free survival times of patients (P = .0045; overall survival, P = .0015). CONCLUSIONS: miR-212 is down-regulated in human CRC tissues via genetic and epigenetic mechanisms. miR-212 might prevent tumor progression by targeting MnSOD messenger RNA; reduction of miR-212 could be a prognostic marker for patients with CRC. miR-212 and MnSOD might also be therapeutic targets for cancer.


Asunto(s)
Neoplasias Colorrectales/genética , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Superóxido Dismutasa/genética , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Neoplasias Colorrectales/patología , Supervivencia sin Enfermedad , Regulación hacia Abajo , Transición Epitelial-Mesenquimal/genética , Transición Epitelial-Mesenquimal/fisiología , Células HCT116 , Células HT29 , Humanos , Técnicas In Vitro , Ratones , Ratones Desnudos , Invasividad Neoplásica/genética , Trasplante de Neoplasias , ARN Mensajero , Reacción en Cadena en Tiempo Real de la Polimerasa
17.
Nat Commun ; 15(1): 2551, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514606

RESUMEN

Eukaryotic initiation translation factor 3 subunit h (EIF3H) plays critical roles in regulating translational initiation and predicts poor cancer prognosis, but the mechanism underlying EIF3H tumorigenesis remains to be further elucidated. Here, we report that EIF3H is overexpressed in colorectal cancer (CRC) and correlates with poor prognosis. Conditional Eif3h deletion suppresses colorectal tumorigenesis in AOM/DSS model. Mechanistically, EIF3H functions as a deubiquitinase for HAX1 and stabilizes HAX1 via antagonizing ßTrCP-mediated ubiquitination, which enhances the interaction between RAF1, MEK1 and ERK1, thereby potentiating phosphorylation of ERK1/2. In addition, activation of Wnt/ß-catenin signaling induces EIF3H expression. EIF3H/HAX1 axis promotes CRC tumorigenesis and metastasis in mouse orthotopic cancer model. Significantly, combined targeting Wnt and RAF1-ERK1/2 signaling synergistically inhibits tumor growth in EIF3H-high patient-derived xenografts. These results uncover the important roles of EIF3H in mediating CRC progression through regulating HAX1 and RAF1-ERK1/2 signaling. EIF3H represents a promising therapeutic target and prognostic marker in CRC.


Asunto(s)
Neoplasias Colorrectales , Sistema de Señalización de MAP Quinasas , Humanos , Animales , Ratones , Fosforilación , Transformación Celular Neoplásica/genética , Carcinogénesis , Vía de Señalización Wnt , Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/metabolismo , Neoplasias Colorrectales/patología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Adaptadoras Transductoras de Señales/metabolismo
18.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 35(6): 592-597, 2023 Jun.
Artículo en Zh | MEDLINE | ID: mdl-37366124

RESUMEN

OBJECTIVE: To explore the effect of interleukin-17A (IL-17A) on liver and kidney injury and prognosis in septic mice. METHODS: A total of 84 SPF male C57BL/6 mice were randomly divided into sham operation group (Sham group), cecal ligation and puncture (CLP) induced sepsis model group (CLP group), and IL-17A intervention group. IL-17A intervention group were then divided into five subgroups according to the dose of IL-17A (0.25, 0.5, 1, 2, 4 µg). Mice in the IL-17A intervention group were intraperitoneally injected with the corresponding dose of IL-17A 100 µL immediately after surgery. The other groups were intraperitoneally injected with 100 µL phosphate buffer solution (PBS). The survival rate of mice was observed at 7 days, and peripheral blood and liver, kidney and spleen tissues were collected. According to the 7-day survival, another 18 mice were randomly divided into Sham group, CLP group, and 1 µg IL-17A intervention group. Peripheral blood samples were collected at 12 hours and 24 hours after CLP, and the mice were sacrificed to obtain liver, kidney, and spleen tissues. The behavior and abdominal cavity of each group were observed. The levels of peripheral blood liver and kidney function indexes and inflammatory factors were detected. The histopathological changes of liver and kidney were observed under light microscope. The peripheral blood and spleen tissues were inoculated in the medium, the number of bacterial colonies was calculated, and the bacterial migration of each group was evaluated in vitro. RESULTS: Except for the Sham group, the 7-day survival rate of mice in the 1 µg IL-17A intervention group was the highest (75.0%), so this condition was selected as the intervention condition for the subsequent study. Compared with Sham group, the liver and kidney functions of CLP group were significantly damaged at each time point after operation. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN) and serum creatinine (SCr) reached the peak at 24 hours after operation, and the liver and kidney pathological scores reached the peak at 7 days after operation, the levels of inflammatory cytokines interleukin (IL-17A, IL-6, IL-10) reached the peak at 12 hours after operation, and tumor necrosis factor-α (TNF-α) reached the peak at 24 hours after operation. In addition, a large number of bacteria proliferated in the peripheral blood and spleen, which reached the peak on day 7. Compared with the CLP group, exogenous administration of 1 µg IL-17A significantly delayed the rising trend of each index in the early stage of sepsis [24-hour ALT (U/L): 166.95±5.20 vs. 271.30±6.11, 24-hour AST (U/L): 599.42±7.25 vs. 1 013.27±3.37, 24-hour BUN (mg/L): 815.4±26.3 vs. 1 191.2±39.4, 24-hour SCr (µmol/L): 29.34±0.87 vs. 60.75±3.83, 7-day liver pathological score: 2.50 (2.00, 3.00) vs. 9.00 (8.50, 9.00), 7-day kidney pathological score: 1.00 (1.00, 2.00) vs. 5.00 (4.50, 5.00), 12-hour IL-17A (ng/L): 105.21±0.31 vs. 111.28±1.37, 12-hour IL-6 (ng/L): 83.22±1.01 vs. 108.88±0.99, 12-hour IL-10 (ng/L): 731.54±3.04 vs. 790.25±2.54, 24-hour TNF-α (µg/L): 454.67±0.66 vs. 576.18±0.76, 7-day peripheral blood colony count (CFU/mL): 600 (400, 600) vs. 4 200 (4 200, 4 300), 7-day spleen tissue colony count (CFU/g): 4 600 (4 400, 4 600) vs. 23 400 (23 200, 23 500), all P < 0.05]. CONCLUSIONS: Appropriate dose (1 µg) of exogenous IL-17A can reduce the lethal inflammatory response induced by CLP and improve the ability of bacterial clearance, thereby alleviating liver and kidney injury and improving the 7-day survival rate of septic mice.


Asunto(s)
Interleucina-17 , Sepsis , Animales , Masculino , Ratones , Interleucina-10 , Interleucina-17/farmacología , Interleucina-6 , Riñón/fisiopatología , Hígado/fisiopatología , Ratones Endogámicos C57BL , Pronóstico , Factor de Necrosis Tumoral alfa
19.
Chin Med ; 18(1): 138, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875983

RESUMEN

Cancer is a malignant disease that has plagued human beings all the time, but the treatment effect of commonly used anticancer drugs in clinical practice is not ideal by reason of their drug tolerance and Strong adverse reactions to patients. Therefore, it is imperative to find effective and low-toxic anticancer drugs. Many research works have shown that natural products in Chinese herbal medicine have great anticancer potential, such as 6-shogaol, a monomer composition obtained from Chinese herbal ginger, which has been confirmed by numerous in vitro or vivo studies to be an excellent anti-cancer active substance. In addition, most notably, 6-shogaol has different selectivity for normal and cancer cells during treatment, which makes it valuable for further research and clinical development. Therefore, this review focus on the anti-cancer attributes, the mechanism and the regulation of related signaling pathways of 6-shogaol. In addition, its synergy with commonly used anticancer drugs, potential drug delivery systems and prospects for future research are discussed. This is the first review to comprehensively summarize the anti-cancer mechanism of 6-shogaol, hoping to provide a theoretical basis and guiding significance for future anti-cancer research and clinical development of 6-shogaol.

20.
Biotechnol J ; 18(5): e2200465, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36738237

RESUMEN

Enzymatic asymmetric synthesis of chiral amino acids has great industrial potential. However, the low catalytic efficiency of high-concentration substrates limits their industrial application. Herein, using a combination of substrate catalytic efficiency prediction based on "open to closed" conformational change and substrate specificity prediction, a novel leucine dehydrogenase (TsLeuDH), with high substrate catalytic efficiency toward benzoylformic acid (BFA) for producing l-phenylglycine (l-Phg), was directly identified from 4695 putative leucine dehydrogenases in a public database. The specific activity of TsLeuDH was determined to be as high as 4253.8 U mg-1 . Through reaction process optimization, a high-concentration substrate (0.7 m) was efficiently and completely converted within 90 min in a single batch, without any external coenzyme addition. Moreover, a continuous flow-feeding approach was designed using gradient control of the feed rate to reduce substrate accumulation. Finally, the highest overall substrate concentration of up to 1.2 m BFA could be aminated to l-Phg with conversion of >99% in 3 h, demonstrating that this new combination of enzyme process development is promising for large-scale application of l-Phg.


Asunto(s)
Aminoácidos , Glicina , Leucina-Deshidrogenasa/genética , Leucina-Deshidrogenasa/metabolismo , Catálisis , Especificidad por Sustrato , Leucina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA