Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(5)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35271129

RESUMEN

Optical clocks are emerging as next-generation timekeeping devices with technological and scientific use cases. Simplified atomic sources such as vapor cells may offer a straightforward path to field use, but suffer from long-term frequency drifts and environmental sensitivities. Here, we measure a laboratory optical clock based on warm rubidium atoms and find low levels of drift on the month-long timescale. We observe and quantify helium contamination inside the glass vapor cell by gradually removing the helium via a vacuum apparatus. We quantify a drift rate of 4×10-15/day, a 10 day Allan deviation less than 5×10-15, and an absolute frequency of the Rb-87 two-photon clock transition of 385,284,566,371,190(1970) Hz. These results support the premise that optical vapor cell clocks will be able to meet future technology needs in navigation and communications as sensors of time and frequency.

2.
Opt Express ; 24(21): 23925-23940, 2016 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-27828227

RESUMEN

We present a 32 channel indium phosphide integrated pulse shaper with 25 GHz channel spacing, where each channel is equipped with a semiconductor optical amplifier allowing for programmable line-by-line gain control with submicrosecond reconfigurability. We critically test the integrated pulse shaper by using it in comb-based RF-photonic filtering experiments where the precise gain control is leveraged to synthesize high-fidelity RF filters which we reconfigure on a microsecond time scale. Our on-chip pulse shaping demonstration is unmatched in its combination of speed, fidelity, and flexibility, and will likely open new avenues in the field of advanced broadband signal generation and processing.

3.
Opt Express ; 22(6): 6329-38, 2014 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-24663981

RESUMEN

Microwave photonic filters with arbitrary phase response can be achieved by merging high-repetition-rate electro-optic frequency comb technology with line-by-line pulse shaping. When arranged in an interferometric configuration, the filter features a number of programmable complex-coefficient taps equal to the number of available comb lines. In this work, we use an ultrabroadband comb generator resulting in a microwave photonic phase filter with >100 complex-coefficient taps. We demonstrate the potential of this filter by performing programmable chirp control of ultrawideband waveforms that extend over long (>10 ns) temporal apertures. This work opens new possibilities for compensating realistic linear distortion impairments on ultrabroadband wireless signals spanning over dozens of nanosecond temporal apertures.

4.
Opt Lett ; 39(22): 6478-81, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25490498

RESUMEN

We demonstrate an on-chip four-wave mixing (FWM) scheme in a silicon nanowaveguide to scale the bandwidth of a frequency comb generated by phase modulation of continuous-wave (CW) lasers. The FWM process doubles the bandwidth of the initial comb generated by the modulation of a CW laser. For example, a wavelength-tunable frequency comb with >100 comb lines spaced by 10 GHz within a bandwidth of 5 dB is generated.

5.
Opt Express ; 21(23): 28029-39, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24514316

RESUMEN

We introduce a fully programmable two-dimensional (2D) pulse shaper, able to simultaneously control the amplitude and phase of very fine spectral components over a broad bandwidth. This is achieved by aligning two types of spectral dispersers in a cross dispersion setup: a virtually imaged phased array for accessing fine resolution and a transmission grating for achieving broad bandwidth. We take advantage of the resultant 2D dispersion profile as well as introduce programmability by adding a 2D liquid crystal on silicon spatial light modulator at the masking plane. Our shaper has a resolution of ~3 GHz operating over the entire 'C' band of >5.8 THz. Experimental evidence is provided that highlights the full programmability, fine spectral control, and broad bandwidth operation (limited currently by the bandwidth of the input light). We also show line-by-line manipulation of record 836 comb lines over the C-band.

6.
Science ; 382(6674): 1031-1035, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38033084

RESUMEN

Theories of planet formation predict that low-mass stars should rarely host exoplanets with masses exceeding that of Neptune. We used radial velocity observations to detect a Neptune-mass exoplanet orbiting LHS 3154, a star that is nine times less massive than the Sun. The exoplanet's orbital period is 3.7 days, and its minimum mass is 13.2 Earth masses. We used simulations to show that the high planet-to-star mass ratio (>3.5 × 10-4) is not an expected outcome of either the core accretion or gravitational instability theories of planet formation. In the core-accretion simulations, we show that close-in Neptune-mass planets are only formed if the dust mass of the protoplanetary disk is an order of magnitude greater than typically observed around very low-mass stars.

7.
Opt Lett ; 37(5): 845-7, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22378413

RESUMEN

We present a programmable multitap microwave photonic filter with an arbitrary phase response operating over a broad bandwidth. Complex coefficient taps are achieved by optical line-by-line pulse shaping on a 10 GHz flat optical frequency comb using a novel interferometric scheme. Through high-speed real-time measurements, we demonstrate programmable chirp control of a waveform via phase filtering. This achievement enables us to compress broadband microwave signals to their corresponding bandwidth-limited pulse duration.

8.
Astron J ; 161(6)2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-38505866

RESUMEN

The comblike spectrum of a white light-illuminated Fabry-Pérot etalon can serve as a cost-effective and stable reference for precise Doppler measurements. Understanding the stability of these devices across their broad (hundreds of nanometers) spectral bandwidths is essential to realizing their full potential as Doppler calibrators. However, published descriptions remain limited to small bandwidths or short time spans. We present an ~6 month broadband stability monitoring campaign of the Fabry-Pérot etalon system deployed with the near-infrared Habitable Zone Planet Finder (HPF) spectrograph. We monitor the wavelengths of each of ~3500 resonant modes measured in HPF spectra of this Fabry-Pérot etalon (free spectral range = 30 GHz, bandwidth = 820-1280 nm), leveraging the accuracy and precision of an electro-optic frequency comb reference. These results reveal chromatic structure in the Fabry-Pérot mode locations and their evolution with time. We measure an average drift on the order of 2 cm s-1 day-1, with local departures up to ±5 cm s-1 day-1. We discuss these behaviors in the context of the Fabry-Pérot etalon mirror dispersion and other optical properties of the system and the implications for the use of similar systems for precise Doppler measurements. Our results show that this system supports the wavelength calibration of HPF at the ≲10 cm s-1 level over a night and the ≲30 cm s-1 level over ~10 days. Our results also highlight the need for long-term and spectrally resolved study of similar systems that will be deployed to support Doppler measurement precision approaching ~10 cm s-1.

9.
Science ; 361(6409): 1358-1363, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30262499

RESUMEN

Light sources that are ultrafast and ultrastable enable applications like timing with subfemtosecond precision and control of quantum and classical systems. Mode-locked lasers have often given access to this regime, by using their high pulse energies. We demonstrate an adaptable method for ultrastable control of low-energy femtosecond pulses based on common electro-optic modulation of a continuous-wave laser light source. We show that we can obtain 100-picojoule pulse trains at rates up to 30 gigahertz and demonstrate sub-optical cycle timing precision and useful output spectra spanning the near infrared. Our source enters the few-cycle ultrafast regime without mode locking, and its high speed provides access to nonlinear measurements and rapid transients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA