Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nucleic Acids Res ; 51(9): 4126-4147, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37070173

RESUMEN

Herein, we report the systematic investigation of stereopure phosphorothioate (PS) and phosphoryl guanidine (PN) linkages on siRNA-mediated silencing. The incorporation of appropriately positioned and configured stereopure PS and PN linkages to N-acetylgalactosamine (GalNAc)-conjugated siRNAs based on multiple targets (Ttr and HSD17B13) increased potency and durability of mRNA silencing in mouse hepatocytes in vivo compared with reference molecules based on clinically proven formats. The observation that the same modification pattern had beneficial effects on unrelated transcripts suggests that it may be generalizable. The effect of stereopure PN modification on silencing is modulated by 2'-ribose modifications in the vicinity, particularly on the nucleoside 3' to the linkage. These benefits corresponded with both an increase in thermal instability at the 5'-end of the antisense strand and improved Argonaute 2 (Ago2) loading. Application of one of our most effective designs to generate a GalNAc-siRNA targeting human HSD17B13 led to ∼80% silencing that persisted for at least 14 weeks after administration of a single 3 mg/kg subcutaneous dose in transgenic mice. The judicious use of stereopure PN linkages improved the silencing profile of GalNAc-siRNAs without disrupting endogenous RNA interference pathways and without elevating serum biomarkers for liver dysfunction, suggesting they may be suitable for therapeutic application.


Asunto(s)
Silenciador del Gen , Interferencia de ARN , ARN Mensajero , Animales , Humanos , Ratones , Ratones Transgénicos , ARN Mensajero/genética , ARN Interferente Pequeño/genética
2.
Nucleic Acids Res ; 50(10): 5401-5423, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35106589

RESUMEN

Attaining sufficient tissue exposure at the site of action to achieve the desired pharmacodynamic effect on a target is an important determinant for any drug discovery program, and this can be particularly challenging for oligonucleotides in deep tissues of the CNS. Herein, we report the synthesis and impact of stereopure phosphoryl guanidine-containing backbone linkages (PN linkages) to oligonucleotides acting through an RNase H-mediated mechanism, using Malat1 and C9orf72 as benchmarks. We found that the incorporation of various types of PN linkages to a stereopure oligonucleotide backbone can increase potency of silencing in cultured neurons under free-uptake conditions 10-fold compared with similarly modified stereopure phosphorothioate (PS) and phosphodiester (PO)-based molecules. One of these backbone types, called PN-1, also yielded profound silencing benefits throughout the mouse brain and spinal cord at low doses, improving both the potency and durability of response, especially in difficult to reach brain tissues. Given these benefits in preclinical models, the incorporation of PN linkages into stereopure oligonucleotides with chimeric backbone modifications has the potential to render regions of the brain beyond the spinal cord more accessible to oligonucleotides and, consequently, may also expand the scope of neurological indications amenable to oligonucleotide therapeutics.


In this study, the authors explore the impact of nitrogen-containing (PN) backbones on oligonucleotides that promote RNase H-mediated degradation of a transcript in the central nervous system (CNS). Using Malat1, a ubiquitously expressed non-coding RNA that is predominately localized in the nucleus, and C9orf72, a challenging RNA target requiring a more nuanced targeting strategy, as benchmarks, they show that chimeric oligonucleotides containing stereopure PS and one of the more promising PN backbones (PN-1) have more potent and durable activity throughout the CNS compared with more traditional PS-modified molecules in mouse models. They demonstrate that potency and durability benefits in vivo derive at least in part from increased tissue exposure, especially in more difficult to reach regions of the brain. Ultimately, these benefits enabled the authors to demonstrate pharmacodynamic effects on Malat1 and C9orf72 RNAs in multiple brain regions with relatively low doses.


Asunto(s)
Oligonucleótidos Antisentido , Animales , Células Cultivadas , Sistema Nervioso Central , Guanidina/química , Ratones , Neuronas/efectos de los fármacos , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Fosforotioatos , Ribonucleasa H/metabolismo
3.
Neurobiol Dis ; 155: 105368, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33892050

RESUMEN

Parkinson's disease (PD) is the most common form of neurodegenerative movement disorder, associated with profound loss of dopaminergic neurons from the basal ganglia. Though loss of dopaminergic neuron cell bodies from the substantia nigra pars compacta is a well-studied feature, atrophy and loss of their axons within the nigrostriatal tract is also emerging as an early event in disease progression. Genes that drive the Wallerian degeneration, like Sterile alpha and toll/interleukin-1 receptor motif containing (Sarm1), are excellent candidates for driving this axon degeneration, given similarities in the morphology of axon degeneration after axotomy and in PD. In the present study we assessed whether Sarm1 contributes to loss of dopaminergic projections in mouse models of PD. In Sarm1 deficient mice, we observed a significant delay in the degeneration of severed dopaminergic axons distal to a 6-OHDA lesion of the medial forebrain bundle (MFB) in the nigrostriatal tract, and an accompanying rescue of morphological, biochemical and behavioural phenotypes. However, we observed no difference compared to controls when striatal terminals were lesioned with 6-OHDA to induce a dying back form of neurodegeneration. Likewise, when PD phenotypes were induced using AAV-induced alpha-synuclein overexpression, we observed similar modest loss of dopaminergic terminals in Sarm1 knockouts and controls. Our data argues that axon degeneration after MFB lesion is Sarm1-dependent, but that other models for PD do not require Sarm1, or that Sarm1 acts with other redundant genetic pathways. This work adds to a growing body of evidence indicating Sarm1 contributes to some, but not all types of neurodegeneration, and supports the notion that while axon degeneration in many context appears morphologically similar, a diversity of axon degeneration programs exist.


Asunto(s)
Proteínas del Dominio Armadillo/genética , Axones/patología , Proteínas del Citoesqueleto/genética , Variación Genética/fisiología , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/patología , Animales , Proteínas del Dominio Armadillo/deficiencia , Axones/metabolismo , Proteínas del Citoesqueleto/deficiencia , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Oxidopamina/toxicidad , Trastornos Parkinsonianos/inducido químicamente
4.
Hum Mol Genet ; 27(21): 3761-3771, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30010873

RESUMEN

Axon degeneration occurs in all neurodegenerative diseases, but the molecular pathways regulating axon destruction during neurodegeneration are poorly understood. Sterile Alpha and TIR Motif Containing 1 (Sarm1) is an essential component of the prodegenerative pathway driving axon degeneration after axotomy and represents an appealing target for therapeutic intervention in neurological conditions involving axon loss. Amyotrophic lateral sclerosis (ALS) is characterized by rapid, progressive motor neuron degeneration and muscle atrophy, causing paralysis and death. Patient tissue and animal models of ALS show destruction of upper and lower motor neuron cell bodies and loss of their associated axons. Here, we investigate whether loss of Sarm1 can mitigate motor neuron degeneration in the SOD1G93A mouse model of ALS. We found no change in survival, behavioral, electrophysiogical or histopathological outcomes in SOD1G93A mice null for Sarm1. Blocking Sarm1-mediated axon destruction alone is therefore not sufficient to suppress SOD1G93A-induced neurodegeneration. Our data suggest the molecular pathways driving axon loss in ALS may be Sarm1-independent or involve genetic pathways that act in a redundant fashion with Sarm1.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteínas del Dominio Armadillo/metabolismo , Proteínas del Citoesqueleto/metabolismo , Neuronas Motoras/metabolismo , Degeneración Nerviosa , Esclerosis Amiotrófica Lateral/patología , Animales , Proteínas del Dominio Armadillo/fisiología , Axotomía , Proteínas del Citoesqueleto/fisiología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Transgénicos , Superóxido Dismutasa/genética
5.
Hum Mol Genet ; 26(4): 686-701, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28040732

RESUMEN

The recent identification of profilin1 mutations in 25 familial ALS cases has linked altered function of this cytoskeleton-regulating protein to the pathogenesis of motor neuron disease. To investigate the pathological role of mutant profilin1 in motor neuron disease, we generated transgenic lines of mice expressing human profilin1 with a mutation at position 118 (hPFN1G118V). One of the mouse lines expressing high levels of mutant human PFN1 protein in the brain and spinal cord exhibited many key clinical and pathological features consistent with human ALS disease. These include loss of lower (ventral horn) and upper motor neurons (corticospinal motor neurons in layer V), mutant profilin1 aggregation, abnormally ubiquitinated proteins, reduced choline acetyltransferase (ChAT) enzyme expression, fragmented mitochondria, glial cell activation, muscle atrophy, weight loss, and reduced survival. Our investigations of actin dynamics and axonal integrity suggest that mutant PFN1 protein is associated with an abnormally low filamentous/globular (F/G)-actin ratio that may be the underlying cause of severe damage to ventral root axons resulting in a Wallerian-like degeneration. These observations indicate that our novel profilin1 mutant mouse line may provide a new ALS model with the opportunity to gain unique perspectives into mechanisms of neurodegeneration that contribute to ALS pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Encéfalo/metabolismo , Mutación Missense , Profilinas/biosíntesis , Médula Espinal/metabolismo , Sustitución de Aminoácidos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Profilinas/genética , Médula Espinal/patología
6.
Proc Natl Acad Sci U S A ; 113(41): E6209-E6218, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27681617

RESUMEN

Mutations in the profilin 1 (PFN1) gene cause amyotrophic lateral sclerosis (ALS), a neurodegenerative disease caused by the loss of motor neurons leading to paralysis and eventually death. PFN1 is a small actin-binding protein that promotes formin-based actin polymerization and regulates numerous cellular functions, but how the mutations in PFN1 cause ALS is unclear. To investigate this problem, we have generated transgenic mice expressing either the ALS-associated mutant (C71G) or wild-type protein. Here, we report that mice expressing the mutant, but not the wild-type, protein had relentless progression of motor neuron loss with concomitant progressive muscle weakness ending in paralysis and death. Furthermore, mutant, but not wild-type, PFN1 forms insoluble aggregates, disrupts cytoskeletal structure, and elevates ubiquitin and p62/SQSTM levels in motor neurons. Unexpectedly, the acceleration of motor neuron degeneration precedes the accumulation of mutant PFN1 aggregates. These results suggest that although mutant PFN1 aggregation may contribute to neurodegeneration, it does not trigger its onset. Importantly, these experiments establish a progressive disease model that can contribute toward identifying the mechanisms of ALS pathogenesis and the development of therapeutic treatments.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Neuronas Motoras/metabolismo , Mutación , Fenotipo , Profilinas/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Conducta Animal , Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Dosificación de Gen , Expresión Génica , Humanos , Inmunohistoquímica , Ratones , Ratones Transgénicos , Neuronas Motoras/patología , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Parálisis/etiología , Parálisis/metabolismo , Parálisis/patología , Parálisis/fisiopatología , Profilinas/metabolismo , Agregación Patológica de Proteínas
7.
PLoS One ; 17(2): e0255710, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35113871

RESUMEN

Modestly increased expression of transactive response DNA binding protein (TDP-43) gene have been reported in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and other neuromuscular diseases. However, whether this modest elevation triggers neurodegeneration is not known. Although high levels of TDP-43 overexpression have been modeled in mice and shown to cause early death, models with low-level overexpression that mimic the human condition have not been established. In this study, transgenic mice overexpressing wild type TDP-43 at less than 60% above the endogenous CNS levels were constructed, and their phenotypes analyzed by a variety of techniques, including biochemical, molecular, histological, behavioral techniques and electromyography. The TDP-43 transgene was expressed in neurons, astrocytes, and oligodendrocytes in the cortex and predominantly in astrocytes and oligodendrocytes in the spinal cord. The mice developed a reproducible progressive weakness ending in paralysis in mid-life. Detailed analysis showed ~30% loss of large pyramidal neurons in the layer V motor cortex; in the spinal cord, severe demyelination was accompanied by oligodendrocyte injury, protein aggregation, astrogliosis and microgliosis, and elevation of neuroinflammation. Surprisingly, there was no loss of lower motor neurons in the lumbar spinal cord despite the complete paralysis of the hindlimbs. However, denervation was detected at the neuromuscular junction. These results demonstrate that low-level TDP-43 overexpression can cause diverse aspects of ALS, including late-onset and progressive motor dysfunction, neuroinflammation, and neurodegeneration. Our findings suggest that persistent modest elevations in TDP-43 expression can lead to ALS and other neurological disorders involving TDP-43 proteinopathy. Because of the predictable and progressive clinical paralytic phenotype, this transgenic mouse model will be useful in preclinical trial of therapeutics targeting neurological disorders associated with elevated levels of TDP-43.


Asunto(s)
Esclerosis Amiotrófica Lateral
8.
Nat Med ; 28(1): 117-124, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34949835

RESUMEN

Expansions of a G4C2 repeat in the C9ORF72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two devastating adult-onset neurodegenerative disorders. Using C9-ALS/FTD patient-derived cells and C9ORF72 BAC transgenic mice, we generated and optimized antisense oligonucleotides (ASOs) that selectively blunt expression of G4C2 repeat-containing transcripts and effectively suppress tissue levels of poly(GP) dipeptides. ASOs with reduced phosphorothioate content showed improved tolerability without sacrificing efficacy. In a single patient harboring mutant C9ORF72 with the G4C2 repeat expansion, repeated dosing by intrathecal delivery of the optimal ASO was well tolerated, leading to significant reductions in levels of cerebrospinal fluid poly(GP). This report provides insight into the effect of nucleic acid chemistry on toxicity and, to our knowledge, for the first time demonstrates the feasibility of clinical suppression of the C9ORF72 gene. Additional clinical trials will be required to demonstrate safety and efficacy of this therapy in patients with C9ORF72 gene mutations.


Asunto(s)
Proteína C9orf72/genética , Mutación , Oligonucleótidos Antisentido/genética , Animales , Proteína C9orf72/metabolismo , Fibroblastos/metabolismo , Humanos , Ratones , Ratones Transgénicos , Neuronas/metabolismo
9.
Nat Biotechnol ; 40(7): 1093-1102, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35256816

RESUMEN

Technologies that recruit and direct the activity of endogenous RNA-editing enzymes to specific cellular RNAs have therapeutic potential, but translating them from cell culture into animal models has been challenging. Here we describe short, chemically modified oligonucleotides called AIMers that direct efficient and specific A-to-I editing of endogenous transcripts by endogenous adenosine deaminases acting on RNA (ADAR) enzymes, including the ubiquitously and constitutively expressed ADAR1 p110 isoform. We show that fully chemically modified AIMers with chimeric backbones containing stereopure phosphorothioate and nitrogen-containing linkages based on phosphoryl guanidine enhanced potency and editing efficiency 100-fold compared with those with uniformly phosphorothioate-modified backbones in vitro. In vivo, AIMers targeted to hepatocytes with N-acetylgalactosamine achieve up to 50% editing with no bystander editing of the endogenous ACTB transcript in non-human primate liver, with editing persisting for at least one month. These results support further investigation of the therapeutic potential of stereopure AIMers.


Asunto(s)
Oligonucleótidos , Edición de ARN , Animales , Primates/genética , Primates/metabolismo , ARN , Edición de ARN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
10.
Nat Neurosci ; 21(4): 552-563, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29556029

RESUMEN

Amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) constitutes a devastating disease spectrum characterized by 43-kDa TAR DNA-binding protein (TDP-43) pathology. Understanding how TDP-43 contributes to neurodegeneration will help direct therapeutic efforts. Here we have created a TDP-43 knock-in mouse with a human-equivalent mutation in the endogenous mouse Tardbp gene. TDP-43Q331K mice demonstrate cognitive dysfunction and a paucity of parvalbumin interneurons. Critically, TDP-43 autoregulation is perturbed, leading to a gain of TDP-43 function and altered splicing of Mapt, another pivotal dementia-associated gene. Furthermore, a new approach to stratify transcriptomic data by phenotype in differentially affected mutant mice revealed 471 changes linked with improved behavior. These changes included downregulation of two known modifiers of neurodegeneration, Atxn2 and Arid4a, and upregulation of myelination and translation genes. With one base change in murine Tardbp, this study identifies TDP-43 misregulation as a pathogenic mechanism that may underpin ALS-FTD and exploits phenotypic heterogeneity to yield candidate suppressors of neurodegenerative disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Demencia/genética , Demencia/fisiopatología , Regulación de la Expresión Génica/genética , Mutación/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Conducta de Elección/fisiología , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/genética , Condicionamiento Operante/fisiología , Demencia/patología , Modelos Animales de Enfermedad , Femenino , Masculino , Trastornos de la Memoria/genética , Trastornos de la Memoria/patología , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/genética , Unión Neuromuscular/patología , Unión Neuromuscular/fisiopatología , Desempeño Psicomotor/fisiología , Tiempo de Reacción/genética
11.
Nat Neurosci ; 21(8): 1138, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29872124

RESUMEN

In the version of this article initially published, the footnote number 17 was missing from the author list for the two authors who contributed equally. Also, the authors have added a middle initial for author Justin R. Fallon and an acknowledgement to the Babraham Institute Imaging Facility and Sequencing Core Facility. The errors have been corrected in the HTML and PDF versions of the article.

12.
Hum Gene Ther ; 27(1): 19-31, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-26710998

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease; survival in ALS is typically 3-5 years. No treatment extends patient survival by more than three months. Approximately 20% of familial ALS and 1-3% of sporadic ALS patients carry a mutation in the gene encoding superoxide dismutase 1 (SOD1). In a transgenic ALS mouse model expressing the mutant SOD1(G93A) protein, silencing the SOD1 gene prolongs survival. One study reports a therapeutic effect of silencing the SOD1 gene in systemically treated adult ALS mice; this was achieved with a short hairpin RNA, a silencing molecule that has raised multiple safety concerns, and recombinant adeno-associated virus (rAAV) 9. We report here a silencing method based on an artificial microRNA termed miR-SOD1 systemically delivered using adeno-associated virus rAAVrh10, a serotype with a demonstrated safety profile in CNS clinical trials. Silencing of SOD1 in adult SOD1(G93A) transgenic mice with this construct profoundly delayed both disease onset and death in the SOD1(G93A) mice, and significantly preserved muscle strength and motor and respiratory functions. We also document that intrathecal delivery of the same rAAVrh10-miR-SOD1 in nonhuman primates significantly and safely silences SOD1 in lower motor neurons. This study supports the view that rAAVrh10-miR-SOD1 merits further development for the treatment of SOD1-linked ALS in humans.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia , Superóxido Dismutasa/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Humanos , Ratones , Mutación , Superóxido Dismutasa/antagonistas & inhibidores , Superóxido Dismutasa/uso terapéutico , Superóxido Dismutasa-1
13.
Neuron ; 88(5): 902-909, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26637797

RESUMEN

A non-coding hexanucleotide repeat expansion in the C9ORF72 gene is the most common mutation associated with familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). To investigate the pathological role of C9ORF72 in these diseases, we generated a line of mice carrying a bacterial artificial chromosome containing exons 1 to 6 of the human C9ORF72 gene with approximately 500 repeats of the GGGGCC motif. The mice showed no overt behavioral phenotype but recapitulated distinctive histopathological features of C9ORF72 ALS/FTD, including sense and antisense intranuclear RNA foci and poly(glycine-proline) dipeptide repeat proteins. Finally, using an artificial microRNA that targets human C9ORF72 in cultures of primary cortical neurons from the C9BAC mice, we have attenuated expression of the C9BAC transgene and the poly(GP) dipeptides. The C9ORF72 BAC transgenic mice will be a valuable tool in the study of ALS/FTD pathobiology and therapy.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Expansión de las Repeticiones de ADN/genética , Dipéptidos/metabolismo , Modelos Animales de Enfermedad , Demencia Frontotemporal/genética , Proteínas/genética , Factores de Edad , Esclerosis Amiotrófica Lateral/mortalidad , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Proteína C9orf72 , Células Cultivadas , Corteza Cerebral/citología , Cromosomas Artificiales Bacterianos/genética , Cromosomas Artificiales Bacterianos/metabolismo , Dipéptidos/genética , Demencia Frontotemporal/mortalidad , Demencia Frontotemporal/patología , Demencia Frontotemporal/fisiopatología , Regulación de la Expresión Génica/genética , Genotipo , Humanos , Técnicas In Vitro , Ratones Transgénicos , MicroARNs/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA