Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 31(1): 12-17, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28115466

RESUMEN

Global DNA demethylation is a hallmark of embryonic epigenetic reprogramming. However, embryos engage noncanonical DNA methylation maintenance mechanisms to ensure inheritance of exceptional epigenetic germline features to the soma. Besides the paradigmatic genomic imprints, these exceptions remain ill-defined, and the mechanisms ensuring demethylation resistance in the light of global reprogramming remain poorly understood. Here we show that the Y-linked gene Rbmy1a1 is highly methylated in mature sperm and resists DNA demethylation post-fertilization. Aberrant hypomethylation of the Rbmy1a1 promoter results in its ectopic activation, causing male-specific peri-implantation lethality. Rbmy1a1 is a novel target of the TRIM28 complex, which is required to protect its repressive epigenetic state during embryonic epigenetic reprogramming.


Asunto(s)
Metilación de ADN/genética , Desarrollo Embrionario/genética , Epigénesis Genética/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/genética , Animales , Células Cultivadas , Reprogramación Celular/genética , Implantación del Embrión/genética , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica , Impresión Genómica/genética , Masculino , Mutación , Regiones Promotoras Genéticas/genética , Proteínas de Unión al ARN/genética , Espermatozoides/metabolismo , Proteína 28 que Contiene Motivos Tripartito
2.
Development ; 146(19)2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-30846446

RESUMEN

Global epigenetic reprogramming is vital to purge germ cell-specific epigenetic features to establish the totipotent state of the embryo. This process transpires to be carefully regulated and is not an undirected, radical erasure of parental epigenomes. The TRIM28 complex has been shown to be crucial in embryonic epigenetic reprogramming by regionally opposing DNA demethylation to preserve vital parental information to be inherited from germline to soma. Yet the DNA-binding factors guiding this complex to specific targets are largely unknown. Here, we uncover and characterize a novel, maternally expressed, TRIM28-interacting KRAB zinc-finger protein: ZFP708. It recruits the repressive TRIM28 complex to RMER19B retrotransposons to evoke regional heterochromatin formation. ZFP708 binding to these hitherto unknown TRIM28 targets is DNA methylation and H3K9me3 independent. ZFP708 mutant mice are viable and fertile, yet embryos fail to inherit and maintain DNA methylation at ZFP708 target sites. This can result in activation of RMER19B-adjacent genes, while ectopic expression of ZFP708 results in transcriptional repression. Finally, we describe the evolutionary conservation of ZFP708 in mice and rats, which is linked to the conserved presence of the targeted RMER19B retrotransposons in these species.


Asunto(s)
Represión Epigenética , Proteínas Represoras/metabolismo , Retroelementos/genética , Dedos de Zinc , Animales , Secuencia de Bases , Sitios de Unión/genética , Blastocisto/metabolismo , Metilación de ADN/genética , Embrión de Mamíferos/metabolismo , Evolución Molecular , Ratones , Ratones Noqueados , Células Madre Embrionarias de Ratones/metabolismo , Unión Proteica/genética , Ratas , Transcripción Genética , Proteína 28 que Contiene Motivos Tripartito/metabolismo
3.
Genes Dev ; 28(8): 812-28, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24736841

RESUMEN

Methylation of DNA is an essential epigenetic control mechanism in mammals. During embryonic development, cells are directed toward their future lineages, and DNA methylation poses a fundamental epigenetic barrier that guides and restricts differentiation and prevents regression into an undifferentiated state. DNA methylation also plays an important role in sex chromosome dosage compensation, the repression of retrotransposons that threaten genome integrity, the maintenance of genome stability, and the coordinated expression of imprinted genes. However, DNA methylation marks must be globally removed to allow for sexual reproduction and the adoption of the specialized, hypomethylated epigenome of the primordial germ cell and the preimplantation embryo. Recent technological advances in genome-wide DNA methylation analysis and the functional description of novel enzymatic DNA demethylation pathways have provided significant insights into the molecular processes that prepare the mammalian embryo for normal development.


Asunto(s)
Blastocisto/metabolismo , Reprogramación Celular/genética , Metilación de ADN , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , 5-Metilcitosina/metabolismo , Animales , Embrión de Mamíferos , Células Germinativas/metabolismo , Humanos
4.
Genes Dev ; 27(13): 1441-6, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23824537

RESUMEN

Cellular localization of the Yes-associated protein (YAP) is dependent on large tumor suppressor (LATS) kinase activity and initiates lineage specification in the preimplantation embryo. We temporally reduced LATS activity to disrupt this early event, allowing its reactivation at later stages. This interference resulted in an irreversible lineage misspecification and aberrant polarization of the inner cell mass (ICM). Complementation experiments revealed that neither epiblast nor primitive endoderm can be established from these ICMs. We therefore conclude that precisely timed YAP localization in early morulae is essential to prevent trophectoderm marker expression in, and lineage specification of, the ICM.


Asunto(s)
Masa Celular Interna del Blastocisto/citología , Blastocisto/citología , Diferenciación Celular , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular , Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Prueba de Complementación Genética , Vía de Señalización Hippo , Ratones , Fosfoproteínas/metabolismo , Transducción de Señal , Factores de Tiempo , Proteínas Señalizadoras YAP
5.
Genes Dev ; 27(12): 1378-90, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23788624

RESUMEN

Although it is known that OCT4-NANOG are required for maintenance of pluripotent cells in vitro, the upstream signals that regulate this circuit during early development in vivo have not been identified. Here we demonstrate, for the first time, signal transducers and activators of transcription 3 (STAT3)-dependent regulation of the OCT4-NANOG circuitry necessary to maintain the pluripotent inner cell mass (ICM), the source of in vitro-derived embryonic stem cells (ESCs). We show that STAT3 is highly expressed in mouse oocytes and becomes phosphorylated and translocates to the nucleus in the four-cell and later stage embryos. Using leukemia inhibitory factor (Lif)-null embryos, we found that STAT3 phosphorylation is dependent on LIF in four-cell stage embryos. In blastocysts, interleukin 6 (IL-6) acts in an autocrine fashion to ensure STAT3 phosphorylation, mediated by janus kinase 1 (JAK1), a LIF- and IL-6-dependent kinase. Using genetically engineered mouse strains to eliminate Stat3 in oocytes and embryos, we firmly establish that STAT3 is essential for maintenance of ICM lineages but not for ICM and trophectoderm formation. Indeed, STAT3 directly binds to the Oct4 and Nanog distal enhancers, modulating their expression to maintain pluripotency of mouse embryonic and induced pluripotent stem cells. These results provide a novel genetic model of cell fate determination operating through STAT3 in the preimplantation embryo and pluripotent stem cells in vivo.


Asunto(s)
Masa Celular Interna del Blastocisto , Linaje de la Célula , Células Madre Embrionarias/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Factor 3 de Transcripción de Unión a Octámeros , Factor de Transcripción STAT3 , Animales , Masa Celular Interna del Blastocisto/citología , Masa Celular Interna del Blastocisto/metabolismo , Células Cultivadas , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Janus Quinasa 1/genética , Janus Quinasa 1/metabolismo , Factor Inhibidor de Leucemia/genética , Factor Inhibidor de Leucemia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Fosforilación , Células Madre Pluripotentes/fisiología , Unión Proteica , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
6.
Development ; 143(11): 1993-9, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27246714

RESUMEN

ß-catenin (CTNNB1) is integral to cell adhesion and to the canonical Wnt signaling pathway. The effects of maternal and zygotic CTNNB1 on embryogenesis have each been separately assessed, whereas the effect of its total absence has not. As the 'traditional' conditional Ctnnb1 knockout alleles give rise to truncated CTNNB1 fragments, we designed a new knockout allele incapable of CTNNB1 production. Mouse embryos lacking intact maternal/zygotic CTNNB1 from two knockout strains were examined in detail. Preimplantation embryos are formed, yet abnormalities in their size and shape were found throughout pre- and early postimplantation development. In the absence of the zona pellucida, embryos lacking CTNNB1 undergo fission and these separated blastomeres can become small trophoblastic vesicles, which in turn induce decidual reactions. Comparing the severity of this defective adhesion phenotype in embryos bearing the null allele with those carrying the 'traditional' knockout allele suggests a hypomorphic effect of the truncated CTNNB1 protein fragment, an important observation with possible impact on previous and future studies.


Asunto(s)
Desarrollo Embrionario , beta Catenina/metabolismo , Alelos , Animales , Blastocisto/citología , Blastocisto/metabolismo , Adhesión Celular , Eliminación de Gen , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mutantes/metabolismo , Cigoto/metabolismo , beta Catenina/deficiencia
7.
Development ; 140(18): 3819-25, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23924633

RESUMEN

Mobilization of endogenous retrotransposons can destabilize the genome, an imminent danger during epigenetic reprogramming of cells in the germline. The P-element-induced wimpy testis (PIWI)-interacting RNA (piRNA) pathway is known to silence retrotransposons in the mouse testes. Several piRNA pathway components localize to the unique, germline structure known as the nuage. In this study, we surveyed mouse ovaries and found, for the first time, transient appearance of nuage-like structures in oocytes of primordial follicles. Mouse vasa homolog (MVH), Piwi-like 2 (PIWIL2/MILI) and tudor domain-containing 9 (TDRD9) are present in these structures, whereas aggregates of germ cell protein with ankyrin repeats, sterile alpha motif and leucine zipper (GASZ) localize separately in the cytoplasm. Retrotransposons are silenced in primordial ovarian follicles, and de-repressed upon reduction of piRNA expression in Mvh, Mili or Gasz mutants. However, these null-mutant females, unlike their male counterparts, are fertile, uncoupling retrotransposon activation from sterility.


Asunto(s)
Estructuras Celulares/metabolismo , Silenciador del Gen , Folículo Ovárico/metabolismo , Retroelementos/genética , Animales , Estructuras Celulares/ultraestructura , Femenino , Regulación de la Expresión Génica , Células Germinativas/metabolismo , Infertilidad Femenina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Oogénesis , Folículo Ovárico/ultraestructura , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo
8.
Nat Genet ; 37(3): 300-4, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15696167

RESUMEN

Cell-fate specification and cell-cell signaling have been well studied during vulva development in Caenorhabditis elegans and provide a paradigm in evolutionary developmental biology. Pristionchus pacificus has been developed as a 'satellite' organism with an integrated physical and genetic map that allows detailed comparisons to C. elegans. A common aspect of vulva formation in both species is the polarization of the P7.p lineage, which is responsible for vulval symmetry. In C. elegans, Wnt signaling is crucial for P7.p cell-fate patterning; nothing is known about vulval symmetry in P. pacificus. We isolated mutations that disrupt polarization of the P7.p lineage in P. pacificus and found that the corresponding gene encodes a Frizzled-like molecule. In addition, mutations in Ppa-lin-17 (encoding Frizzled) and morpholino knock-down of Ppa-lin-44 (encoding Wnt), Ppa-egl-20 (encoding Wnt), Ppa-mig-5 (encoding Dsh), Ppa-apr-1 (encoding APC) and Ppa-bar-1 (encoding beta-catenin) results in gonad-independent vulva differentiation, indicating that these genes have a role in a negative signaling process. In contrast, in C. elegans, Wnt signaling has a positive role in vulva induction, and mutations in bar-1 result in a hypoinduced phenotype. Therefore, whereas the molecular mechanisms that generate vulval symmetry are conserved, the genetic control of vulva induction diversified during evolution.


Asunto(s)
Caenorhabditis elegans/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Transducción de Señal , Vulva/crecimiento & desarrollo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Caenorhabditis elegans/crecimiento & desarrollo , Femenino , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Proteínas Wnt
9.
Front Cell Dev Biol ; 10: 1022422, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313557

RESUMEN

Genomic imprinting is an epigenetic process through which genes are expressed in a parent-of-origin specific manner resulting in mono-allelic or strongly biased expression of one allele. For some genes, imprinted expression may be tissue-specific and reliant on CTCF-influenced enhancer-promoter interactions. The Peg13 imprinting cluster is associated with neurodevelopmental disorders and comprises canonical imprinted genes, which are conserved between mouse and human, as well as brain-specific imprinted genes in mouse. The latter consist of Trappc9, Chrac1 and Ago2, which have a maternal allelic expression bias of ∼75% in brain. Findings of such allelic expression biases on the tissue level raise the question of how they are reflected in individual cells and whether there is variability and mosaicism in allelic expression between individual cells of the tissue. Here we show that Trappc9 and Ago2 are not imprinted in hippocampus-derived neural stem cells (neurospheres), while Peg13 retains its strong bias of paternal allele expression. Upon analysis of single neural stem cells and in vitro differentiated neurons, we find not uniform, but variable states of allelic expression, especially for Trappc9 and Ago2. These ranged from mono-allelic paternal to equal bi-allelic to mono-allelic maternal, including biased bi-allelic transcriptional states. Even Peg13 expression deviated from its expected paternal allele bias in a small number of cells. Although the cell populations consisted of a mosaic of cells with different allelic expression states, as a whole they reflected bulk tissue data. Furthermore, in an attempt to identify potential brain-specific regulatory elements across the Trappc9 locus, we demonstrate tissue-specific and general silencer activities, which might contribute to the regulation of its imprinted expression bias.

10.
Dev Biol ; 344(1): 129-37, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20435031

RESUMEN

Early lineage segregation in mouse development results in two, either CDX2- or OCT4/NANOG-positive, cell populations. CDX2-positive cells form the trophectoderm (TE), OCT4/NANOG-positive cells the inner cell mass (ICM). In a second lineage decision ICM cells segregate into Epiblast (EPI) and primitive endoderm (PE). EPI and PE formation depend on the activity of the transcription factors Nanog and Gata4/6. A role for Nanog, a crucial pluripotency factor, in preventing PE differentiation has been proposed, as outgrowths of mutant ICMs result in PE, but not EPI derivatives. We established Nanog-mutant mouse lines and analyzed EPI and PE formation in vivo. Surprisingly, Gata4 expression in mutant ICM cells is absent or strongly decreased, thus loss of Nanog does not result in precocious endoderm differentiation. However, Nanog-deficient embryos retain the capacity to form PE in chimeric embryos and, in contrast to recent reports, in blastocyst outgrowths. Based on our findings we propose a non-cell autonomous requirement of Nanog for proper PE formation in addition to its essential role in EPI determination.


Asunto(s)
Endodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Alelos , Animales , Biopsia , Blastocisto/citología , Blastocisto/metabolismo , Diferenciación Celular , Linaje de la Célula , Genotipo , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Proteína Homeótica Nanog , Factores de Tiempo , Factores de Transcripción/metabolismo
11.
Mol Syst Biol ; 6: 354, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20212526

RESUMEN

The transcription factor POU5f1/OCT4 controls pluripotency in mammalian ES cells, but little is known about its functions in the early embryo. We used time-resolved transcriptome analysis of zebrafish pou5f1 MZspg mutant embryos to identify genes regulated by Pou5f1. Comparison to mammalian systems defines evolutionary conserved Pou5f1 targets. Time-series data reveal many Pou5f1 targets with delayed or advanced onset of expression. We identify two Pou5f1-dependent mechanisms controlling developmental timing. First, several Pou5f1 targets are transcriptional repressors, mediating repression of differentiation genes in distinct embryonic compartments. We analyze her3 gene regulation as example for a repressor in the neural anlagen. Second, the dynamics of SoxB1 group gene expression and Pou5f1-dependent regulation of her3 and foxD3 uncovers differential requirements for SoxB1 activity to control temporal dynamics of activation, and spatial distribution of targets in the embryo. We establish a mathematical model of the early Pou5f1 and SoxB1 gene network to demonstrate regulatory characteristics important for developmental timing. The temporospatial structure of the zebrafish Pou5f1 target networks may explain aspects of the evolution of the mammalian stem cell networks.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Tipificación del Cuerpo/genética , Diferenciación Celular/genética , Secuencia Conservada , Elementos de Facilitación Genéticos/genética , Evolución Molecular , Perfilación de la Expresión Génica , Ratones , Modelos Genéticos , Datos de Secuencia Molecular , Mutación/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Tiempo , Cigoto/metabolismo
12.
Stem Cell Reports ; 14(5): 818-827, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32302554

RESUMEN

Spermatogenesis relies on exquisite stem cell homeostasis, the carefully balanced self-renewal and differentiation of spermatogonial stem cells (SSCs). Disturbing this equilibrium will likely manifest through sub- or infertility, a global health issue with often idiopathic presentation. In this respect, disease phenotypes caused by haploinsufficiency of otherwise vital developmental genes are of particular interest. Here, we show that mice heterozygous for Trim28, an essential epigenetic regulator, suffer gradual testicular degeneration. Contrary to previous reports we detect Trim28 expression in spermatogonia, albeit at low levels. Further reduction through Trim28 heterozygosity increases the propensity of SSCs to differentiate at the cost of self-renewal.


Asunto(s)
Infertilidad Masculina/genética , Espermatogonias/metabolismo , Proteína 28 que Contiene Motivos Tripartito/genética , Animales , Haploinsuficiencia , Masculino , Ratones , Ratones Endogámicos C57BL , Espermatogénesis , Espermatogonias/citología
13.
Nat Commun ; 11(1): 3603, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32681107

RESUMEN

Members of the PR/SET domain-containing (PRDM) family of zinc finger transcriptional regulators play diverse developmental roles. PRDM10 is a yet uncharacterized family member, and its function in vivo is unknown. Here, we report an essential requirement for PRDM10 in pre-implantation embryos and embryonic stem cells (mESCs), where loss of PRDM10 results in severe cell growth inhibition. Detailed genomic and biochemical analyses reveal that PRDM10 functions as a sequence-specific transcription factor. We identify Eif3b, which encodes a core component of the eukaryotic translation initiation factor 3 (eIF3) complex, as a key downstream target, and demonstrate that growth inhibition in PRDM10-deficient mESCs is in part mediated through EIF3B-dependent effects on global translation. Our work elucidates the molecular function of PRDM10 in maintaining global translation, establishes its essential role in early embryonic development and mESC homeostasis, and offers insights into the functional repertoire of PRDMs as well as the transcriptional mechanisms regulating translation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Ratones/metabolismo , Factores de Transcripción/metabolismo , Animales , Desarrollo Embrionario , Células Madre Embrionarias/metabolismo , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Femenino , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones/embriología , Ratones/genética , Biosíntesis de Proteínas , Factores de Transcripción/genética
14.
Sci Adv ; 6(2): eaax9852, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31950080

RESUMEN

Holoprosencephaly (HPE) is a congenital forebrain defect often associated with embryonic lethality and lifelong disabilities. Currently, therapeutic and diagnostic options are limited by lack of knowledge of potential disease-causing mutations. We have identified a new mutation in the PRDM15 gene (C844Y) associated with a syndromic form of HPE in multiple families. We demonstrate that C844Y is a loss-of-function mutation impairing PRDM15 transcriptional activity. Genetic deletion of murine Prdm15 causes anterior/posterior (A/P) patterning defects and recapitulates the brain malformations observed in patients. Mechanistically, PRDM15 regulates the transcription of key effectors of the NOTCH and WNT/PCP pathways to preserve early midline structures in the developing embryo. Analysis of a large cohort of patients with HPE revealed potentially damaging mutations in several regulators of both pathways. Our findings uncover an unexpected link between NOTCH and WNT/PCP signaling and A/P patterning and set the stage for the identification of new HPE candidate genes.


Asunto(s)
Polaridad Celular , Proteínas de Unión al ADN/genética , Holoprosencefalia/genética , Mutación con Pérdida de Función/genética , Receptores Notch/metabolismo , Factores de Transcripción/genética , Vía de Señalización Wnt , Animales , Tipificación del Cuerpo/genética , Encéfalo/anomalías , Encéfalo/embriología , Polaridad Celular/genética , Estudios de Cohortes , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/metabolismo , Femenino , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Placa Neural/metabolismo , Embarazo , Transcripción Genética , Dedos de Zinc
15.
J Cell Biol ; 218(9): 2896-2918, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31350280

RESUMEN

Meiosis generates four genetically distinct haploid gametes over the course of two reductional cell divisions. Meiotic divisions are characterized by the coordinated deposition and removal of various epigenetic marks. Here we propose that nuclear respiratory factor 1 (NRF1) regulates transcription of euchromatic histone methyltransferase 1 (EHMT1) to ensure normal patterns of H3K9 methylation during meiotic prophase I. We demonstrate that cyclin-dependent kinase (CDK2) can bind to the promoters of a number of genes in male germ cells including that of Ehmt1 through interaction with the NRF1 transcription factor. Our data indicate that CDK2-mediated phosphorylation of NRF1 can occur at two distinct serine residues and negatively regulates NRF1 DNA binding activity in vitro. Furthermore, induced deletion of Cdk2 in spermatocytes results in increased expression of many NRF1 target genes including Ehmt1 We hypothesize that the regulation of NRF1 transcriptional activity by CDK2 may allow the modulation of Ehmt1 expression, therefore controlling the dynamic methylation of H3K9 during meiotic prophase.


Asunto(s)
Quinasa 2 Dependiente de la Ciclina/metabolismo , Regulación Enzimológica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/biosíntesis , Profase Meiótica I/fisiología , Factor Nuclear 1 de Respiración/metabolismo , Espermatocitos/metabolismo , Animales , Quinasa 2 Dependiente de la Ciclina/genética , Eliminación de Gen , N-Metiltransferasa de Histona-Lisina/genética , Masculino , Ratones , Ratones Noqueados , Factor Nuclear 1 de Respiración/genética , Espermatocitos/citología
16.
Curr Top Dev Biol ; 128: 203-235, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29477164

RESUMEN

When reflecting about cell fate commitment we think of differentiation. Be it during embryonic development or in an adult stem cell niche, where cells of a higher potency specialize and cell fate decisions are taken. Under normal circumstances this process is definitive and irreversible. Cell fate commitment is achieved by the establishment of cell-type-specific transcriptional programmes, which in turn are guided, reinforced, and ultimately locked-in by epigenetic mechanisms. Yet, this plunging drift in cellular potency linked to epigenetically restricted access to genomic information is problematic for reproduction. Particularly in mammals where germ cells are not set aside early on like in other species. Instead they are rederived from the embryonic ectoderm, a differentiating embryonic tissue with somatic epigenetic features. The epigenomes of germ cell precursors are efficiently reprogrammed against the differentiation trend, only to specialize once more into highly differentiated, sex-specific gametes: oocyte and sperm. Their differentiation state is reflected in their specialized epigenomes, and erasure of these features is required to enable the acquisition of the totipotent cell fate to kick start embryonic development of the next generation. Recent technological advances have enabled unprecedented insights into the epigenetic dynamics, first of DNA methylation and then of histone modifications, greatly expanding the historically technically limited understanding of this processes. In this chapter we will focus on the details of embryonic epigenetic reprogramming, a cell fate determination process against the tide to a higher potency.


Asunto(s)
Blastocisto/metabolismo , Epigénesis Genética , Células Germinativas/metabolismo , Animales , Blastocisto/citología , Metilación de ADN/genética , Células Germinativas/citología , Código de Histonas , Ratones , Oocitos/citología
17.
Methods Mol Biol ; 1605: 171-189, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28456965

RESUMEN

The methylation of cytosines in DNA is a fundamental epigenetic regulatory mechanism. During preimplantation development, mammalian embryos undergo extensive epigenetic reprogramming, including the global erasure of germ cell-specific DNA methylation marks, to allow for the establishment of the pluripotent state of the epiblast. However, DNA methylation marks at specific regions, such as imprinted gene regions, escape this reprogramming process, as their inheritance from germline to soma is paramount for proper development. To study the dynamics of DNA methylation marks in single blastomeres of mouse preimplantation embryos, we devised a new approach-single cell restriction enzyme analysis of methylation (SCRAM). SCRAM allows for reliable, fast, and high-throughput analysis of DNA methylation states of multiple regions of interest from single cells. In the method described below, SCRAM is specifically used to address loss of DNA methylation at genomic imprints or other highly methylated regions of interest.


Asunto(s)
Blastocisto/enzimología , Metilación de ADN , Enzimas de Restricción del ADN/metabolismo , Análisis de la Célula Individual/métodos , 5-Metilcitosina/metabolismo , Animales , Blastocisto/química , Blastómeros/química , Blastómeros/enzimología , Epigénesis Genética , Femenino , Impresión Genómica , Ratones
18.
Science ; 357(6352): 707-713, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28663440

RESUMEN

Preeclampsia (PE) is a gestational hypertensive syndrome affecting between 5 and 8% of all pregnancies. Although PE is the leading cause of fetal and maternal morbidity and mortality, its molecular etiology is still unclear. Here, we show that ELABELA (ELA), an endogenous ligand of the apelin receptor (APLNR, or APJ), is a circulating hormone secreted by the placenta. Elabela but not Apelin knockout pregnant mice exhibit PE-like symptoms, including proteinuria and elevated blood pressure due to defective placental angiogenesis. In mice, infusion of exogenous ELA normalizes hypertension, proteinuria, and birth weight. ELA, which is abundant in human placentas, increases the invasiveness of trophoblast-like cells, suggesting that it enhances placental development to prevent PE. The ELA-APLNR signaling axis may offer a new paradigm for the treatment of common pregnancy-related complications, including PE.


Asunto(s)
Anomalías Cardiovasculares/genética , Proteínas Portadoras/genética , Hormonas Placentarias/genética , Placentación/genética , Preeclampsia/genética , Animales , Apelina/genética , Apelina/metabolismo , Peso al Nacer , Proteínas Portadoras/administración & dosificación , Proteínas Portadoras/metabolismo , Proteínas Portadoras/farmacología , Femenino , Ratones , Ratones Noqueados , Neovascularización Fisiológica/genética , Hormonas Peptídicas , Placenta/irrigación sanguínea , Placenta/metabolismo , Embarazo , Proteinuria , Transducción de Señal
19.
Nat Genet ; 49(9): 1354-1363, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28740264

RESUMEN

The transcriptional network acting downstream of LIF, WNT and MAPK-ERK to stabilize mouse embryonic stem cells (ESCs) in their naive state has been extensively characterized. However, the upstream factors regulating these three signaling pathways remain largely uncharted. PR-domain-containing proteins (PRDMs) are zinc-finger sequence-specific chromatin factors that have essential roles in embryonic development and cell fate decisions. Here we characterize the transcriptional regulator PRDM15, which acts independently of PRDM14 to regulate the naive state of mouse ESCs. Mechanistically, PRDM15 modulates WNT and MAPK-ERK signaling by directly promoting the expression of Rspo1 (R-spondin1) and Spry1 (Sprouty1). Consistent with these findings, CRISPR-Cas9-mediated disruption of PRDM15-binding sites in the Rspo1 and Spry1 promoters recapitulates PRDM15 depletion, both in terms of local chromatin organization and the transcriptional modulation of these genes. Collectively, our findings uncover an essential role for PRDM15 as a chromatin factor that modulates the transcription of upstream regulators of WNT and MAPK-ERK signaling to safeguard naive pluripotency.


Asunto(s)
Proteínas de Unión al ADN/genética , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica , Sistema de Señalización de MAP Quinasas/genética , Factores de Transcripción/genética , Vía de Señalización Wnt/genética , Animales , Western Blotting , Línea Celular , Autorrenovación de las Células/genética , Células Cultivadas , Reprogramación Celular/genética , Proteínas de Unión al ADN/metabolismo , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica/métodos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones Noqueados , Ratones Desnudos , Ratones Transgénicos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/metabolismo
20.
Nat Cell Biol ; 18(2): 139-40, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26820436

RESUMEN

The first hours of mammalian embryogenesis are devoted to extensive epigenetic reprogramming. One hallmark is active demethylation of the paternal genome by Tet (ten-eleven translocation) enzymes. However, the process is now shown to be Tet-independent at first, with Tet enzymes only counteracting hitherto underappreciated de novo DNA methylation activity in later zygotic stages.


Asunto(s)
5-Metilcitosina/metabolismo , Reprogramación Celular , Citosina/análogos & derivados , Metilación de ADN , Epigénesis Genética , Cigoto/metabolismo , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA