RESUMEN
Enhancer binding proteins (EBPs) are key players of σ54 -regulation that control transcription in response to environmental signals. In the anaerobic microorganism Desulfovibrio vulgaris Hildenborough (DvH), orp operons have been previously shown to be coregulated by σ54 -RNA polymerase, the integration host factor IHF and a cognate EBP, OrpR. In this study, ChIP-seq experiments indicated that the OrpR regulon consists of only the two divergent orp operons. In vivo data revealed that (i) OrpR is absolutely required for orp operons transcription, (ii) under anaerobic conditions, OrpR binds on the two dedicated DNA binding sites and leads to high expression levels of the orp operons, (iii) increasing the redox potential of the medium leads to a drastic down-regulation of the orp operons expression. Moreover, combining functional and biophysical studies on the anaerobically purified OrpR leads us to propose that OrpR senses redox potential variations via a redox-sensitive [4Fe-4S]2+ cluster in the sensory PAS domain. Overall, the study herein presents the first characterization of a new Fe-S redox regulator belonging to the σ54 -dependent transcriptional regulator family probably advantageously selected by cells adapted to the anaerobic lifestyle to monitor redox stress conditions.
Asunto(s)
Desulfovibrio vulgaris/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Proteínas Hierro-Azufre/metabolismo , Factor sigma/metabolismo , Transcripción Genética/genética , Técnicas Biosensibles , Proteínas de Unión al ADN/genética , Desulfovibrio vulgaris/genética , Ambiente , Oxidación-Reducción , Activación Transcripcional/genéticaRESUMEN
The nickel-dependent carbon monoxide dehydrogenase (CODH) employs a unique heterometallic nickel-iron-sulfur cluster, termed the C-cluster, to catalyze the interconversion of CO and CO2 Like other complex metalloenzymes, CODH requires dedicated assembly machinery to form the fully intact and functional C-cluster. In particular, nickel incorporation into the C-cluster depends on the maturation factor CooC; however, the mechanism of nickel insertion remains poorly understood. Here, we compare X-ray structures (1.50-2.48 Å resolution) of CODH from Desulfovibrio vulgaris (DvCODH) heterologously expressed in either the absence (DvCODH-CooC) or presence (DvCODH+CooC) of co-expressed CooC. We find that the C-cluster of DvCODH-CooC is fully loaded with iron but does not contain any nickel. Interestingly, the so-called unique iron ion (Feu) occupies both its canonical site (80% occupancy) and the nickel site (20% occupancy), with addition of reductant causing further mismetallation of the nickel site (60% iron occupancy). We also demonstrate that a DvCODH variant that lacks a surface-accessible iron-sulfur cluster (the D-cluster) has a C-cluster that is also replete in iron but lacks nickel, despite co-expression with CooC. In this variant, all Feu is in its canonical location, and the nickel site is empty. This D-cluster-deficient CODH is inactive despite attempts to reconstitute it with nickel. Taken together, these results suggest that an empty nickel site is not sufficient for nickel incorporation. Based on our findings, we propose a model for C-cluster assembly that requires both CooC and a functioning D-cluster, involves precise redox-state control, and includes a two-step nickel-binding process.
Asunto(s)
Aldehído Oxidorreductasas/química , Desulfovibrio vulgaris/enzimología , Metaloproteínas/química , Complejos Multienzimáticos/química , Aldehído Oxidorreductasas/metabolismo , Cristalografía por Rayos X , Metaloproteínas/metabolismo , Modelos Moleculares , Complejos Multienzimáticos/metabolismo , Conformación ProteicaRESUMEN
Correction to: JBIC Journal of Biological Inorganic Chemistry.
RESUMEN
Nickel-containing enzymes are diverse in terms of function and active site structure. In many cases, the biosynthesis of the active site depends on accessory proteins which transport and insert the Ni ion. We review and discuss the literature related to the maturation of carbon monoxide dehydrogenases (CODH) which bear a nickel-containing active site consisting of a [Ni-4Fe-4S] center called the C-cluster. The maturation of this center has been much less studied than that of other nickel-containing enzymes such as urease and NiFe hydrogenase. Several proteins present in certain CODH operons, including the nickel-binding proteins CooT and CooJ, still have unclear functions. We question the conception that the maturation of all CODH depends on the accessory protein CooC described as essential for nickel insertion into the active site. The available literature reveals biological variations in CODH active site biosynthesis.
Asunto(s)
Aldehído Oxidorreductasas/química , Aldehído Oxidorreductasas/metabolismo , Dominio Catalítico , Hierro , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Níquel , AzufreRESUMEN
CO dehydrogenases (CODHs) catalyse the reversible conversion between CO and CO2 . Genomic analysis indicated that the metabolic functions of CODHs vary. The genome of Carboxydothermus hydrogenoformans encodes five CODHs (CODH-I-V), of which CODH-IV is found in a gene cluster near a peroxide-reducing enzyme. Our kinetic and crystallographic experiments reveal that CODH-IV differs from other CODHs in several characteristic properties: it has a very high affinity for CO, oxidizes CO at diffusion-limited rate over a wide range of temperatures, and is more tolerant to oxygen than CODH-II. Thus, our observations support the idea that CODH-IV is a CO scavenger in defence against oxidative stress and highlight that CODHs are more diverse in terms of reactivity than expected.
RESUMEN
Ni-containing CO dehydrogenases (CODHs) are very efficient metalloenzymes that catalyze the conversion between CO2 and CO. They are a source of inspiration for designing CO2-reduction catalysts and can also find direct use in biotechnology. They are deemed extremely sensitive to O2, but very little is known about this aspect of their reactivity. We investigated the reaction with O2 of Carboxydothermus hydrogenoformans (Ch) CODHâ II and the homologous, recently characterized CODH from Desulfovibrio vulgaris (Dv) through protein film voltammetry and solution assays (in the oxidative direction). We found that O2 reacts very quickly with the active site of CODHs, generating species that reactivate upon reduction--this was unexpected. We observed that distinct CODHs exhibit different behaviors: Dv CODH reacts half as fast with O2 than Ch CODH, and only the former fully recovers the activity upon reduction. The results raise hope that fast CO/CO2 biological conversion may be feasible under aerobic conditions.
Asunto(s)
Aldehído Oxidorreductasas/química , Monóxido de Carbono/química , Metaloproteínas/química , Complejos Multienzimáticos/química , Níquel/química , Aldehído Oxidorreductasas/metabolismo , Factores Biológicos , Catálisis , Metaloproteínas/metabolismo , Modelos Moleculares , Complejos Multienzimáticos/metabolismo , Oxidación-ReducciónRESUMEN
A novel anaerobic bacterial strain, ST07-YET, was isolated from a carbonate chimney of the Prony Hydrothermal Field (PHF) in New Caledonia. Cells were Gram-stain-positive, straight rods (0.7-0.8 × 3.0-5.0 µm) and motile by means of lateral flagella. Strain ST07-YET was mesophilic (optimum 35 °C), moderately alkaliphilic and halotolerant (optimum pH 8.7 and 5âg l- 1 NaCl). Elemental sulfur, sulfate, thiosulfate, sulfite, nitrate and nitrite were not used as terminal electron acceptors. Yeast extract, peptone, tryptone, Casamino acids, crotonate, pyruvate, galactose, maltose, sucrose, ribose, trehalose and glucose were used as carbon sources. Glucose fermentation led to acetate, H2 and CO2 formation. Arginine, serine, histidine, lysine, methionine and cysteine improved growth, but the Stickland reaction was negative for the combinations of amino acids tested. The major metabolic products from yeast extract fermentation were H2, CO2, acetate, butyrate, isobutyrate, isovalerate and propionate. The predominant cellular fatty acids were C16 : 0, C16 : 1cis9, C14 : 0 and C16 : 1cis7 (>5â% of total fatty acids). The G+C content of the genomic DNA was 32.9âmol%. Phylogenetic analysis revealed that strain ST07-YET was most closely related to Clostridium sticklandii DSM 519T and Acetoanaerobium noterae NOT-3T (96.7â% and 96.8â% 16S rRNA gene sequence similarity, respectively). On the basis of phylogenetic, chemotaxonomic and physiological properties, strain ST07-YET is proposed to represent a novel species of the genus Acetoanaerobium (order Clostridiales, phylum Firmicutes) with the name Acetoanaerobium pronyense sp. nov. The type strain is ST07-YET ( = DSM 27512T = JCM 19400T).
Asunto(s)
Clostridiales/clasificación , Respiraderos Hidrotermales/microbiología , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , Carbonatos , Clostridiales/genética , Clostridiales/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Fermentación , Datos de Secuencia Molecular , Nueva Caledonia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
Ni-Fe CO-dehydrogenases (CODHs) catalyze the conversion between CO and CO2 using a chain of Fe-S clusters to mediate long-range electron transfer. One of these clusters, the D-cluster, is surface-exposed and serves to transfer electrons between CODH and external redox partners. These enzymes tend to be extremely O2-sensitive and are always manipulated under strictly anaerobic conditions. However, the CODH from Desulfovibrio vulgaris (Dv) appears unique: exposure to micromolar concentrations of O2 on the minutes-time scale only reversibly inhibits the enzyme, and full activity is recovered after reduction. Here, we examine whether this unusual property of Dv CODH results from the nature of its D-cluster, which is a [2Fe-2S] cluster, instead of the [4Fe-4S] cluster observed in all other characterized CODHs. To this aim, we produced and characterized a Dv CODH variant where the [2Fe-2S] D-cluster is replaced with a [4Fe-4S] D-cluster through mutagenesis of the D-cluster-binding sequence motif. We determined the crystal structure of this CODH variant to 1.83-Å resolution and confirmed the incorporation of a [4Fe-4S] D-cluster. We show that upon long-term O2-exposure, the [4Fe-4S] D-cluster degrades, whereas the [2Fe-2S] D-cluster remains intact. Crystal structures of the Dv CODH variant exposed to O2 for increasing periods of time provide snapshots of [4Fe-4S] D-cluster degradation. We further show that the WT enzyme purified under aerobic conditions retains 30% activity relative to a fully anaerobic purification, compared to 10% for the variant, and the WT enzyme loses activity more slowly than the variant upon prolonged aerobic storage. The D-cluster is therefore a key site of irreversible oxidative damage in Dv CODH, and the presence of a [2Fe-2S] D-cluster contributes to the O2-tolerance of this enzyme. Together, these results relate O2-sensitivity with the details of the protein structure in this family of enzymes.
RESUMEN
The C-cluster of the enzyme carbon monoxide dehydrogenase (CODH) is a structurally distinctive Ni-Fe-S cluster employed to catalyze the reduction of CO2 to CO as part of the Wood-Ljungdahl carbon fixation pathway. Using X-ray crystallography, we have observed unprecedented conformational dynamics in the C-cluster of the CODH from Desulfovibrio vulgaris, providing the first view of an oxidized state of the cluster. Combined with supporting spectroscopic data, our structures reveal that this novel, oxidized cluster arrangement plays a role in avoiding irreversible oxidative degradation at the C-cluster. Furthermore, mutagenesis of a conserved cysteine residue that binds the C-cluster in the oxidized state but not in the reduced state suggests that the oxidized conformation could be important for proper cluster assembly, in particular Ni incorporation. Together, these results lay a foundation for future investigations of C-cluster activation and assembly, and contribute to an emerging paradigm of metallocluster plasticity.