RESUMEN
BACKGROUND AND AIMS: The common characteristics of alcohol-associated liver injury (ALI) include abnormal liver function, infiltration of inflammatory cells, and generation of oxidative stress. The gastrin-releasing peptide receptor (GRPR) is activated by its neuropeptide ligand, gastrin-releasing peptide (GRP). GRP/GRPR appears to induce the production of cytokines in immune cells and promotes neutrophil migration. However, the effects of GRP/GRPR in ALI are unknown. APPROACH AND RESULTS: We found high GRPR expression in the liver of patients with alcohol-associated steatohepatitis and increased pro-GRP levels in peripheral blood mononuclear cells of these patients compared with that of the control. Increased expression of GRP may be associated with histone H3 lysine 27 acetylation induced by alcohol, which promotes the expression of GRP and then GRPR binding. Grpr-/- and Grprflox/floxLysMCre mice alleviated ethanol-induced liver injury with relieved steatosis, lower serum alanine aminotransferase, aspartate aminotransferase, triglycerides, malondialdehyde, and superoxide dismutase levels, reduced neutrophil influx, and decreased expression and release of inflammatory cytokines and chemokines. Conversely, the overexpression of GRPR showed opposite effects. The pro-inflammatory and oxidative stress roles of GRPR might be dependent on IRF1-mediated Caspase-1 inflammasome and NOX2-dependent reactive oxygen species pathway, respectively. In addition, we verified the therapeutic and preventive effects of RH-1402, a novel GRPR antagonist, for ALI. CONCLUSIONS: A knockout or antagonist of GRPR during excess alcohol intake could have anti-inflammatory and antioxidative roles, as well as provide a platform for histone modification-based therapy for ALI.
Asunto(s)
Inflamasomas , Receptores de Bombesina , Humanos , Ratones , Animales , Receptores de Bombesina/metabolismo , Inflamasomas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Caspasa 1/metabolismo , Leucocitos Mononucleares , Péptido Liberador de Gastrina/metabolismo , Etanol , Hígado/metabolismo , Citocinas/metabolismo , Factor 1 Regulador del Interferón/metabolismoRESUMEN
Although great efforts have been made to elucidate the pathological mechanisms of renal diseases and potential prevention and treatment targets that would allow us to retard kidney disease progression, we still lack specific and effective management methods. Epigenetic mechanisms are able to alter gene expression without requiring DNA mutations. Accumulating evidence suggests the critical roles of epigenetic events and processes in a variety of renal diseases, involving functionally relevant alterations in DNA methylation, histone methylation, RNA methylation, and expression of various non-coding RNAs. In this review, we highlight recent advances in the impact of methylation events (especially RNA m6A methylation, DNA methylation, and histone methylation) on renal disease progression, and their impact on treatments of renal diseases. We believe that a better understanding of methylation modification changes in kidneys may contribute to the development of novel strategies for the prevention and management of renal diseases.
Asunto(s)
Metilación de ADN , Enfermedades Renales , Metilación de ARN , Humanos , Progresión de la Enfermedad , Epigénesis Genética , Histonas/metabolismo , Enfermedades Renales/genética , Enfermedades Renales/metabolismoRESUMEN
Acute liver injury (ALI) is a complex, life-threatening inflammatory liver disease, and persistent liver damage leads to rapid decline and even failure of liver function. However, the pathogenesis of ALI is still not fully understood, and no effective treatment has been discovered. Recent evidence shows that many circular RNAs (circRNAs) are associated with the occurrence of liver diseases. In this study we investigated the mechanisms of occurrence and development of ALI in lipopolysaccharide (LPS)-induced ALI mice. We found that expression of the circular RNA circDcbld2 was significantly elevated in the liver tissues of ALI mice and LPS-treated RAW264.7 cells. Knockdown of circDcbld2 markedly alleviates LPS-induced inflammatory responses in ALI mice and RAW264.7 cells. We designed and synthesized a series of hesperidin derivatives for circDcbld2, and found that hesperetin derivative 2a (HD-2a) at the concentrations of 2, 4, 8 µM effectively inhibited circDcbld2 expression in RAW264.7 cells. Administration of HD-2a (50, 100, 200 mg/kg. i.g., once 24 h in advance) effectively relieved LPS-induced liver dysfunction and inflammatory responses. RNA sequencing analysis revealed that the anti-inflammatory and hepatoprotective effects of HD-2a were mediated through downregulating circDcbld2 and suppressing the JAK2/STAT3 pathway. We conclude that HD-2a downregulates circDcbld2 to inhibit the JAK2/STAT3 pathway, thereby inhibiting the inflammatory responses in ALI. The results suggest that circDcbld2 may be a potential target for the prevention and treatment of ALI, and HD-2a may have potential as a drug for the treatment of ALI.
Asunto(s)
Lesión Pulmonar Aguda , Hesperidina , Animales , Ratones , Lipopolisacáridos/farmacología , Hesperidina/efectos adversos , Regulación hacia Abajo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Hígado/metabolismoRESUMEN
Macrophage polarization is vital to mounting a host defense or repairing tissue in various liver diseases. Excessive activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome is related to the orchestration of inflammation and alcohol-associated liver disease (ALD) pathology. Rab GTPases play critical roles in regulating vesicular transport. In this study we investigated the role of Rab11b in ALD, aiming to identify effective therapeutic targets. Here, we first demonstrated a decreased expression of Rab11b in macrophages from ALD mice. Knockdown of Rab11b by macrophage-specific adeno-associated virus can alleviate alcohol induced liver inflammation, injury and steatosis. We found that LPS and alcohol stimulation promoted Rab11b transferring from the nucleus to the cytoplasm in bone marrow-derived macrophages (BMDM) cells. Rab11b specifically activated the NLRP3 inflammasome in BMDMs and RAW264.7 cells to induce M1 macrophage polarization. Rab11b overexpression in BMDMs inhibited autophagic flux, leading to the suppression of LC3B-mediated NLRP3 degradation. We conclude that impaired Rab11b could alleviate alcohol-induced liver injury via autophagy-mediated NLRP3 degradation.
RESUMEN
Acute kidney injury (AKI) is defined as sudden loss of renal function characterized by increased serum creatinine levels and reduced urinary output with a duration of 7 days. Ferroptosis, an iron-dependent regulated necrotic pathway, has been implicated in the progression of AKI, while ferrostatin-1 (Fer-1), a selective inhibitor of ferroptosis, inhibited renal damage, oxidative stress and tubular cell death in AKI mouse models. However, the clinical translation of Fer-1 is limited due to its lack of efficacy and metabolic instability. In this study we designed and synthesized four Fer-1 analogs (Cpd-A1, Cpd-B1, Cpd-B2, Cpd-B3) with superior plasma stability, and evaluated their therapeutic potential in the treatment of AKI. Compared with Fer-1, all the four analogs displayed a higher distribution in mouse renal tissue in a pharmacokinetic assay and a more effective ferroptosis inhibition in erastin-treated mouse tubular epithelial cells (mTECs) with Cpd-A1 (N-methyl-substituted-tetrazole-Fer-1 analog) being the most efficacious one. In hypoxia/reoxygenation (H/R)- or LPS-treated mTECs, treatment with Cpd-A1 (0.25 µM) effectively attenuated cell damage, reduced inflammatory responses, and inhibited ferroptosis. In ischemia/reperfusion (I/R)- or cecal ligation and puncture (CLP)-induced AKI mouse models, pre-injection of Cpd-A1 (1.25, 2.5, 5 mg·kg-1·d-1, i.p.) dose-dependently improved kidney function, mitigated renal tubular injury, and abrogated inflammation. We conclude that Cpd-A1 may serve as a promising therapeutic agent for the treatment of AKI.
Asunto(s)
Lesión Renal Aguda , Ferroptosis , Ratones Endogámicos C57BL , Fenilendiaminas , Animales , Ferroptosis/efectos de los fármacos , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Ratones , Masculino , Fenilendiaminas/farmacología , Fenilendiaminas/uso terapéutico , Ciclohexilaminas/farmacología , Ciclohexilaminas/uso terapéutico , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismoRESUMEN
Hypertension is a primary modifiable risk factor for cardiovascular diseases, which often induces renal end-organ damage and complicates chronic kidney disease (CKD). In the present study, histological analysis of human kidney samples revealed that hypertension induced mtDNA leakage and promoted the expression of stimulator of interferon genes (STING) in renal epithelial cells. We used angiotensin II (AngII)- and 2K1C-treated mouse kidneys to elucidate the underlying mechanisms. Abnormal renal mtDNA packing caused by AngII promoted STING-dependent production of inflammatory cytokines, macrophage infiltration, and a fibrogenic response. STING knockout significantly decreased nuclear factor-κB activation and immune cell infiltration, attenuating tubule atrophy and extracellular matrix accumulation in vivo and in vitro. These effects delayed CKD progression. Immunoprecipitation assays and liquid chromatography-tandem mass spectrometry showed that STING and ACSL4 were directly combined at the D53 and K412 amino acids of ACSL4. Furthermore, STING induced renal inflammatory response and fibrosis through ACSL4-dependent ferroptosis. Last, inhibition of ACSL4 using small interfering RNA, rosiglitazone, or Fer-1 downregulated AngII-induced mtDNA-STING-dependent renal inflammation. These results suggest that targeting the STING/ACSL4 axis might represent a potential strategy for treating hypertension-associated CKD.
RESUMEN
Gastrin-releasing peptide (GRP) binds to its receptor (GRP receptor [GRPR]) to regulate multiple biological processes, but the function of GRP/GRPR axis in acute kidney injury (AKI) remains unknown. In the present study, GRPR is highly expressed by tubular epithelial cells (TECs) in patients or mice with AKI, while histone deacetylase 8 may lead to the transcriptional activation of GRPR. Functionally, we uncovered that GRPR was pathogenic in AKI, as genetic deletion of GRPR was able to protect mice from cisplatin- and ischemia-induced AKI. This was further confirmed by specifically deleting the GRPR gene from TECs in GRPRFlox/Flox//KspCre mice. Mechanistically, we uncovered that GRPR was able to interact with Toll-like receptor 4 to activate STAT1 that bound the promoter of MLKL and CCL2 to induce TEC necroptosis, necroinflammation, and macrophages recruitment. This was further confirmed by overexpressing STAT1 to restore renal injury in GRPRFlox/Flox/KspCre mice. Concurrently, STAT1 induced GRP synthesis to enforce the GRP/GRPR/STAT1 positive feedback loop. Importantly, targeting GRPR by lentivirus-packaged small hairpin RNA or by treatment with a novel GRPR antagonist RH-1402 was able to inhibit cisplatin-induced AKI. In conclusion, GRPR is pathogenic in AKI and mediates AKI via the STAT1-dependent mechanism. Thus, targeting GRPR may be a novel therapeutic strategy for AKI.
Asunto(s)
Lesión Renal Aguda , Cisplatino , Animales , Ratones , Cisplatino/efectos adversos , Necroptosis , Lesión Renal Aguda/metabolismo , Riñón/metabolismo , Inflamación/metabolismo , Ratones Endogámicos C57BLRESUMEN
Necroptosis is defined as a novel programmed cell necrosis that is mediated by receptor interacting serine-threonine protein kinase 1 (RIPK1) and other related signals. Necrosis, apoptosis and inflammation are commonly considered as the leading mechanism in acute kidney injury (AKI) induced by gentamicin (GEN), which is a useful antibiotic for treating the infection of Gram-negative bacterial. However, the necroptosis in the pathogenesis of GEN-induced AKI is unknown. In this study, to investigate the process and function of necroptosis in GEN-induced AKI, NRK-52E and HK-2 cells and SD rats were used as the models. The necroptosis-related proteins, including RIPK1, RIPK3, mixed lineage kinase domain-like (MLKL) and phosphorylated MLKL (p-MLKL), were all increasing time-dependently when GEN was continuously given. By using the RIPK1 inhibitor necrostatin-1 (NEC-1) and RIPK3 inhibitor (CPD42), the GEN-induced toxicity of tubular cells was alleviated. Moreover, it was validated that GEN-induced cell apoptosis and inflammation were attenuated after treating with NEC-1 or CPD42, both in vivo and in vitro. When MLKL was knocked down by siRNA, NEC-1 and CPD42 can not further protect the damage of tubular cells by GEN. Although the using of pan-caspase inhibitor Z-VAD significantly decreased GEN-induced apoptosis, it enhanced necroptosis and slightly promoted the decreased cell viability in GEN-treated cells, with the protective effects weaker than NEC-1 or CPD42. Finally, in vitro minimum inhibitory concentration (MIC) tests and bacteriostatic ring studies showed that NEC-1 did not interfere with the antibiotic effects of GEN. Thus, suppressing necroptosis can serve as a promising strategy for the prevention of GEN-induced nephrotoxicity.
Asunto(s)
Lesión Renal Aguda , Necroptosis , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/prevención & control , Animales , Antibacterianos/efectos adversos , Apoptosis , Gentamicinas/toxicidad , Inflamación/metabolismo , Necrosis/patología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Ratas , Ratas Sprague-DawleyRESUMEN
Kidney disease can be caused by various internal and external factors that have led to a continual increase in global deaths. Current treatment methods can alleviate but do not markedly prevent disease development. Further research on kidney disease has revealed the crucial function of epigenetics, especially acetylation, in the pathology and physiology of the kidney. Histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyllysine readers jointly regulate acetylation, thus affecting kidney physiological homoeostasis. Recent studies have shown that acetylation improves mechanisms and pathways involved in various types of nephropathy. The discovery and application of novel inhibitors and activators have further confirmed the important role of acetylation. In this review, we provide insights into the physiological process of acetylation and summarise its specific mechanisms and potential therapeutic effects on renal pathology.
Asunto(s)
Enfermedades Renales , Humanos , Acetilación , Enfermedades Renales/tratamiento farmacológico , Riñón , Epigénesis Genética , EpigenómicaRESUMEN
High glucose (HG) is one of the basic factors of diabetic nephropathy (DN), which leads to high morbidity and disability. During DN, the expression of glomerular glucose transporter 1 (GLUT1) increases, but the relationship between HG and GLUT1 is unclear. Glomerular mesangial cells (GMCs) have multiple roles in HG-induced DN. Here, we report prominent glomerular dysfunction, especially GMC abnormalities, in DN mice, which is closely related to GLUT1 alteration. In vivo studies have shown that BBR can alleviate pathological changes and abnormal renal function indicators of DN mice. In vitro, BBR (30, 60 and 90 µmol/L) not only increased the proportion of G1 phase cells but also reduced the proportion of S phase cells under HG conditions at different times. BBR (60 µmol/L) significantly reduced the expression of PI3K-p85, p-Akt, p-AS160, membrane-bound GLUT1 and cyclin D1, but had almost no effect on total protein. Furthermore, BBR significantly declined the glucose uptake and retarded cyclin D1-mediated GMC cell cycle arrest in the G1 phase. This study demonstrated that BBR can inhibit the development of DN, which may be due to BBR inhibiting the PI3K/Akt/AS160/GLUT1 signalling pathway to regulate HG-induced abnormal GMC proliferation and the cell cycle, supporting BBR as a potential therapeutic drug for DN.
Asunto(s)
Berberina , Diabetes Mellitus , Nefropatías Diabéticas , Animales , Berberina/farmacología , Ciclo Celular , División Celular , Proliferación Celular , Diabetes Mellitus/patología , Nefropatías Diabéticas/patología , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Células Mesangiales/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismoRESUMEN
The novel biomarker, insulin-like growth factor binding protein 7 (IGFBP7), is used clinically to predict different types of acute kidney injury (AKI) and has drawn significant attention as a urinary biomarker. However, as a secreted protein in the circulation of patients with AKI, it is unclear whether IGFBP7 acts as a key regulator in AKI progression, and if mechanisms underlying its upregulation still need to be determined. Here we found that IGFBP7 is highly expressed in the blood and urine of patients and mice with AKI, possibly via a c-Jun-dependent mechanism, and is positively correlated with kidney dysfunction. Global knockout of IGFBP7 ameliorated kidney dysfunction, inflammatory responses, and programmed cell death in murine models of cisplatin-, kidney ischemia/reperfusion-, and lipopolysaccharide-induced AKI. IGFBP7 mainly originated from kidney tubular epithelial cells. Conditional knockout of IGFBP7 from the kidney protected against AKI. By contrast, rescue of IGFBP7 expression in IGFBP7-knockout mice restored kidney damage and inflammation. IGFBP7 function was determined in vitro using recombinant IGFBP7 protein, IGFBP7 knockdown, or overexpression. Additionally, IGFBP7 was found to bind to poly [ADP-ribose] polymerase 1 (PARP1) and inhibit its degradation by antagonizing the E3 ubiquitin ligase ring finger protein 4 (RNF4). Thus, IGFBP7 in circulation acts as a biomarker and key mediator of AKI by inhibiting RNF4/PARP1-mediated tubular injury and inflammation. Hence, over-activation of the IGFBP7/PARP1 axis represents a promising target for AKI treatment.
Asunto(s)
Lesión Renal Aguda , Inhibidor Tisular de Metaloproteinasa-2 , Adenosina Difosfato Ribosa , Animales , Biomarcadores , Cisplatino/toxicidad , Inflamación , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/genética , Lipopolisacáridos , Ratones , Ratones Noqueados , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Alcohol-induced liver injury (ALI) is associated with inflammatory responses regulated by macrophages. Activation of macrophages plays a crucial role in ALI while DNA methylation-regulated gene silencing is associated with inflammation processes in macrophages. Proline-Serine-Threonine Phosphatase Interacting Protein 2 (PSTPIP2), which belongs to the Fes/CIP4 homology-Bin/Amphiphysin/Rvs domain family of proteins and plays a role in macrophages. Previous studies have shown that Pstpip2 can be methylated. Herein, its expression was found to be significantly downregulated in primary liver macrophages isolated from EtOH-fed mice and EtOH-induced RAW264.7 cells. Overexpression of PSTPIP2 using liver-specific recombinant AAV serotype 9 (rAAV9)-PSTPIP2 in EtOH-fed mice dramatically alleviated liver injury and inflammatory responses. In addition, silencing of PSTPIP2 aggravated the alcohol-induced inflammatory response in vitro. Mechanistically, PSTPIP2 might affect macrophage-induced inflammatory responses by regulating the STAT1 and NF-κB signaling pathways. The downregulation of PSTPIP2 in ALI may be associated with DNA methylation. Methylation-specific PCR and western blotting analyses showed that EtOH induced abnormal DNA methylation patterns and increased the protein expression levels of DNMT1, DNMT3a, and DNMT3b. The chromatin immunoprecipitation assay showed that DNMT3a could directly bind to the Pstpip2 promoter and act as a principal regulator of PSTPIP2 expression. Moreover, silencing of DNMT3a significantly restored the EtOH-induced low expression of PSTPIP2 and inhibited EtOH-induced inflammation. Overall, these findings provide a detailed understanding of the possible functions and mechanisms of PSTPIP2 in ALI, thus providing new substantive research to elucidate the pathogenesis of ALI and investigate potential targeted treatment strategies.
Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , FN-kappa B , Animales , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/genética , Metilación de ADN , Metilasas de Modificación del ADN/genética , Etanol/toxicidad , Inflamación/genética , Ratones , FN-kappa B/metabolismo , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismoRESUMEN
The side effects of acute Kidney Injury (AKI) and nephrotoxicity limit the application of cisplatin in cancer treatment. Inflammation and oxidative stress paly important role in the pathogenesis of cisplatin-induced AKI. Gastrin-releasing peptide receptor (GRPR) plays an important role in inflammatory response. In this study, we designed 34 new Pd176252 analogs, most synthesized compounds could reduce cisplatin-induced HK2 cell death. Of these compounds, 9b had strong binding affinity with GRPR, and significantly increased HK2 cell viability. Compound 9b significantly downregulated the level of creatinine, blood urea nitrogen (BUN), and malondialdehyde (MDA), and recovered the glutathione (GSH) level in cisplatin-induced AKI model. It also decreased the level of kidney injury molecule-1(KIM-1) in vitro and vivo. In the further pathogenesis studies, 9b downregulated level of inflammatory factors (TNF-α, IL-1ß, IL-6 and MCP-1), suppressed the nuclear factor-kappa B (NF-kB) phosphorylation, and decreased GRPR level. The results suggested that ameliorating cisplatin-induced AKI actions of 9b was involved in downregulation of TNF-α, IL-1ß, IL-6, and MCP-1, inhibition of NF-kB activation, and reduction of GRPR and oxidative stress level.
Asunto(s)
Lesión Renal Aguda , Cisplatino , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/prevención & control , Apoptosis , Cisplatino/farmacología , Glutatión/metabolismo , Humanos , Interleucina-6/metabolismo , Riñón , FN-kappa B/metabolismo , Estrés Oxidativo , Receptores de Bombesina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Nucleotide-binding oligomerization domain-like receptors (NLRs), including NLRAs, NLRBs (also known as NAIPs), NLRCs, and NLRPs, are a major subfamily of pattern recognition receptors (PRRs). Owing to a recent surge in research, NLRs have gained considerable attention due to their involvement in mediating the innate immune response and perpetuating inflammatory pathways, which is a central phenomenon in the pathogenesis of multiple diseases, including renal diseases. NLRs are expressed in different renal tissues during pathological conditions, which suggest that these receptors play roles in acute kidney injury, obstructive nephropathy, diabetic nephropathy, IgA nephropathy, lupus nephritis, crystal nephropathy, uric acid nephropathy, and renal cell carcinoma, among others. This review summarises recent progress on the functions of NLRs and their mechanisms in the pathophysiological processes of different types of renal diseases to help us better understand the role of NLRs in the kidney and provide a theoretical basis for NLR-targeted therapy for renal diseases.
Asunto(s)
Nefropatías Diabéticas , Proteínas NLR , Humanos , Proteínas NLR/metabolismo , Inmunidad Innata , Riñón/metabolismo , Proteínas PortadorasRESUMEN
Diabetic kidney disease (DKD) is one of the microvascular complications of diabetes mellitus and a major cause of end-stage renal disease with limited treatment options. Wogonin is a flavonoid derived from the root of Scutellaria baicalensis Georgi, which has shown a potent renoprotective effect. But the mechanisms of action in DKD are not fully elucidated. In this study, we investigated the effects of wogonin on glomerular podocytes in DKD using mouse podocyte clone 5 (MPC5) cells and diabetic mice model. MPC5 cells were treated with high glucose (30 mM). We showed that wogonin (4, 8, 16 µM) dose-dependently alleviated high glucose (HG)-induced MPC5 cell damage, accompanied by increased expression of WT-1, nephrin, and podocin proteins, and decreased expression of TNF-α, MCP-1, IL-1ß as well as phosphorylated p65. Furthermore, wogonin treatment significantly inhibited HG-induced apoptosis in MPC5 cells. Wogonin reversed HG-suppressed autophagy in MPC5 cells, evidenced by increased ATG7, LC3-II, and Beclin-1 protein, and decreased p62 protein. We demonstrated that wogonin directly bound to Bcl-2 in MPC5 cells. In HG-treated MPC5 cells, knockdown of Bcl-2 abolished the beneficial effects of wogonin, whereas overexpression of Bcl-2 mimicked the protective effects of wogonin. Interestingly, we found that the expression of Bcl-2 was significantly decreased in biopsy renal tissue of diabetic nephropathy patients. In vivo experiments were conducted in STZ-induced diabetic mice, which were administered wogonin (10, 20, 40 mg · kg-1 · d-1, i.g.) every other day for 12 weeks. We showed that wogonin administration significantly alleviated albuminuria, histopathological lesions, and p65 NF-κB-mediated renal inflammatory response. Wogonin administration dose-dependently inhibited podocyte apoptosis and promoted podocyte autophagy in STZ-induced diabetic mice. This study for the first time demonstrates a novel action of wogonin in mitigating glomerulopathy and podocytes injury by regulating Bcl-2-mediated crosstalk between autophagy and apoptosis. Wogonin may be a potential therapeutic drug against DKD.
Asunto(s)
Nefropatías Diabéticas/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Flavanonas/farmacología , Glomérulos Renales/efectos de los fármacos , Podocitos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/administración & dosificación , Flavanonas/administración & dosificación , Inyecciones Intraperitoneales , Glomérulos Renales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Podocitos/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Relación Estructura-ActividadRESUMEN
Stratifin (SFN) is a member of the 14-3-3 family of highly conserved soluble acidic proteins, which regulates a variety of cellular activities such as cell cycle, cell growth and development, cell survival and death, and gene transcription. Acute kidney injury (AKI) is prevalent disorder characterized by inflammatory response, oxidative stress, and programmed cell death in renal tubular epithelial cells, but there is still a lack of effective therapeutic target for AKI. In this study, we investigated the role of SFN in AKI and the underlying mechanisms. We established ischemic and nephrotoxic AKI mouse models caused by ischemia-reperfusion (I/R) and cisplatin, respectively. We conducted proteomic and immunohistochemical analyses and found that SFN expression levels were significantly increased in AKI patients, cisplatin- or I/R-induced AKI mice. In cisplatin- or hypoxia/reoxygenation (H/R)-treated human proximal tubule epithelial cells (HK2), we showed that knockdown of SFN significantly reduced the expression of kidney injury marker Kim-1, attenuated programmed cell death and inflammatory response. Knockdown of SFN also significantly alleviated the decline of renal function and histological damage in cisplatin-caused AKI mice in vivo. We further revealed that SFN bound to RIPK3, a key signaling modulator in necroptosis, to induce necroptosis and the subsequent inflammation in cisplatin- or H/R-treated HK2 cells. Overexpression of SFN increased Kim-1 protein levels in cisplatin-treated MTEC cells, which was suppressed by RIPK3 knockout. Taken together, our results demonstrate that SFN that enhances cisplatin- or I/R-caused programmed cell death and inflammation via interacting with RIPK3 may serve as a promising therapeutic target for AKI treatment.
Asunto(s)
Proteínas 14-3-3/metabolismo , Lesión Renal Aguda/metabolismo , Isquemia/metabolismo , Enfermedades Renales/metabolismo , Necroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Humanos , Túbulos Renales/metabolismo , Ratones , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
Necroptosis, a form of inflammation-related programmed cell death, is a major mechanism of proximal tubular cell injury in acute kidney injury (AKI). Blockade of necroptosis signalling represents a promising strategy for clinical therapy of AKI. Previously, we identified a small molecular receptor-interacting protein kinases (RIPK)1 inhibitor Cpd-71 with nephroprotective activities. To discover more nephroprotective agents, in this study, 20 chalcone derivatives were synthesized and evaluated for their anti-necroptosis and nephroprotective activities. Among the chalcone derivatives, Cpd-2 exhibited the most potent anti-necroptosis activity (IC50 = 1.08 µM) and protective activity (EC50 = 1.49 µM) through directly binding to RIPK1 and blocking RIPK1-RIPK3-mixed-lineage kinase domain-like protein (MLKL) signalling pathway. Furthermore, Cpd-2 effectively attenuated cisplatin or hypoxia/reoxygenation (H/R)-induced injury and necroptotic inflammation in renal cell models. Moreover, in cisplatin- or ischemia/reperfusion (I/R) induced AKI mouse model, detection of creatinine and urea nitrogen in blood showed that Cpd-2 improved kidney function. Periodic acid-Schiff (PAS) staining and immunofluorescence analysis indicated that Cpd-2 also reduced pathological damage and inhibited inflammatory development in kidney tissues. In summary, although some chalcone derivatives have been reported to prevent kidney injury previously, our present study not only discovered a promising leading compound Cpd-2, but also provided a novel and successful practice for the development of necroptosis inhibitors from natural products derivatives as AKI therapeutic agents.
Asunto(s)
Lesión Renal Aguda , Chalcona , Chalconas , Lesión Renal Aguda/metabolismo , Animales , Apoptosis , Chalcona/efectos adversos , Chalconas/farmacología , Chalconas/uso terapéutico , Cisplatino/efectos adversos , Inflamación , Ratones , Ratones Endogámicos C57BLRESUMEN
Cancer cells are high in heterogeneity and versatility, which can easily adapt to the external stresses via both primary and secondary resistance. Targeting of tumour microenvironment (TME) is a new approach and an ideal therapeutic strategy especially for the multidrug resistant cancer. Recently, we invented AANG, a natural compound formula containing traditional Chinese medicine (TCM) derived Smad3 inhibitor Naringenin (NG) and Smad7 activator Asiatic Acid (AA), for rebalancing TGF-ß/Smad signalling in the TME, and its implication on the multidrug resistance is still unexplored. Here, we observed that an equilibrium shift of the Smad signalling in patients with hepatocellular carcinoma (HCC), which was dramatically enhanced in the recurrent cases showing p-glycoprotein overexpression. We optimized the formula ratio and dosage of AANG that effectively inhibit the proliferation of our unique human multidrug resistant subclone R-HepG2. Mechanistically, we found that AANG not only inhibits Smad3 at post-transcriptional level, but also upregulates Smad7 at transcriptional level in a synergistic manner in vitro. More importantly, AANG markedly suppressed the growth and p-glycoprotein expression of R-HepG2 xenografts in vivo. Thus, AANG may represent a novel and safe TCM-derived natural compound formula for overcoming HCC with p-glycoprotein-mediated multidrug resistance.
Asunto(s)
Antineoplásicos/farmacología , Productos Biológicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Anciano , Animales , Carcinoma Hepatocelular , Línea Celular Tumoral , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Humanos , Inmunohistoquímica , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones , Persona de Mediana Edad , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BACKGROUND AND AIMS: Alcoholic fatty liver (AFL) is an early form of alcoholic liver disease (ALD) that usually manifests as lipid synthesis abnormalities in hepatocytes. ß-arrestin2 (Arrb2) is involved in multiple biological processes. The present study aimed to explore the role of Arrb2 in the regulation of lipid metabolism in AFL and the underlying mechanism and identify potential targets for the treatment of AFL. METHODS: The expression of Arrb2 was detected in liver tissues obtained from AFL patients and Gao-binge AFL model mice. In addition, we specifically knocked down Arrb2 in AFL mouse liver in vivo and used Arrb2-siRNA or pEX3-Arrb2 to silence or overexpress Arrb2 in AML-12 cells in vitro to explore the functional role and underlying regulatory mechanism of Arrb2 in AFL. Finally, we investigated whether Arrb2 could cause changes in hepatic lipid metabolites, thereby leading to dysregulation of lipid metabolism based on liquid chromatography-mass spectrometry (LC-MS) analysis. RESULTS: Arrb2 was up-regulated in the livers of AFL patients and AFL mice. The in vivo and in vitro results confirmed that Arrb2 could induce lipid accumulation and metabolism disorders. Mechanistically, Arrb2 induced hepatic metabolism disorder via AMP-activated protein kinase (AMPK) pathway. The results of LC-MS analysis revealed that hepatic lipid metabolites with the most significant differences were primary bile acids. CONCLUSIONS: Arrb2 induces hepatic lipid metabolism disorders via AMPK pathway in AFL. On one hand, Arrb2 increases fatty acid synthesis. On the other hand, Arrb2 could increase the cholesterol synthesis, thereby leading to the up-regulation of primary bile acid levels.
Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Hígado Graso Alcohólico/metabolismo , Hepatopatías Alcohólicas/etiología , Arrestina beta 2/metabolismo , Adolescente , Adulto , Anciano , Animales , Modelos Animales de Enfermedad , Femenino , Hepatocitos/metabolismo , Humanos , Metabolismo de los Lípidos/fisiología , Trastornos del Metabolismo de los Lípidos/metabolismo , Hígado/metabolismo , Hepatopatías Alcohólicas/metabolismo , Masculino , Ratones , Persona de Mediana EdadRESUMEN
Alcohol consumption is one of the risk factors for kidney injury. The underlying mechanism of alcohol-induced kidney injury remains largely unknown. We previously found that the kidney in a mouse model of alcoholic kidney injury had severe inflammation. In this study, we found that the administration of alcohol was associated with the activation of NLRP3 inflammasomes and NF-κB signaling, and the production of pro-inflammatory cytokines. Whole-genome methylation sequencing (WGBS) showed that the DNA encoding fat mass and obesity-associated protein (FTO) was significantly methylated in the alcoholic kidney. This finding was confirmed with the bisulfite sequencing (BSP), which showed that alcohol increased DNA methylation of FTO in the kidney. Furthermore, inhibition of DNA methyltransferases (DNMTs) by 5-azacytidine (5-aza) reversed alcohol-induced kidney injury and decreased the mRNA and protein levels of FTO. Importantly, we found that FTO, the m6A demethylase, epigenetically modified peroxisome proliferator activated receptor-α (PPAR-α) in a YTH domain family 2 (YTHDF2)-dependent manner, which resulted in inflammation in alcoholic kidney injury models. In conclusion, our findings indicate that alcohol increases the methylation of PPAR-α m6A by FTO-mediated YTHDF2 epigenetic modification, which ultimately leads to the activation of NLRP3 inflammasomes and NF-κB-driven renal inflammation in the kidney. These findings may provide novel strategies for preventing and treating alcoholic kidney diseases.