RESUMEN
Multivalent viral epitopes induce rapid, robust and T cell-independent humoral immune responses, but the biochemical basis for such potency remains incompletely understood. We take advantage of a set of liposomes of viral size engineered to display affinity mutants of the model antigen (Ag) hen egg lysozyme. Particulate Ag induces potent 'all-or-none' B cell responses that are density dependent but affinity independent. Unlike soluble Ag, particulate Ag induces signal amplification downstream of the B cell receptor by selectively evading LYN-dependent inhibitory pathways and maximally activates NF-κB in a manner that mimics T cell help. Such signaling induces MYC expression and enables even low doses of particulate Ag to trigger robust B cell proliferation in vivo in the absence of adjuvant. We uncover a molecular basis for highly sensitive B cell responses to viral Ag display that is independent of encapsulated nucleic acids and is not merely accounted for by avidity and B cell receptor cross-linking.
Asunto(s)
Antígenos , Linfocitos B , Receptores de Antígenos de Linfocitos B/metabolismo , Activación de Linfocitos , Epítopos/metabolismoRESUMEN
Class-switched neutralizing Ab (nAb) production is rapidly induced upon many viral infections. However, due to the presence of multiple components in virions, the precise biochemical and biophysical signals from viral infections that initiate nAb responses remain inadequately defined. Using a reductionist system of synthetic virus-like structures, in this study, we show that a foreign protein on a virion-sized liposome can serve as a stand-alone danger signal to initiate class-switched nAb responses without T cell help or TLR but requires CD19. Introduction of internal nucleic acids (iNAs) obviates the need for CD19, lowers the epitope density (ED) required to elicit the Ab response, and transforms these structures into highly potent immunogens that rival conventional virus-like particles in their ability to elicit strong Ag-specific IgG. As early as day 5 after immunization, structures harboring iNAs and decorated with just a few molecules of surface Ag at doses as low as 100 ng induced all IgG subclasses of Ab in mice and reproduced the IgG2a/2c restriction that is long observed in live viral infections. These findings reveal a shared mechanism for the nAb response in mice. High ED is capable but not necessary for driving Ab secretion. Instead, even a few molecules of surface Ag, when combined with nucleic acids within these structures, can trigger strong IgG production. As a result, the signaling threshold for induction of IgG in individual B cells is set by dual signals originating from both ED on the surface and the presence of iNAs within viral particulate immunogens.
Asunto(s)
Anticuerpos Neutralizantes , Inmunoglobulina G , Transducción de Señal , Animales , Ratones , Inmunoglobulina G/inmunología , Transducción de Señal/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Ratones Endogámicos C57BL , Cambio de Clase de Inmunoglobulina/inmunología , Antígenos CD19/inmunología , Ratones Noqueados , Liposomas/inmunologíaRESUMEN
However, due to the complex compositions of natural virions, the molecular determinants of Ab durability from viral infection or inactivated viral vaccines have been incompletely understood. Here we used a reductionist system of liposome-based virus-like structures to examine the durability of Abs in primary immune responses in mice. This system allowed us to independently vary fundamental viral attributes and to do so without additional adjuvants to model natural viruses. We show that a single injection of antigens (Ags) orderly displayed on a virion-sized liposome is sufficient to induce a long-lived neutralizing Ab (nAb) response. Introduction of internal nucleic acids dramatically modulates the magnitude of long-term Ab responses without alteration of the long-term kinetic trends. These Abs are characterized by exceptionally slow off-rates of ~0.0005 s-1, which emerged as early as day 5 after injection and these off-rates are comparable to that of affinity-matured monoclonal Abs. A single injection of these structures at doses as low as 100 ng led to lifelong nAb production in BALB/c mice. Thus, a minimal virus-like immunogen can give rise to potent and long-lasting antiviral Abs in a primary response in mice without live infection. This has important implications for understanding both live viral infection and for optimized vaccine design.
RESUMEN
The durability of an antibody (Ab) response is highly important for antiviral vaccines. However, due to the complex compositions of natural virions, the molecular determinants of Ab durability from viral infection or inactivated viral vaccines have been incompletely understood. Here we used a reductionist system of liposome-based virus-like structures to examine the durability of Abs from primary immune responses in mice. This system allowed us to independently vary fundamental viral attributes and to do so without additional adjuvants to model natural viruses. We show that a single injection of protein antigens (Ags) orderly displayed on a virion-sized liposome is sufficient to induce a long-lived neutralizing Ab (nAb) response. The introduction of internal nucleic acids dramatically modulates the magnitude of Ab responses without an alteration of the long-term kinetic trends. These Abs are characterized by very slow off-rates of ~0.0005 s-1, which emerged as early as day 5 after injection and these off-rates are comparable to that of affinity-matured monoclonal Abs. A single injection of these structures at doses as low as 100 ng led to lifelong nAb production in mice. Thus, a minimal virus-like immunogen can give rise to potent and long-lasting antiviral Abs in a primary response in mice without live infection. This has important implications for understanding both live viral infection and for optimizing vaccine design.
RESUMEN
Class-switched neutralizing antibody (nAb) production is rapidly induced upon many viral infections. However, due to the presence of multiple components in typical virions, the precise biochemical and biophysical signals from viral infections that initiate nAb responses remain inadequately defined. Using a reductionist system of synthetic virus-like structures (SVLS) containing minimal, highly purified biochemical components commonly found in enveloped viruses, here we show that a foreign protein on a virion-sized liposome can serve as a stand-alone danger signal to initiate class-switched nAb responses in the absence of cognate T cell help or Toll-like receptor signaling but requires CD19, the antigen (Ag) coreceptor on B cells. Introduction of internal nucleic acids (iNAs) obviates the need for CD19, lowers the epitope density (ED) required to elicit the Ab response and transforms these structures into highly potent immunogens that rival conventional virus-like particles in their ability to elicit strong Ag-specific IgG. As early as day 5 after immunization, structures harbouring iNAs and decorated with just a few molecules of surface Ag at doses as low as 100 ng induced all IgG subclasses of Ab known in mice and reproduced the IgG2a/2c restriction that has been long observed in live viral infections. These findings reveal a shared mechanism for nAb response upon viral infection. High ED is capable but not necessary for driving Ab secretion in vivo . Instead, even a few molecules of surface Ag, when combined with nucleic acids within these structures, can trigger strong antiviral IgG production. As a result, the signaling threshold for the induction of neutralizing IgG is set by dual signals originating from both ED on the surface and the presence of iNAs within viral particulate immunogens. One-sentence summary: Reconstitution of minimal viral signals necessary to initiate antiviral IgG.