Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Sci ; 136(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37194499

RESUMEN

Stationary clusters of vesicles are a prominent feature of axonal transport, but little is known about their physiological and functional relevance to axonal transport. Here, we investigated the role of vesicle motility characteristics in modulating the formation and lifetimes of such stationary clusters, and their effect on cargo flow. We developed a simulation model describing key features of axonal cargo transport, benchmarking the model against experiments in the posterior lateral mechanosensory neurons of Caenorhabditis elegans. Our simulations included multiple microtubule tracks and varied cargo motion states, and account for dynamic cargo-cargo interactions. Our model also incorporates static obstacles to vesicle transport in the form of microtubule ends, stalled vesicles and stationary mitochondria. We demonstrate, both in simulations and in an experimental system, that a reduction in reversal rates is associated with a higher proportion of long-lived stationary vesicle clusters and reduced net anterograde transport. Our simulations support the view that stationary clusters function as dynamic reservoirs of cargo vesicles, and reversals aid cargo in navigating obstacles and regulate cargo transport by modulating the proportion of stationary vesicle clusters along the neuronal process.


Asunto(s)
Neuronas , Vesículas Sinápticas , Animales , Vesículas Sinápticas/metabolismo , Neuronas/fisiología , Transporte Axonal/fisiología , Fagocitosis , Orgánulos , Caenorhabditis elegans , Vesículas Transportadoras/metabolismo
3.
Biophys J ; 122(2): 333-345, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36502274

RESUMEN

A combination of intermittent active movement of transient aggregates and a paused state that intervenes between periods of active transport has been proposed to underlie the slow, directed transport of soluble proteins in axons. A component of passive diffusion in the axoplasm may also contribute to slow axonal transport, although quantitative estimates of the relative contributions of diffusive and active movement in the slow transport of a soluble protein, and in particular how they might vary across developmental stages, are lacking. Here, we propose and study a model for slow axonal transport, addressing data from bleach recovery measurements on a small, soluble, protein, choline acetyltransferase, in thin axons of the lateral chordotonal (lch5) sensory neurons of Drosophila. Choline acetyltransferase is mainly present in soluble form in the axon and catalyzes the acetylation of choline at the synapse. It does not form particulate structures in axons and moves at rates characteristic of slow component b (≈ 1-10 mm/day or 0.01-0.1 µm/s). Using our model, which incorporates active transport with paused and/or diffusive states, we predict bleach recovery, transport rates, and cargo trajectories obtained through kymographs, comparing these with experimental observations at different developmental stages. We show that changes in the diffusive fraction of cargo during these developmental stages dominate bleach recovery and that a combination of active motion with a paused state alone cannot reproduce the data. We compared predictions of the model with results from photoactivation experiments. The importance of the diffusive state in reproducing the bleach recovery signal in the slow axonal transport of small soluble proteins is our central result.


Asunto(s)
Transporte Axonal , Fenómenos Bioquímicos , Animales , Transporte Axonal/fisiología , Colina O-Acetiltransferasa/metabolismo , Axones/metabolismo , Drosophila/metabolismo
4.
PLoS Comput Biol ; 18(10): e1010632, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36279288

RESUMEN

Estimating the burden of COVID-19 in India is difficult because the extent to which cases and deaths have been undercounted is hard to assess. Here, we use a 9-component, age-stratified, contact-structured epidemiological compartmental model, which we call the INDSCI-SIM model, to analyse the first wave of COVID-19 spread in India. We use INDSCI-SIM, together with Bayesian methods, to obtain optimal fits to daily reported cases and deaths across the span of the first wave of the Indian pandemic, over the period Jan 30, 2020 to Feb 15, 2021. We account for lock-downs and other non-pharmaceutical interventions (NPIs), an overall increase in testing as a function of time, the under-counting of cases and deaths, and a range of age-specific infection-fatality ratios. We first use our model to describe data from all individual districts of the state of Karnataka, benchmarking our calculations using data from serological surveys. We then extend this approach to aggregated data for Karnataka state. We model the progress of the pandemic across the cities of Delhi, Mumbai, Pune, Bengaluru and Chennai, and then for India as a whole. We estimate that deaths were undercounted by a factor between 2 and 5 across the span of the first wave, converging on 2.2 as a representative multiplier that accounts for the urban-rural gradient. We also estimate an overall under-counting of cases by a factor of between 20 and 25 towards the end of the first wave. Our estimates of the infection fatality ratio (IFR) are in the range 0.05-0.15, broadly consistent with previous estimates but substantially lower than values that have been estimated for other LMIC countries. We find that approximately 35% of India had been infected overall by the end of the first wave, results broadly consistent with those from serosurveys. These results contribute to the understanding of the long-term trajectory of COVID-19 in India.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , India/epidemiología , Teorema de Bayes , Control de Enfermedades Transmisibles , Pandemias
5.
PLoS Comput Biol ; 17(7): e1009126, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34292931

RESUMEN

COVID-19 testing across India uses a mix of two types of tests. Rapid Antigen Tests (RATs) are relatively inexpensive point-of-care lateral-flow-assay tests, but they are also less sensitive. The reverse-transcriptase polymerase-chain-reaction (RT-PCR) test has close to 100% sensitivity and specificity in a laboratory setting, but delays in returning results, as well as increased costs relative to RATs, may vitiate this advantage. India-wide, about 49% of COVID-19 tests are RATs, but some Indian states, including the large states of Uttar Pradesh (pop. 227.9 million) and Bihar (pop. 121.3 million) use a much higher proportion of such tests. Here we show, using simulations based on epidemiological network models, that the judicious use of RATs can yield epidemiological outcomes comparable to those obtained through RT-PCR-based testing and isolation of positives, provided a few conditions are met. These are (a) that RAT test sensitivity is not too low, (b) that a reasonably large fraction of the population, of order 0.5% per day, can be tested, (c) that those testing positive are isolated for a sufficient duration, and that (d) testing is accompanied by other non-pharmaceutical interventions for increased effectiveness. We assess optimal testing regimes, taking into account test sensitivity and specificity, background seroprevalence and current test pricing. We find, surprisingly, that even 100% RAT test regimes should be acceptable, from both an epidemiological as well as a economic standpoint, provided the conditions outlined above are met.


Asunto(s)
Prueba de COVID-19 , COVID-19 , Modelos Estadísticos , Antígenos Virales/análisis , COVID-19/diagnóstico , COVID-19/epidemiología , Prueba de COVID-19/métodos , Prueba de COVID-19/normas , Prueba de COVID-19/estadística & datos numéricos , Biología Computacional , Humanos , India , Pruebas en el Punto de Atención , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2 , Sensibilidad y Especificidad
6.
Soft Matter ; 18(23): 4378-4388, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35611829

RESUMEN

The adhesion of cells to substrates occurs via integrin clustering and binding to the actin cytoskeleton. Oncogenes modify anchorage-dependent mechanisms in cells during cancer progression. Fluid shear devices provide a label-free way to characterize cell-substrate interactions and heterogeneities in cell populations. We quantified the critical adhesion strengths of MCF-7, MDAMB-231, A549, HPL1D, HeLa, and NIH3T3 cells using a custom fluid shear device. The detachment response was sigmoidal for each cell type. A549 and MDAMB-231 cells had significantly lower critical adhesion strengths (τ50) than their non-invasive counterparts, HPL1D and MCF-7. Detachment dynamics inversely correlated with cell invasion potentials. A theoretical model, based on τ50 values and the distribution of cell areas on substrates, provided good fits to results from de-adhesion experiments. Quantification of cell tractions, using the Reg-FTTC method on 10 kPa polyacrylamide gels, showed highest values for invasive, MDAMB-231 and A549, cells compared to non-invasive cells. Immunofluorescence studies show differences in vinculin distributions; non-invasive cells have distinct vinculin puncta, whereas invasive cells have more dispersed distributions. The cytoskeleton in non-invasive cells was devoid of well-developed stress fibers, and had thicker cortical actin bundles in the boundary. Fluorescence intensity of actin was significantly lower in invasive cells as compared to non invasive cells. These correlations in adhesion strengths and traction stresses with cell invasiveness may be useful in cancer diagnostics and other pathologies featuring mis-regulation in adhesion.


Asunto(s)
Actinas , Neoplasias , Actinas/metabolismo , Animales , Adhesión Celular , Ratones , Células 3T3 NIH , Neoplasias/patología , Tracción , Vinculina/metabolismo
7.
PLoS Comput Biol ; 16(4): e1007807, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32352961

RESUMEN

Cells in microbial colonies integrate information across multiple spatial and temporal scales while sensing environmental cues. A number of photosynthetic cyanobacteria respond in a directional manner to incident light, resulting in the phototaxis of individual cells. Colonies of such bacteria exhibit large-scale changes in morphology, arising from cell-cell interactions, during phototaxis. These interactions occur through type IV pili-mediated physical contacts between cells, as well as through the secretion of complex polysaccharides ('slime') that facilitates cell motion. Here, we describe a computational model for such collective behaviour in colonies of the cyanobacterium Synechocystis. The model is designed to replicate observations from recent experiments on the emergent response of the colonies to varied light regimes. It predicts the complex colony morphologies that arise as a result. We ask if changes in colony morphology during phototaxis can be used to infer if cells integrate information from multiple light sources simultaneously, or respond to these light sources separately at each instant of time. We find that these two scenarios cannot be distinguished from the shapes of colonies alone. However, we show that tracking the trajectories of individual cyanobacteria provides a way of determining their mode of response. Our model allows us to address the emergent nature of this class of collective bacterial motion, linking individual cell response to the dynamics of colony shape.


Asunto(s)
Cianobacterias/fisiología , Interacciones Microbianas/fisiología , Fototaxis/fisiología , Movimiento Celular , Biología Computacional , Simulación por Computador
8.
Biophys J ; 118(9): 2229-2244, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-31818465

RESUMEN

Model approaches to nuclear architecture have traditionally ignored the biophysical consequences of ATP-fueled active processes acting on chromatin. However, transcription-coupled activity is a source of stochastic forces that are substantially larger than the Brownian forces present at physiological temperatures. Here, we describe an approach to large-scale nuclear architecture in metazoans that incorporates cell-type-specific active processes. The model predicts the statistics of positional distributions, shapes, and overlaps of each chromosome. Simulations of the model reproduce common organizing principles underlying large-scale nuclear architecture across human cell nuclei in interphase. These include the differential positioning of euchromatin and heterochromatin, the territorial organization of chromosomes (including both gene-density-based and size-based chromosome radial positioning schemes), the nonrandom locations of chromosome territories, and the shape statistics of individual chromosomes. We propose that the biophysical consequences of the distribution of transcriptional activity across chromosomes should be central to any chromosome positioning code.


Asunto(s)
Núcleo Celular , Cromatina , Fenómenos Biofísicos , Cromosomas , Humanos , Interfase
9.
Traffic ; 19(3): 166-181, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29178177

RESUMEN

Steady axonal cargo flow is central to the functioning of healthy neurons. However, a substantial fraction of cargo in axons remains stationary up to several minutes. We examine the transport of precursors of synaptic vesicles (pre-SVs), endosomes and mitochondria in Caenorhabditis elegans touch receptor neurons, showing that stationary cargo are predominantly present at actin-rich regions along the neuronal process. Stationary vesicles at actin-rich regions increase the propensity of moving vesicles to stall at the same location, resulting in traffic jams arising from physical crowding. Such local traffic jams at actin-rich regions are likely to be a general feature of axonal transport since they also occur in Drosophila neurons. Repeated touch stimulation of C. elegans reduces the density of stationary pre-SVs, indicating that these traffic jams can act as both sources and sinks of vesicles. This suggests that vesicles trapped in actin-rich regions are functional reservoirs that may contribute to maintaining robust cargo flow in the neuron. A video abstract of this article can be found at: Video S1; Video S2.


Asunto(s)
Transporte Axonal , Actinas/metabolismo , Animales , Caenorhabditis elegans , Drosophila , Endosomas/metabolismo , Mitocondrias/metabolismo , Vesículas Sinápticas/metabolismo
10.
PLoS Comput Biol ; 14(3): e1006069, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29561846

RESUMEN

Genetic differences contribute to variations in the immune response mounted by different individuals to a pathogen. Such differential response can influence the spread of infectious disease, indicating why such diseases impact some populations more than others. Here, we study the impact of population-level genetic heterogeneity on the epidemic spread of different strains of H1N1 influenza. For a population with known HLA class-I allele frequency and for a given H1N1 viral strain, we classify individuals into sub-populations according to their level of susceptibility to infection. Our core hypothesis is that the susceptibility of a given individual to a disease such as H1N1 influenza is inversely proportional to the number of high affinity viral epitopes the individual can present. This number can be extracted from the HLA genetic profile of the individual. We use ethnicity-specific HLA class-I allele frequency data, together with genome sequences of various H1N1 viral strains, to obtain susceptibility sub-populations for 61 ethnicities and 81 viral strains isolated in 2009, as well as 85 strains isolated in other years. We incorporate these data into a multi-compartment SIR model to analyse the epidemic dynamics for these (ethnicity, viral strain) epidemic pairs. Our results show that HLA allele profiles which lead to a large spread in individual susceptibility values can act as a protective barrier against the spread of influenza. We predict that populations skewed such that a small number of highly susceptible individuals coexist with a large number of less susceptible ones, should exhibit smaller outbreaks than populations with the same average susceptibility but distributed more uniformly across individuals. Our model tracks some well-known qualitative trends of influenza spread worldwide, suggesting that HLA genetic diversity plays a crucial role in determining the spreading potential of different influenza viral strains across populations.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/epidemiología , Simulación por Computador , Brotes de Enfermedades , Susceptibilidad a Enfermedades/epidemiología , Epidemias , Epítopos , Etnicidad/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología
11.
J Chem Phys ; 151(12): 124501, 2019 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-31575199

RESUMEN

Snapshots of colloidal particles moving on disordered two-dimensional substrates can be used to extract equal-time many-body correlations in their positions. To understand the systematics of these correlations, we perform Monte Carlo simulations of a two-dimensional model fluid placed in a quenched disordered background. We use configurations generated from these simulations to compute translational and orientational two-point correlations at equal time, concentrating on correlations in local orientational order as a function of density and disorder strength. We calculate both the disorder averaged version of conventional two-point correlation functions for orientational order, as well as the disorder averaged version of a novel correlation function of time-averaged disorder-induced inhomogeneities in local orientation analogous to the Edwards-Anderson correlation function in spin systems. We demonstrate that these correlations can exhibit interesting nonmonotonic behavior in proximity to the underlying fluid-solid transition and suggest that this prediction should be experimentally accessible.

12.
J Chem Phys ; 151(24): 244901, 2019 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-31893876

RESUMEN

We present results from molecular dynamics simulations of a spherically confined neutral polymer in the presence of crowding particles, studying polymer shapes and conformations as a function of the strength of the attraction to the confining wall, solvent quality, and the density of crowders. The conformations of the polymer under good solvent conditions are weakly dependent on crowder particle density, even when the polymer is strongly confined. In contrast, under poor solvent conditions, when the polymer assumes a collapsed conformation when unconfined, it can exhibit transitions to two different adsorbed phases, when either the interaction with the wall or the density of crowder particles is changed. One such transition involves a desorbed collapsed phase change to an adsorbed extended phase as the attraction of the polymer towards the confining wall is increased. Such an adsorbed extended phase can exhibit a second transition to an ordered adsorbed collapsed phase as the crowder particle density is increased. The ordered adsorbed collapsed phase of the polymer differs significantly in its structure from the desorbed collapsed phase. We revisit the earlier understanding of the adsorption of confined polymers on attractive surfaces in light of our results.

13.
Phys Biol ; 15(4): 046006, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29629709

RESUMEN

Changes in cell-substrate adhesion are believed to signal the onset of cancer metastasis, but such changes must be quantified against background levels of intrinsic heterogeneity between cells. Variations in cell-substrate adhesion strengths can be probed through biophysical measurements of cell detachment from substrates upon the application of an external force. Here, we investigate, theoretically and experimentally, the detachment of cells adhered to substrates when these cells are subjected to fluid shear. We present a theoretical framework within which we calculate the fraction of detached cells as a function of shear stress for fast ramps as well as the decay in this fraction at fixed shear stress as a function of time. Using HEK and 3T3 fibroblast cells as experimental model systems, we extract characteristic force scales for cell adhesion as well as characteristic detachment times. We estimate force-scales of ∼500 pN associated to a single focal contact, and characteristic time-scales of [Formula: see text] s representing cell-spread-area dependent mean first passage times to the detached state at intermediate values of the shear stress. Variations in adhesion across cell types are especially prominent when cell detachment is probed by applying a time-varying shear stress. These methods can be applied to characterizing changes in cell adhesion in a variety of contexts, including metastasis.


Asunto(s)
Adhesión Celular , Resistencia al Corte , Estrés Mecánico , Células 3T3 , Animales , Fenómenos Biomecánicos , Células HEK293 , Humanos , Ratones , Modelos Biológicos
14.
Nucleic Acids Res ; 42(7): 4145-59, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24459132

RESUMEN

Chromosomes within eukaryotic cell nuclei at interphase are not positioned at random, since gene-rich chromosomes are predominantly found towards the interior of the cell nucleus across a number of cell types. The physical mechanisms that could drive and maintain the spatial segregation of chromosomes based on gene density are unknown. Here, we identify a mechanism for such segregation, showing that the territorial organization of chromosomes, another central feature of nuclear organization, emerges naturally from our model. Our computer simulations indicate that gene density-dependent radial segregation of chromosomes arises as a robust consequence of differences in non-equilibrium activity across chromosomes. Arguing that such differences originate in the inhomogeneous distribution of ATP-dependent chromatin remodeling and transcription machinery on each chromosome, we show that a variety of non-random positional distributions emerge through the interplay of such activity, nuclear shape and specific interactions of chromosomes with the nuclear envelope. Results from our model are in reasonable agreement with experimental data and we make a number of predictions that can be tested in experiments.


Asunto(s)
Posicionamiento de Cromosoma , Segregación Cromosómica , Núcleo Celular/genética , Forma del Núcleo Celular , Cromosomas Humanos/química , Femenino , Humanos , Modelos Genéticos , Membrana Nuclear/metabolismo
15.
PLoS One ; 19(2): e0296483, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38386667

RESUMEN

Social contact mixing patterns are critical to model the transmission of communicable diseases, and have been employed to model disease outbreaks including COVID-19. Nonetheless, there is a paucity of studies on contact mixing in low and middle-income countries such as India. Furthermore, mathematical models of disease outbreaks do not account for the temporal nature of social contacts. We conducted a longitudinal study of social contacts in rural north India across three seasons and analysed the temporal differences in contact patterns. A contact diary survey was performed across three seasons from October 2015-16, in which participants were queried on the number, duration, and characteristics of contacts that occurred on the previous day. A total of 8,421 responses from 3,052 respondents (49% females) recorded characteristics of 180,073 contacts. Respondents reported a significantly higher number and duration of contacts in the winter, followed by the summer and the monsoon season (Nemenyi post-hoc, p<0.001). Participants aged 0-9 years and 10-19 years of age reported the highest median number of contacts (16 (IQR 12-21), 17 (IQR 13-24) respectively) and were found to have the highest node centrality in the social network of the region (pageranks = 0.20, 0.17). A large proportion (>80%) of contacts that were reported in schools or on public transport involved physical contact. To the best of our knowledge, our study is the first from India to show that contact mixing patterns vary by the time of the year and provides useful implications for pandemic control. We compared the differences in the number, duration and location of contacts by age-group and gender, and studied the impact of the season, age-group, employment and day of the week on the number and duration of contacts using multivariate negative binomial regression. We created a social network to further understand the age and gender-specific contact patterns, and used the contact matrices in each season to parameterise a nine-compartment agent-based model for simulating a COVID-19 epidemic in each season. Our results can be used to parameterize more accurate mathematical models for prediction of epidemiological trends of infections in rural India.


Asunto(s)
COVID-19 , Pandemias , Femenino , Humanos , Masculino , Estaciones del Año , Población Rural , Estudios Longitudinales , COVID-19/epidemiología , India/epidemiología
16.
Biophys J ; 104(2): 463-71, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23442868

RESUMEN

Recent measurements of the distribution of end-to-end distance in short DNA molecules infer cooperative stretching fluctuations. The assumptions underlying the analysis can be questioned if transient, thermally induced defects producing a localized decrease in bending stiffness are present in thermal equilibrium, such as regions in which DNA melts locally (bubbles), sustains large-angle bends (kinks), or can locally transform into an alternative (S-DNA) state. We study a generalized discrete worm-like chain model for DNA, capable of describing these experiments, showing that the model yields accurate fits to available experimental data. Our results indicate that DNA bending arising from such localized defects, rather than solely stretching, can be an equal contributor to end-to-end distance fluctuations for 35-bp DNA and contributes nontrivially to such fluctuations at all scales below the persistence length. The analysis suggests that such fluctuations should exhibit a scale-dependent cooperativity, specifically relevant in determining the behavior of short chains, but which saturates rapidly to a length-independent value for longer DNA, to ensure a consistent physical description of DNA across multiple scales. Our approach provides a minimal, yet accurate, coarse-grained description of DNA at the subpersistence length scales of current experimental interest.


Asunto(s)
ADN/química , Conformación de Ácido Nucleico , Fenómenos Biomecánicos , Modelos Moleculares , Termodinámica
17.
Biophys J ; 104(3): 553-64, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23442906

RESUMEN

Stem cells integrate signals from the microenvironment to generate lineage-specific gene expression programs upon differentiation. Undifferentiated cell nuclei are easily deformable, with an active transcriptome, whereas differentiated cells have stiffer nuclei and condensed chromatin. Chromatin organization in the stem cell state is known to be highly dynamic but quantitative characterizations of its plasticity are lacking. Using fluorescence imaging, we study the spatio-temporal dynamics of nuclear architecture and chromatin compaction in mouse embryonic stem (ES) cells and differentiated states. Individual ES cells exhibit a relatively narrow variation in chromatin compaction, whereas primary mouse embryonic fibroblasts (PMEF) show broad distributions. However, spatial correlations in chromatin compaction exhibit an emergent length scale in PMEFs, although they are unstructured and longer ranged in ES cells. We provide evidence for correlated fluctuations with large amplitude and long intrinsic timescales, including an oscillatory component, in both chromatin compaction and nuclear area in ES cells. Such fluctuations are largely frozen in PMEF. The role of actin and Lamin A/C in modulating these fluctuations is described. A simple theoretical formulation reproduces the observed dynamics. Our results suggest that, in addition to nuclear plasticity, correlated spatio-temporal structural fluctuations of chromatin in undifferentiated cells characterize the stem cell state.


Asunto(s)
Cromatina/química , Células Madre Embrionarias/química , Actinas/metabolismo , Animales , Diferenciación Celular , Núcleo Celular/química , Núcleo Celular/ultraestructura , Cromatina/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Células Madre Embrionarias/citología , Células Madre Embrionarias/ultraestructura , Fibroblastos/química , Fibroblastos/citología , Laminas/metabolismo , Ratones
18.
Lancet Reg Health Southeast Asia ; 8: 100095, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36267800

RESUMEN

Background: The course of the COVID-19 pandemic has been driven by several dynamic behavioral, immunological, and viral factors. We used mathematical modeling to explore how the concurrent reopening of schools, increasing levels of hybrid immunity, and the emergence of the Omicron variant affected the trajectory of the pandemic in India, using Andhra Pradesh (pop: 53 million) as an exemplar Indian state. Methods: We constructed an age- and contact-structured compartmental model that allows for individuals to proceed through various states depending on whether they have received zero, one, or two doses of the COVID-19 vaccine. We calibrated our model using results from another model (i.e., INDSCI-SIM) as well as available context-specific serosurvey data. The introduction of the Omicron variant is modelled alongside protection gained from hybrid immunity. We predict disease dynamics in the background of hybrid immunity coming from infections and an ongoing vaccination program, given prior levels of seropositivity from earlier waves of infection. We describe the consequences of school reopening on cases across different age-bands, as well as the impact of the Omicron (BA.2) variant. Findings: We show the existence of an epidemic peak in India that is strongly related to the value of background seroprevalence. As expected, because children were not vaccinated in India, re-opening schools increases the number of cases in children more than in adults, although in all scenarios, the peak number of active hospitalizations was never greater than 0.45 times the corresponding peak in the Delta wave before schools were reopened. We varied the level of infection induced seropositivity in our model and found the height of the peak associated with schools reopening reduced as background infection-induced seropositivity increased from 20% to 40%. At reported values of seropositivity of 64% from representative surveys done in India, no discernible peak was observed. We also explored counterfactual scenarios regarding the effect of vaccination on hybrid immunity. We found that in the absence of vaccination, even at high levels of seroprevalence (>60%), the emergence of the Omicron variant would have resulted in a large rise in cases across all age bands by as much as 1.8 times. We conclude that the presence of high levels of hybrid immunity resulted in fewer cases in the Omicron wave than in the Delta wave. Interpretation: In India, decreasing prevalence of immunologically naïve individuals of all ages was associated with fewer cases reported once schools were reopened. In addition, hybrid immunity, together with the lower intrinsic severity of disease associated with the Omicron variant, contributed to low reported COVID-19 hospitalizations and deaths. Funding: World Health Organization, Mphasis.

19.
Eur Phys J E Soft Matter ; 35(4): 9706, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22526980

RESUMEN

We study pressurised self-avoiding ring polymers in two dimensions using Monte Carlo simulations, scaling arguments and Flory-type theories, through models which generalise the model of Leibler, Singh and Fisher (Phys. Rev. Lett. 59, 1989 (1987)). We demonstrate the existence of a thermodynamic phase transition at a non-zero scaled pressure [Formula: see text] , where [Formula: see text] = Np/4[Formula: see text] , with the number of monomers N [Formula: see text] ∞ and the pressure p [Formula: see text] 0 , keeping [Formula: see text] constant, in a class of such models. This transition is driven by bond energetics and can be either continuous or discontinuous. It can be interpreted as a shape transition in which the ring polymer takes the shape, above the critical pressure, of a regular N -gon whose sides scale smoothly with pressure, while staying unfaceted below this critical pressure. Away from these limits, we argue that the transition is replaced by a sharp crossover. The area, however, scales with N(2) for all positive p in all such models, consistent with earlier scaling theories.


Asunto(s)
Modelos Químicos , Transición de Fase , Polímeros/química , Simulación por Computador , Método de Montecarlo , Presión , Termodinámica
20.
Ecol Evol ; 12(9): e9278, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36110885

RESUMEN

Environmental temperature is a key driver of malaria transmission dynamics. Using detailed temperature records from four sites: low elevation (1800), mid elevation (2200 m), and high elevation (2600-3200 m) in the western Himalaya, we model how temperature regulates parasite development rate (the inverse of the extrinsic incubation period, EIP) in the wild. Using a Briére parametrization of the EIP, combined with Bayesian parameter inference, we study the thermal limits of transmission for avian (Plasmodium relictum) and human Plasmodium parasites (P. vivax and P. falciparum) as well as for two malaria-like avian parasites, Haemoproteus and Leucocytozoon. We demonstrate that temperature conditions can substantially alter the incubation period of parasites at high elevation sites (2600-3200 m) leading to restricted parasite development or long transmission windows. The thermal limits (optimal temperature) for Plasmodium parasites were 15.62-34.92°C (30.04°C) for P. falciparum, 13.51-34.08°C (29.02°C) for P. vivax, 12.56-34.46°C (29.16°C) for P. relictum and for two malaria-like parasites, 12.01-29.48°C (25.16°C) for Haemoproteus spp. and 11.92-29.95°C (25.51°C) for Leucocytozoon spp. We then compare estimates of EIP based on measures of mean temperature versus hourly temperatures to show that EIP days vary in cold versus warm environments. We found that human Plasmodium parasites experience a limited transmission window at 2600 m. In contrast, for avian Plasmodium transmission was not possible between September and March at 2600 m. In addition, temperature conditions suitable for both Haemoproteus and Leucocytozoon transmission were obtained from June to August and in April, at 2600 m. Finally, we use temperature projections from a suite of climate models to predict that by 2040, high elevation sites (~2600 m) will have a temperature range conducive for malaria transmission, albeit with a limited transmission window. Our study highlights the importance of accounting for fine-scale thermal effects in the expansion of the range of the malaria parasite with global climate change.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA