Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Mol Biol Evol ; 39(3)2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35134218

RESUMEN

Depletion of CpG dinucleotides in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genomes has been linked to virus evolution, host-switching, virus replication, and innate immune responses. Temporal variations, if any, in the rate of CpG depletion during virus evolution in the host remain poorly understood. Here, we analyzed the CpG content of over 1.4 million full-length SARS-CoV-2 genomes representing over 170 million documented infections during the first 17 months of the pandemic. Our findings suggest that the extent of CpG depletion in SARS-CoV-2 genomes is modest. Interestingly, the rate of CpG depletion is highest during early evolution in humans and it gradually tapers off, almost reaching an equilibrium; this is consistent with adaptations to the human host. Furthermore, within the coding regions, CpG depletion occurs predominantly at codon positions 2-3 and 3-1. Loss of ZAP (Zinc-finger antiviral protein)-binding motifs in SARS-CoV-2 genomes is primarily driven by the loss of the terminal CpG within the motifs. Nonetheless, majority of the CpG depletion in SARS-CoV-2 genomes occurs outside ZAP-binding motifs. SARS-CoV-2 genomes selectively lose CpGs-motifs from a U-rich context; this may help avoid immune recognition by TLR7. SARS-CoV-2 alpha-, beta-, and delta-variants of concern have reduced CpG content compared to sequences from the beginning of the pandemic. In sum, we provide evidence that the rate of CpG depletion in virus genomes is not uniform and it greatly varies over time and during adaptations to the host. This work highlights how temporal variations in selection pressures during virus adaption may impact the rate and the extent of CpG depletion in virus genomes.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/genética , Genoma Viral , Humanos , Pandemias , SARS-CoV-2/genética , Replicación Viral
2.
EMBO Rep ; 22(12): e52931, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34661963

RESUMEN

Aging of hematopoietic stem cells (HSCs) is caused by the elevated activity of the small RhoGTPase Cdc42 and an apolar distribution of proteins. Mechanisms by which Cdc42 activity controls polarity of HSCs are not known. Binder of RhoGTPases proteins (Borgs) are known effector proteins of Cdc42 that are able to regulate the cytoskeletal Septin network. Here, we show that Cdc42 interacts with Borg4, which in turn interacts with Septin7 to regulate the polar distribution of Cdc42, Borg4, and Septin7 within HSCs. Genetic deletion of either Borg4 or Septin7 results in a reduced frequency of HSCs polar for Cdc42 or Borg4 or Septin7, a reduced engraftment potential and decreased lymphoid-primed multipotent progenitor (LMPP) frequency in the bone marrow. Taken together, our data identify a Cdc42-Borg4-Septin7 axis essential for the maintenance of polarity within HSCs and for HSC function and provide a rationale for further investigating the role of Borgs and Septins in the regulation of compartmentalization within stem cells.


Asunto(s)
Proteínas del Citoesqueleto , Células Madre Hematopoyéticas , Septinas , Proteínas de Unión al GTP rho , Células Madre Hematopoyéticas/metabolismo , Septinas/genética , Septinas/metabolismo , Transducción de Señal
3.
Trends Biochem Sci ; 43(3): 170-179, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29275999

RESUMEN

MK2 (p38MAPK-activated protein kinase 2) is essential for tumor necrosis factor (TNF) biosynthesis, mainly operating by post-transcriptional regulation. Deletion of the gene encoding MK2 strongly reduced serum TNF and protected against endotoxic shock, demonstrating the positive role of p38MAPK/MK2 in TNF signaling at the level of ligand expression. Recent evidence indicates that MK2 directly phosphorylates the TNF receptor interactor RIPK1 and suppresses its activity, thereby limiting TNF-mediated apoptosis and necroptosis - pointing to a more complex, double-edged role of MK2 in TNF signaling. In addition, novel MK2 substrates have emerged in the DNA damage response, autophagy, and obesity, making MK2 a multifunctional kinase at the crossroads of stress response and cell death. We therefore propose a more general role of p38MAPK/MK2 signaling in the timely coordinated onset and resolution of inflammation and beyond.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Factores de Necrosis Tumoral/metabolismo , Animales , Humanos , Inflamación/metabolismo
4.
Cereb Cortex ; 30(5): 3030-3043, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31813992

RESUMEN

Balanced proliferation and differentiation of neural progenitor cells (NPCs) are critical for brain development, but how the process is regulated and what components of the cell division machinery is involved are not well understood. Here we report that SEPT7, a cell division regulator originally identified in Saccharomyces cerevisiae, interacts with KIF20A in the intercellular bridge of dividing NPCs and plays an essential role in maintaining the proliferative state of NPCs during cortical development. Knockdown of SEPT7 in NPCs results in displacement of KIF20A from the midbody and early neuronal differentiation. NPC-specific inducible knockout of Sept7 causes early cell cycle exit, precocious neuronal differentiation, and ventriculomegaly in the cortex, but surprisingly does not lead to noticeable cytokinesis defect. Our data uncover an interaction of SEPT7 and KIF20A during NPC divisions and demonstrate a crucial role of SEPT7 in cell fate determination. In addition, this study presents a functional approach for identifying additional cell fate regulators of the mammalian brain.


Asunto(s)
Proliferación Celular/fisiología , Corteza Cerebral/metabolismo , Cinesinas/metabolismo , Células-Madre Neurales/metabolismo , Septinas/metabolismo , Animales , Diferenciación Celular/fisiología , Corteza Cerebral/citología , Células HEK293 , Humanos , Cinesinas/genética , Ratones , Ratones Noqueados , Neurogénesis/fisiología , Septinas/deficiencia , Septinas/genética
5.
J Biol Chem ; 293(30): 11913-11927, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29899110

RESUMEN

Monocytes differentiate into macrophages, which deactivate invading pathogens. Macrophages can be resistant to cell death mechanisms in some situations, and the mechanisms involved are not clear. Here, using mouse immune cells, we investigated whether the differentiation of macrophages affects their susceptibility to cell death by the ripoptosome/necrosome pathways. We show that treatment of macrophages with a mimetic of second mitochondrial activator of caspases (SMAC) resulted in ripoptosome-driven cell death that specifically depended on tumor necrosis factor α (TNFα) expression and the receptor-interacting serine/threonine protein kinase 1 (RipK1)-RipK3-caspase-8 interaction in activated and cycling macrophages. Differentiation of macrophages increased the expression of pro-inflammatory cytokines but reduced RipK1-dependent cell death and the RipK3-caspase-8 interaction. The expression of the anti-apoptotic mediators, X-linked inhibitor of apoptosis protein (XIAP) and caspase-like apoptosis regulatory protein (cFLIPL), also increased in differentiated macrophages, which inhibited caspase activation. The resistance to cell death was abrogated in XIAP-deficient macrophages. However, even in the presence of increased XIAP expression, inhibition of the mitogen-activated protein kinase (MAPK) p38 and MAPK-activated protein kinase 2 (MK2) made differentiated macrophages susceptible to cell death. These results suggest that the p38/MK2 pathway overrides apoptosis inhibition by XIAP and that acquisition of resistance to cell death by increased expression of XIAP and cFLIPL may allow inflammatory macrophages to participate in pathogen control for a longer duration.


Asunto(s)
Inflamación/inmunología , Proteínas Inhibidoras de la Apoptosis/inmunología , Macrófagos/inmunología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/inmunología , Proteínas Quinasas p38 Activadas por Mitógenos/inmunología , Animales , Apoptosis , Diferenciación Celular , Células Cultivadas , Macrófagos/citología , Ratones Endogámicos C57BL
6.
RNA Biol ; 15(8): 1025-1031, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30146915

RESUMEN

The total number of protein-coding genes in the human genome is not significantly higher than those in much simpler eukaryotes, despite a general increase in genome size proportionate to the organismal complexity. The large non-coding transcriptome and extensive differential splicing, are increasingly being accepted as the factors contributing to the complex mammalian physiology and architecture. Recent studies reveal additional layers of functional complexity: some long non-coding RNAs have been re-defined as micropeptide or microprotein encoding transcripts, and in turn some protein-coding RNAs are bifunctional and display also non-coding functions. Moreover, several protein-coding genes express long non-coding RNA splice-forms and generate circular RNAs in addition to their canonical mRNA transcripts, revoking the strict definition of a gene as coding or non-coding. In this mini review, we discuss the current understanding of these hybrid genes and their possible roles and relevance.


Asunto(s)
Regulación de la Expresión Génica , Sistemas de Lectura Abierta/genética , ARN Largo no Codificante/genética , Animales , Humanos
7.
J Cell Physiol ; 232(7): 1669-1680, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28019659

RESUMEN

Following superficial injury, neighbouring gastric epithelial cells close the wound by rapid cell migration, a process called epithelial restitution. Na+ /H+ exchange (NHE) inhibitors interfere with restitution, but the role of the different NHE isoforms expressed in gastric pit cells has remained elusive. The role of the basolaterally expressed NHE1 (Slc9a1) and the presumably apically expressed NHE2 (Slc9a2) in epithelial restitution was investigated in the nontransformed rat gastric surface cell line RGM1. Migration velocity was assessed by loading the cells with the fluorescent dye DiR and following closure of an experimental wound over time. Since RGM1 cells expressed very low NHE2 mRNA and have low transport activity, NHE2 was introduced by lentiviral gene transfer. In medium with pH 7.4, RGM1 cells displayed slow wound healing even in the absence of growth factors and independently of NHE activity. Growth factors accelerated wound healing in a partly NHE1-dependent fashion. Preincubation with acidic pH 7.1 stimulated restitution in a NHE1-dependent fashion. When pH 7.1 was maintained during the restitution period, migratory speed was reduced to ∼10% of the speed at pH 7,4, and the residual restitution was further inhibited by NHE1 inhibition. Lentiviral NHE2 expression increased the steady-state pHi and reduced the restitution velocity after low pH preincubation, which was reversible by pharmacological NHE2 inhibition. The results demonstrate that in RGM1 cells, migratory velocity is increased by NHE1 activation, while NHE2 activity inhibit this process. A differential activation of NHE1 and NHE2 may therefore, play a role in the initiation and completion of the epithelial restitution process.


Asunto(s)
Movimiento Celular , Mucosa Gástrica/citología , Intercambiadores de Sodio-Hidrógeno/metabolismo , Animales , Línea Celular , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Lentivirus/metabolismo , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Intercambiador 1 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/genética , Cicatrización de Heridas
8.
J Cell Sci ; 128(10): 1877-86, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25690008

RESUMEN

Cytokinesis is the final step of cell division, and is a process that requires a precisely coordinated molecular machinery to fully separate the cytoplasm of the parent cell and to establish the intact outer cell barrier of the daughter cells. Among various cytoskeletal proteins involved, septins are known to be essential mediators of cytokinesis. In this Commentary, we present recent observations that specific cell divisions can proceed in the absence of the core mammalian septin SEPT7 and its Drosophila homolog Peanut (Pnut) and that thus challenge the view that septins have an essential role in cytokinesis. In the pnut mutant neuroepithelium, orthogonal cell divisions are successfully completed. Similarly, in the mouse, Sept7-null mutant early embryonic cells and, more importantly, planktonically growing adult hematopoietic cells undergo productive proliferation. Hence, as discussed here, mechanisms must exist that compensate for the lack of SEPT7 and the other core septins in a cell-type-specific manner. Despite there being crucial non-canonical immune-relevant functions of septins, septin depletion is well tolerated by the hematopoietic system. Thus differential targeting of cytokinesis could form the basis for more specific anti-proliferative therapies to combat malignancies arising from cell types that require septins for cytokinesis, such as carcinomas and sarcomas, without impairing hematopoiesis that is less dependent on septin.


Asunto(s)
Citoesqueleto/metabolismo , Septinas/metabolismo , Animales , División Celular/fisiología , Citocinesis/fisiología , Drosophila , Proteínas de Drosophila/metabolismo , Hematopoyesis , Proteínas de Microfilamentos/metabolismo
9.
RNA ; 21(2): 262-78, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25525152

RESUMEN

The nuclear exosome targeting complex (NEXT) directs a major 3'-5' exonuclease, the RNA exosome, for degradation of nuclear noncoding (nc) RNAs. We identified the RNA-binding component of the NEXT complex, RBM7, as a substrate of p38(MAPK)/MK2-mediated phosphorylation at residue S136. As a result of this phosphorylation, RBM7 displays a strongly decreased RNA-binding capacity, while inhibition of p38(MAPK) or mutation of S136A in RBM7 increases its RNA association. Interestingly, promoter-upstream transcripts (PROMPTs), such as proRBM39, proEXT1, proDNAJB4, accumulated upon stress stimulation in a p38(MAPK)/MK2-dependent manner, a process inhibited by overexpression of RBM7(S136A). While there are no stress-dependent changes in RNA-polymerase II (RNAPII) occupation of PROMPT regions representing unchanged transcription, stability of PROMPTs is increased. Hence, we propose that phosphorylation of RBM7 by the p38(MAPK)/MK2 axis increases nuclear ncRNA stability by blocking their RBM7-binding and subsequent RNA exosome targeting to allow stress-dependent modulations of the noncoding transcriptome.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , Exosomas , Células HEK293 , Células HeLa , Humanos , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Fosforilación , Unión Proteica , Estabilidad del ARN , ARN no Traducido/genética , ARN no Traducido/metabolismo , Estrés Fisiológico
10.
Biochem J ; 473(19): 2995-9, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27679858

RESUMEN

The activation of p38(MAPK) by Toll-like receptor signalling is essential for the inflammatory response of innate immunity due to its role in post-transcriptional regulation of TNFα and cytokine biosynthesis. p38(MAPK) activation proceeds by the upstream MAP2Ks, MAPK kinase (MKK)3/6 as well as MKK4, which in turn are substrates for MAP3Ks, such as TGFß-activated protein kinase-1 (TAK1). In contrast, TPL2 has been described as an exclusive MAP3K of MKK1/2-triggering activation of the classical ERKs, ERK1/2. In the recent issue of the Biochemical Journal, Pattison et al report their screening for TPL2 substrates in LPS-stimulated macrophages and the identification of MKK3/6. Using catalytic-dead TPL2 (Map3k8(D270A/D270A)) knockin macrophages, they demonstrated that activation of MKK3/6 by TPL2 significantly contributes to LPS-dependent TNFα biosynthesis and is also essential for TNF-receptor 1 signalling. Hence, a new signalling pathway from TAK1 via IκB kinase, p105 NFκB and TPL2 to MKK3/6 and p38(MAPK) is established in macrophages. Taking into account that some isoforms of p38(MAPK) are necessary for maintaining functional steady-state levels of TPL2, a positive feedback loop in inflammation emerges.


Asunto(s)
Inflamación/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Humanos , Inflamación/enzimología
11.
PLoS Genet ; 10(8): e1004558, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25122120

RESUMEN

Cytokinesis terminates mitosis, resulting in separation of the two sister cells. Septins, a conserved family of GTP-binding cytoskeletal proteins, are an absolute requirement for cytokinesis in budding yeast. We demonstrate that septin-dependence of mammalian cytokinesis differs greatly between cell types: genetic loss of the pivotal septin subunit SEPT7 in vivo reveals that septins are indispensable for cytokinesis in fibroblasts, but expendable in cells of the hematopoietic system. SEPT7-deficient mouse embryos fail to gastrulate, and septin-deficient fibroblasts exhibit pleiotropic defects in the major cytokinetic machinery, including hyperacetylation/stabilization of microtubules and stalled midbody abscission, leading to constitutive multinucleation. We identified the microtubule depolymerizing protein stathmin as a key molecule aiding in septin-independent cytokinesis, demonstrated that stathmin supplementation is sufficient to override cytokinesis failure in SEPT7-null fibroblasts, and that knockdown of stathmin makes proliferation of a hematopoietic cell line sensitive to the septin inhibitor forchlorfenuron. Identification of septin-independent cytokinesis in the hematopoietic system could serve as a key to identify solid tumor-specific molecular targets for inhibition of cell proliferation.


Asunto(s)
Citocinesis/genética , Microtúbulos/genética , Septinas/genética , Estatmina/genética , Animales , Proliferación Celular/genética , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Gástrula/crecimiento & desarrollo , Humanos , Ratones , Compuestos de Fenilurea/farmacología , Piridinas/farmacología , Septinas/biosíntesis , Eliminación de Secuencia , Estatmina/biosíntesis
12.
Proc Natl Acad Sci U S A ; 110(42): 16856-61, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24082115

RESUMEN

DNA damage can obstruct replication forks, resulting in replicative stress. By siRNA screening, we identified kinases involved in the accumulation of phosphohistone 2AX (γH2AX) upon UV irradiation-induced replication stress. Surprisingly, the strongest reduction of phosphohistone 2AX followed knockdown of the MAP kinase-activated protein kinase 2 (MK2), a kinase currently implicated in p38 stress signaling and G2 arrest. Depletion or inhibition of MK2 also protected cells from DNA damage-induced cell death, and mice deficient for MK2 displayed decreased apoptosis in the skin upon UV irradiation. Moreover, MK2 activity was required for damage response, accumulation of ssDNA, and decreased survival when cells were treated with the nucleoside analogue gemcitabine or when the checkpoint kinase Chk1 was antagonized. By using DNA fiber assays, we found that MK2 inhibition or knockdown rescued DNA replication impaired by gemcitabine or by Chk1 inhibition. This rescue strictly depended on translesion DNA polymerases. In conclusion, instead of being an unavoidable consequence of DNA damage, alterations of replication speed and origin firing depend on MK2-mediated signaling.


Asunto(s)
Replicación del ADN , Puntos de Control de la Fase G2 del Ciclo Celular , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Antimetabolitos Antineoplásicos/farmacología , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Daño del ADN , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Técnicas de Silenciamiento del Gen , Histonas/genética , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Noqueados , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Rayos Ultravioleta , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Gemcitabina
13.
Biochem J ; 456(2): 163-72, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24020373

RESUMEN

The p38 MAPK (mitogen-activated protein kinase)/MK2 [MAPKAP (MAPK-activated protein) kinase-2] signalling pathway is a major regulator of stress- and cytokine-induced gene expression at the transcriptional and post-transcriptional level. Using phosphoproteomics we identified the ER (endoplasmic reticulum)-associated ubiquitin-conjugating enzyme Ube2j1 as a potential substrate of MK2. We demonstrate that Ube2j1 is phosphorylated in a cytokine-, cytosolic stress- and LPS (lipopolysaccharide)-induced manner. The cytosolic stress-induced phosphorylation of Ube2j1 proceeds at Ser(184), a site described previously to be phosphorylated in response to ER stress, which is located in a perfect MK2 consensus motif. The cytosolic stress-induced phosphorylation of Ube2j1, but not its ER-stress-induced phosphorylation is sensitive to p38/MK2 inhibitors and abrogated in MK2/MK3-deficient cells. In a pull-down assay we demonstrate the interaction of MK2 with Ube2j1 in HEK (human embryonic kidney)-293T cells. Furthermore, MK2 is able to phosphorylate recombinant Ube2j1, but not the S184A mutant in an in vitro kinase assay. These findings strongly suggest that MK2 directly phosphorylates Ube2j1 at Ser(184) upon p38-activating stress in vivo. However, ectopically expressed Ube2j1-S184A mutant displays ubiquitinating activity towards the model substrate ER-synthesized T-cell receptor-α similar to that of the wild-type protein. Interestingly, Ube2j1 is phosphorylated in response to LPS also in macrophages and contributes to MK2-dependent TNFα biosynthesis by a so far unknown mechanism.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación , Animales , Línea Celular , Estrés del Retículo Endoplásmico , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteolisis , Estrés Fisiológico , Receptores Toll-Like/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
Cytoskeleton (Hoboken) ; 80(7-8): 169-181, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36797225

RESUMEN

Septins are cytoskeletal GTPases that form nonpolar filaments and higher-ordered structures and they take part in a wide range of cellular processes. Septins are conserved from yeast to mammals but absent from higher plants. The number of septin genes vary between organisms and they usually form complex heteropolymeric networks. Most septins are known to be capable of GTP hydrolysis which may regulate septin dynamics. Knowledge on regulation of septin function by post-translational modifications is still in its infancy. In this review article, we highlight the post-translational modifications reported for the 13 human septins and discuss their implications on septin functions. In addition to the functionally investigated modifications, we also try to make sense of the complex septin post-translational modification code revealed from large-scale phospho-proteomic datasets. Future studies may determine how these isoform-specific and homology group specific modifications affect septin structure and function.


Asunto(s)
Proteómica , Septinas , Animales , Humanos , Septinas/metabolismo , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/metabolismo , Mamíferos/metabolismo
15.
Int J Biol Macromol ; 229: 624-635, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36587643

RESUMEN

Dengue virus (DENV) exploits various cellular pathways including autophagy to assure enhanced virus propagation. The mechanisms of DENV mediated control of autophagy pathway are largely unknown. Our investigations have revealed a novel role for high-mobility group box1 protein (HMGB1) in regulation of cellular autophagy process in DENV-2 infected A549 cell line. While induction of autophagy by rapamycin treatment resulted in enhanced DENV-2 propagation, the blockade of autophagy flux with bafilomycin A1 suppressed viral replication. Furthermore, siRNA-mediated silencing of HMGB1 significantly abrogated dengue induced autophagy, while LPS induced HMGB1 expression counteracted these effects. Interestingly, silencing of HMGB1 showed reduction of BECN1 and stabilization of BCL-2 protein. On the contrary, LPS induction of HMGB1 resulted in enhanced BECN1 and reduction in BCL-2 levels. This study shows that the modulation of autophagy by DENV-2 is HMGB1/BECN1 dependent. In addition, glycyrrhizic acid (GA), a potent HMGB1 inhibitor suppressed autophagy as well as DENV-2 replication. Altogether, our data suggests that HMGB1 induces BECN1 dependent autophagy to promote DENV-2 replication.


Asunto(s)
Virus del Dengue , Dengue , Proteína HMGB1 , Humanos , Proteína HMGB1/genética , Lipopolisacáridos/farmacología , Replicación Viral , Autofagia , Proteínas Proto-Oncogénicas c-bcl-2 , Dengue/genética
16.
Front Immunol ; 14: 1245443, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771590

RESUMEN

Autophagy plays an important role in recognizing and protecting cells from invading intracellular pathogens such as Salmonella. In this work, we investigated the role of p38MAPK/MK2 in modulating the host cell susceptibility to Salmonella infection. Inhibition of p38MAPK or MK2 led to a significant increase of bacterial counts in Salmonella infected mouse embryonic fibroblasts (MEFs), as well as in MK2-deficient (Mk2-/-) cells. Furthermore, western blot analysis showed that Mk2-/- cells have lower level of LC3 lipidation, which is the indicator of general autophagy compared to Mk2-rescued cells. In Mk2-/- cells, we also observed lower activated TANK-binding kinase-1 phosphorylation on Ser172 and p62/SQTM1-Ser403 phosphorylation, which are important to promote the translocation of p62 to ubiquitinated microbes and required for efficient autophagy of bacteria. Furthermore, immunofluorescence analysis revealed reduced colocalization of Salmonella with LC3 and p62 in MEFs. Inhibition of autophagy with bafilomycin A1 showed increased bacterial counts in treated cells compared to control cell. Overall, these results indicate that p38MAPK/MK2-mediated protein phosphorylation modulates the host cell susceptibility to Salmonella infection by affecting the autophagy pathways.


Asunto(s)
Infecciones por Salmonella , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Ratones , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Fibroblastos/metabolismo , Autofagia
17.
Brief Funct Genomics ; 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37461194

RESUMEN

We identified 11 conserved stretches in over 6.3 million SARS-CoV-2 genomes including all the major variants of concerns. Each conserved stretch is ≥100 nucleotides in length with ≥99.9% conservation at each nucleotide position. Interestingly, six of the eight conserved stretches in ORF1ab overlapped significantly with well-folded experimentally verified RNA secondary structures. Furthermore, two of the conserved stretches were mapped to regions within the S2-subunit that undergo dynamic structural rearrangements during viral fusion. In addition, the conserved stretches were significantly depleted for zinc-finger antiviral protein (ZAP) binding sites, which facilitated the recognition and degradation of viral RNA. These highly conserved stretches in the SARS-CoV-2 genome were poorly conserved at the nucleotide level among closely related ß-coronaviruses, thus representing ideal targets for highly specific and discriminatory diagnostic assays. Our findings highlight the role of structural constraints at both RNA and protein levels that contribute to the sequence conservation of specific genomic regions in SARS-CoV-2.

18.
Cell Death Discov ; 9(1): 262, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495567

RESUMEN

Receptor-interacting protein kinases (RIPK)-1 and -3 play crucial roles in cell fate decisions and are regulated by multiple checkpoint controls. Previous studies have identified IKK1/2- and p38/MK2-dependent checkpoints that phosphorylate RIPK1 at different residues to inhibit its activation. In this study, we investigated TNF-induced death in MAPK-activated protein kinase 2 (MK2)-deficient cells and found that MK2 deficiency or inactivation predominantly leads to necroptotic cell death, even without caspase inhibition. While RIPK1 inhibitors can rescue MK2-deficient cells from necroptosis, inhibiting RIPK3 seems to switch the process to apoptosis. To understand the underlying mechanism of this switch, we screened a library of 149 kinase inhibitors and identified the adenosine analog 5-Iodotubercidin (5-ITu) as the most potent compound that sensitizes MK2-deficient MEFs to TNF-induced cell death. 5-ITu also enhances LPS-induced necroptosis when combined with MK2 inhibition in RAW264.7 macrophages. Further mechanistic studies revealed that 5-ITu induces RIPK1-dependent necroptosis by suppressing IKK signaling in the absence of MK2 activity. These findings highlight the role for the multitarget kinase inhibitor 5-ITu in TNF-, LPS- and chemotherapeutics-induced necroptosis and its potential implications in RIPK1-targeted therapies.

19.
Cell Death Discov ; 9(1): 14, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658119

RESUMEN

The TNF receptor-interacting protein kinases (RIPK)-1 and 3 are regulators of extrinsic cell death response pathways, where RIPK1 makes the cell survival or death decisions by associating with distinct complexes mediating survival signaling, caspase activation or RIPK3-dependent necroptotic cell death in a context-dependent manner. Using a mass spectrometry-based screen to find new components of the ripoptosome/necrosome, we discovered the protein-arginine methyltransferase (PRMT)-5 as a direct interaction partner of RIPK1. Interestingly, RIPK3 but not RIPK1 was then found to be a target of PRMT5-mediated symmetric arginine dimethylation. A conserved arginine residue in RIPK3 (R486 in human, R415 in mouse) was identified as the evolutionarily conserved target for PRMT5-mediated symmetric dimethylation and the mutations R486A and R486K in human RIPK3 almost completely abrogated its methylation. Rescue experiments using these non-methylatable mutants of RIPK3 demonstrated PRMT5-mediated RIPK3 methylation to act as an efficient mechanism of RIPK3-mediated feedback control on RIPK1 activity and function. Therefore, this study reveals PRMT5-mediated RIPK3 methylation as a novel modulator of RIPK1-dependent signaling.

20.
Front Pharmacol ; 14: 1149809, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007026

RESUMEN

Macroautophagy (hereafter referred to as autophagy), a highly conserved metabolic process, regulates cellular homeostasis by degrading dysfunctional cytosolic constituents and invading pathogens via the lysosomal system. In addition, autophagy selectively recycles specific organelles such as damaged mitochondria (via mitophagy), and lipid droplets (LDs; via lipophagy) or eliminates specialized intracellular pathogenic microorganisms such as hepatitis B virus (HBV) and coronaviruses (via virophagy). Selective autophagy, particularly mitophagy, plays a key role in the preservation of healthy liver physiology, and its dysfunction is connected to the pathogenesis of a wide variety of liver diseases. For example, lipophagy has emerged as a defensive mechanism against chronic liver diseases. There is a prominent role for mitophagy and lipophagy in hepatic pathologies including non-alcoholic fatty liver disease (NAFLD), hepatocellular carcinoma (HCC), and drug-induced liver injury. Moreover, these selective autophagy pathways including virophagy are being investigated in the context of viral hepatitis and, more recently, the coronavirus disease 2019 (COVID-19)-associated hepatic pathologies. The interplay between diverse types of selective autophagy and its impact on liver diseases is briefly addressed. Thus, modulating selective autophagy (e.g., mitophagy) would seem to be effective in improving liver diseases. Considering the prominence of selective autophagy in liver physiology, this review summarizes the current understanding of the molecular mechanisms and functions of selective autophagy (mainly mitophagy and lipophagy) in liver physiology and pathophysiology. This may help in finding therapeutic interventions targeting hepatic diseases via manipulation of selective autophagy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA