Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(2): e2314101120, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38165935

RESUMEN

Mycobacterium abscessus (Mab), a nontuberculous mycobacterial (NTM) species, is an emerging pathogen with high intrinsic drug resistance. Current standard-of-care therapy results in poor outcomes, demonstrating the urgent need to develop effective antimycobacterial regimens. Through synthetic modification of spectinomycin (SPC), we have identified a distinct structural subclass of N-ethylene linked aminomethyl SPCs (eAmSPCs) that are up to 64-fold more potent against Mab over the parent SPC. Mechanism of action and crystallography studies demonstrate that the eAmSPCs display a mode of ribosomal inhibition consistent with SPC. However, they exert their increased antimicrobial activity through enhanced accumulation, largely by circumventing efflux mechanisms. The N-ethylene linkage within this series plays a critical role in avoiding TetV-mediated efflux, as lead eAmSPC 2593 displays a mere fourfold susceptibility improvement against Mab ΔtetV, in contrast to the 64-fold increase for SPC. Even a minor shortening of the linkage by a single carbon, akin to 1st generation AmSPC 1950, results in a substantial increase in MICs and a 16-fold rise in susceptibility against Mab ΔtetV. These shifts suggest that longer linkages might modify the kinetics of drug expulsion by TetV, ultimately shifting the equilibrium towards heightened intracellular concentrations and enhanced antimicrobial efficacy. Furthermore, lead eAmSPCs were also shown to synergize with various classes of anti-Mab antibiotics and retain activity against clinical isolates and other mycobacterial strains. Encouraging pharmacokinetic profiles coupled with robust efficacy in Mab murine infection models suggest that eAmSPCs hold the potential to be developed into treatments for Mab and other NTM infections.


Asunto(s)
Antiinfecciosos , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Humanos , Animales , Ratones , Espectinomicina/farmacología , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Antibacterianos/farmacología , Micobacterias no Tuberculosas , Antiinfecciosos/farmacología , Etilenos/farmacología , Pruebas de Sensibilidad Microbiana
2.
Proc Natl Acad Sci U S A ; 115(24): E5440-E5449, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29848634

RESUMEN

Infectious diseases are often affected by specific pairings of hosts and pathogens and therefore by both of their genomes. The integration of a pair of genomes into genome-wide association mapping can provide an exquisitely detailed view of the genetic landscape of complex traits. We present a statistical method, ATOMM (Analysis with a Two-Organism Mixed Model), that maps a trait of interest to a pair of genomes simultaneously; this method makes use of whole-genome sequence data for both host and pathogen organisms. ATOMM uses a two-way mixed-effect model to test for genetic associations and cross-species genetic interactions while accounting for sample structure including interactions between the genetic backgrounds of the two organisms. We demonstrate the applicability of ATOMM to a joint association study of quantitative disease resistance (QDR) in the Arabidopsis thaliana-Xanthomonas arboricola pathosystem. Our method uncovers a clear host-strain specificity in QDR and provides a powerful approach to identify genetic variants on both genomes that contribute to phenotypic variation.


Asunto(s)
Arabidopsis/genética , Genoma/genética , Interacciones Huésped-Patógeno/genética , Mapeo Cromosómico/métodos , Resistencia a la Enfermedad/genética , Variación Genética/genética , Estudio de Asociación del Genoma Completo/métodos , Fenotipo , Sitios de Carácter Cuantitativo/genética , Xanthomonas/genética
3.
BMC Bioinformatics ; 21(1): 39, 2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32005132

RESUMEN

BACKGROUND: Genome-wide association studies (GWAS) are typically visualized using a two-dimensional Manhattan plot, displaying chromosomal location of SNPs along the x-axis and the negative log-10 of their p-value on the y-axis. This traditional plot provides a broad overview of the results, but offers little opportunity for interaction or expansion of specific regions, and is unable to show additional dimensions of the dataset. RESULTS: We created BigTop, a visualization framework in virtual reality (VR), designed to render a Manhattan plot in three dimensions, wrapping the graph around the user in a simulated cylindrical room. BigTop uses the z-axis to display minor allele frequency of each SNP, allowing for the identification of allelic variants of genes. BigTop also offers additional interactivity, allowing users to select any individual SNP and receive expanded information, including SNP name, exact values, and gene location, if applicable. BigTop is built in JavaScript using the React and A-Frame frameworks, and can be rendered using commercially available VR headsets or in a two-dimensional web browser such as Google Chrome. Data is read into BigTop in JSON format, and can be provided as either JSON or a tab-separated text file. CONCLUSIONS: Using additional dimensions and interactivity options offered through VR, we provide a new, interactive, three-dimensional representation of the traditional Manhattan plot for displaying and exploring GWAS data.


Asunto(s)
Biología Computacional/métodos , Realidad Virtual , Genoma , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple , Programas Informáticos , Interfaz Usuario-Computador
4.
PLoS Biol ; 15(8): e2002925, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28771471

RESUMEN

The Genomic Observatories Metadatabase (GeOMe, http://www.geome-db.org/) is an open access repository for geographic and ecological metadata associated with biosamples and genetic data. Whereas public databases have served as vital repositories for nucleotide sequences, they do not accession all the metadata required for ecological or evolutionary analyses. GeOMe fills this need, providing a user-friendly, web-based interface for both data contributors and data recipients. The interface allows data contributors to create a customized yet standard-compliant spreadsheet that captures the temporal and geospatial context of each biosample. These metadata are then validated and permanently linked to archived genetic data stored in the National Center for Biotechnology Information's (NCBI's) Sequence Read Archive (SRA) via unique persistent identifiers. By linking ecologically and evolutionarily relevant metadata with publicly archived sequence data in a structured manner, GeOMe sets a gold standard for data management in biodiversity science.


Asunto(s)
Biodiversidad , Bases de Datos de Ácidos Nucleicos , Metadatos , Metagenómica
5.
Biol Lett ; 16(2): 20190738, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32019466

RESUMEN

All eukaryotic life engages in symbioses with a diverse community of bacteria that are essential for performing basic life functions. In many cases, eukaryotic organisms form additional symbioses with other macroscopic eukaryotes. The tightly linked physical interactions that characterize many macroscopic symbioses create opportunities for microbial transfer, which likely affects the diversity and function of individual microbiomes, and may ultimately lead to microbiome convergence between distantly related taxa. Here, we sequence the microbiomes of five species of clownfish-hosting sea anemones that co-occur on coral reefs in the Maldives. We test the importance of evolutionary history, clownfish symbiont association, and habitat on the taxonomic and predicted functional diversity of the microbiome, and explore signals of microbiome convergence in anemone taxa that have evolved symbioses with clownfishes independently. Our data indicate that host identity and clownfish association shapes the majority of the taxonomic diversity of the clownfish-hosting sea anemone microbiome, and predicted functional microbial diversity analyses demonstrate a convergence among host anemone microbiomes, which reflect increased functional diversity over individuals that do not host clownfishes. Further, we identify upregulated predicted microbial functions that are likely affected by clownfish presence. Taken together our study potentially reveals an even deeper metabolic coupling between clownfishes and their host anemones, and what could be a previously unknown mutualistic benefit to anemones that are symbiotic with clownfishes.


Asunto(s)
Microbiota , Anémonas de Mar , Animales , Evolución Biológica , Arrecifes de Coral , Simbiosis
6.
Artículo en Inglés | MEDLINE | ID: mdl-30858215

RESUMEN

The most frequent ailment for which antibiotics are prescribed is otitis media (ear infections), which is most commonly caused by Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae Treatment of otitis media is complicated by the fact that the bacteria in the middle ear typically form biofilms, which can be recalcitrant to antibiotic treatment. Furthermore, bacterial respiratory infections can be greatly exacerbated by viral coinfection, which is particularly evidenced by the synergy between influenza and S. pneumoniae In this study, we sought to ascertain the in vivo efficacy of aminomethyl spectinomycin lead 1950, an effective antibacterial agent both in vitro and in vivo against Streptococcus pneumoniae in the context of complex respiratory infections and acute otitis media. A single dose of 1950 significantly reduced bacterial burden in the respiratory tract for all three pathogens, even when species were present in a coinfection model. Additionally, a single dose of 1950 effectively reduced pneumococcal acute otitis media from the middle ear. The agent 1950 also proved efficacious in the context of influenza-pneumococcal super infection. These data further support the development of this family of compounds as potential therapeutic agents against the common causes of complex upper respiratory tract infections and acute otitis media.


Asunto(s)
Infecciones del Sistema Respiratorio/tratamiento farmacológico , Espectinomicina/uso terapéutico , Animales , Femenino , Haemophilus influenzae/efectos de los fármacos , Haemophilus influenzae/patogenicidad , Ratones , Ratones Endogámicos BALB C , Moraxella catarrhalis/efectos de los fármacos , Moraxella catarrhalis/patogenicidad , Otitis Media/tratamiento farmacológico , Otitis Media/microbiología , Neumonía/tratamiento farmacológico , Neumonía/microbiología , Espectinomicina/administración & dosificación , Espectinomicina/química , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/patogenicidad
7.
Mol Ecol ; 28(10): 2694-2710, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30933383

RESUMEN

Theories involving niche diversification to explain high levels of tropical diversity propose that species are more likely to co-occur if they partition at least one dimension of their ecological niche space. Yet, numerous species appear to have widely overlapping niches based upon broad categorizations of resource use or functional traits. In particular, the extent to which food partitioning contributes to species coexistence in hyperdiverse tropical ecosystems remains unresolved. Here, we use a molecular approach to investigate inter- and intraspecific dietary partitioning between two species of damselfish (Dascyllus flavicaudus, Chromis viridis) that commonly co-occur in branching corals. Species-level identification of their diverse zooplankton prey revealed significant differences in diet composition between species despite their seemingly similar feeding strategies. Dascyllus exhibited a more diverse diet than Chromis, whereas Chromis tended to select larger prey items. A large calanoid copepod, Labidocera sp., found in low density and higher in the water column during the day, explained more than 19% of the variation in dietary composition between Dascyllus and Chromis. Dascyllus did not significantly shift its diet in the presence of Chromis, which suggests intrinsic differences in feeding behaviour. Finally, prey composition significantly shifted during the ontogeny of both fish species. Our findings show that levels of dietary specialization among coral reef associated species have likely been underestimated, and they underscore the importance of characterizing trophic webs in tropical ecosystems at higher levels of taxonomic resolution. They also suggest that niche redundancy may not be as common as previously thought.


Asunto(s)
Ecosistema , Peces/fisiología , Cadena Alimentaria , Perciformes/fisiología , Animales , Antozoos/fisiología , Arrecifes de Coral , Dieta , Conducta Alimentaria/fisiología , Conducta Predatoria/fisiología
8.
Mol Phylogenet Evol ; 139: 106526, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31158486

RESUMEN

The clownfish-sea anemone symbiosis has been a model system for understanding fundamental evolutionary and ecological processes. However, our evolutionary understanding of this symbiosis comes entirely from studies of clownfishes. A holistic understanding of a model mutualism requires systematic, biogeographic, and phylogenetic insight into both partners. Here, we conduct the largest phylogenetic analysis of sea anemones (Order Actiniaria) to date, with a focus on expanding the biogeographic and taxonomic sampling of the 10 nominal clownfish-hosting species. Using a combination of mtDNA and nuDNA loci we test (1) the monophyly of each clownfish-hosting family and genus, (2) the current anemone taxonomy that suggests symbioses with clownfishes evolved multiple times within Actiniaria, and (3) whether, like the clownfishes, there is evidence that host anemones have a Coral Triangle biogeographic origin. Our phylogenetic reconstruction demonstrates widespread poly- and para-phyly at the family and genus level, particularly within the family Stichodactylidae and genus Stichodactyla, and suggests that symbioses with clownfishes evolved minimally three times within sea anemones. We further recover evidence for a Tethyan biogeographic origin for some clades. Our data provide the first evidence that clownfish and some sea anemone hosts have different biogeographic origins, and that there may be cryptic species of host anemones. Finally, our findings reflect the need for a major taxonomic revision of the clownfish-hosting sea anemones.


Asunto(s)
Filogenia , Anémonas de Mar/clasificación , Anémonas de Mar/genética , Simbiosis/fisiología , Animales , Antozoos/fisiología , Evolución Biológica , ADN Mitocondrial/genética , Modelos Biológicos
9.
Ecol Appl ; 29(5): e01914, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31050090

RESUMEN

New genetic diagnostic approaches have greatly aided efforts to document global biodiversity and improve biosecurity. This is especially true for organismal groups in which species diversity has been underestimated historically due to difficulties associated with sampling, the lack of clear morphological characteristics, and/or limited availability of taxonomic expertise. Among these methods, DNA sequence barcoding (also known as "DNA barcoding") and by extension, meta-barcoding for biological communities, has emerged as one of the most frequently utilized methods for DNA-based species identifications. Unfortunately, the use of DNA barcoding is limited by the availability of complete reference libraries (i.e., a collection of DNA sequences from morphologically identified species), and by the fact that the vast majority of species do not have sequences present in reference databases. Such conditions are critical especially in tropical locations that are simultaneously biodiversity rich and suffer from a lack of exploration and DNA characterization by trained taxonomic specialists. To facilitate efforts to document biodiversity in regions lacking complete reference libraries, we developed a novel statistical approach that categorizes unidentified species as being either likely native or likely nonnative based solely on measures of nucleotide diversity. We demonstrate the utility of this approach by categorizing a large sample of specimens of terrestrial insects and spiders (collected as part of the Moorea BioCode project) using a generalized linear mixed model (GLMM). Using a training data set of known endemic (n = 45) and known introduced species (n = 102), we then estimated the likely native/nonnative status for 4,663 specimens representing an estimated 1,288 species (412 identified species), including both those specimens that were either unidentified or whose endemic/introduced status was uncertain. Using this approach, we were able to increase the number of categorized specimens by a factor of 4.4 (from 794 to 3,497), and the number of categorized species by a factor of 4.8 from (147 to 707) at a rate much greater than chance (77.6% accuracy). The study identifies phylogenetic signatures of both native and nonnative species and suggests several practical applications for this approach including monitoring biodiversity and facilitating biosecurity.


Asunto(s)
Biodiversidad , Código de Barras del ADN Taxonómico , Animales , ADN , Biblioteca de Genes , Filogenia
10.
Proc Natl Acad Sci U S A ; 112(13): 4032-7, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25775585

RESUMEN

The "mustard oil bomb" is a major defense mechanism in the Brassicaceae, which includes crops such as canola and the model plant Arabidopsis thaliana. These plants produce and store blends of amino acid-derived secondary metabolites called glucosinolates. Upon tissue rupture by natural enemies, the myrosinase enzyme hydrolyses glucosinolates, releasing defense molecules. Brassicaceae display extensive variation in the mixture of glucosinolates that they produce. To investigate the genetics underlying natural variation in glucosinolate profiles, we conducted a large genome-wide association study of 22 methionine-derived glucosinolates using A. thaliana accessions from across Europe. We found that 36% of among accession variation in overall glucosinolate profile was explained by genetic differentiation at only three known loci from the glucosinolate pathway. Glucosinolate-related SNPs were up to 490-fold enriched in the extreme tail of the genome-wide [Formula: see text] scan, indicating strong selection on loci controlling this pathway. Glucosinolate profiles displayed a striking longitudinal gradient with alkenyl and hydroxyalkenyl glucosinolates enriched in the West. We detected a significant contribution of glucosinolate loci toward general herbivore resistance and lifetime fitness in common garden experiments conducted in France, where accessions are enriched in hydroxyalkenyls. In addition to demonstrating the adaptive value of glucosinolate profile variation, we also detected long-distance linkage disequilibrium at two underlying loci, GS-OH and GS-ELONG. Locally cooccurring alleles at these loci display epistatic effects on herbivore resistance and fitness in ecologically realistic conditions. Together, our results suggest that natural selection has favored a locally adaptive configuration of physically unlinked loci in Western Europe.


Asunto(s)
Arabidopsis/química , Glucosinolatos/química , Herbivoria , Selección Genética , Alelos , Animales , Arabidopsis/genética , Biodiversidad , Cromatografía Liquida , Epistasis Genética , Evolución Molecular , Genómica , Genotipo , Geografía , Insectos , Desequilibrio de Ligamiento , Metionina/química , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal , Sitios de Carácter Cuantitativo , Espectrometría de Masas en Tándem
11.
Stud Health Technol Inform ; 310: 735-739, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38269906

RESUMEN

High-resolution whole slide image scans of histopathology slides have been widely used in recent years for prediction in cancer. However, in some cases, clinical informatics practitioners may only have access to low-resolution snapshots of histopathology slides, not high-resolution scans. We evaluated strategies for training neural network prognostic models in non-small cell lung cancer (NSCLC) based on low-resolution snapshots, using data from the Veterans Affairs Precision Oncology Data Repository. We compared strategies without transfer learning, with transfer learning from general domain images, and with transfer learning from publicly available high-resolution histopathology scans. We found transfer learning from high-resolution scans achieved significantly better performance than other strategies. Our contribution provides a foundation for future development of prognostic models in NSCLC that incorporate data from low-resolution pathology slide snapshots alongside known clinical predictors.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Informática Médica , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Medicina de Precisión , Aprendizaje Automático
12.
J Parkinsons Dis ; 14(2): 325-334, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38251063

RESUMEN

Background: Pre-clinical studies suggest that c-Abl activation may play an important role in the etiology of Parkinson's disease, making c-Abl an important target to evaluate for potential disease-modification. Objective: To assess safety, tolerability, and pharmacokinetics of the c-Abl inhibitor risvodetinib (IkT-148009) in healthy subjects and participants with Parkinson's disease. Methods: Part 1 (single ascending dose (SAD)) and Part 2 (7-day multiple ascending dose (MAD)) studies were in healthy volunteers. Participants were randomized 3 : 1 across 9 SAD doses and 3 MAD doses of risvodetinib (IkT-148009) or placebo. Part 3 was a MAD study conducted at two doses in 14 participants with mild-to-moderate PD (MAD-PD). Primary outcome measures were safety, tolerability and pharmacokinetics. Exploratory outcomes in PD participants included clinical measures of PD state, GI function, and cerebrospinal fluid (CSF) concentration. Results: 108 patients were treated with no dropouts. The SAD tested doses ranging from 12.5 to 325 mg, while the MAD tested 25 to 200 mg and MAD-PD tested 50 to 100 mg in Parkinson's participants. All active doses had a favorable safety profile with no clinically meaningful adverse events. Single dose pharmacokinetics were approximately linear between 12.5 mg and 200 mg for both Cmax and AUC0 - inf without distinction between healthy volunteers and participants with PD. Exposures at each dose were high relative to other drugs in the same kinase inhibitor class. Conclusions: Risvodetinib (IkT-148009) was well tolerated, had a favorable safety and pharmacology profile over 7-day dosing, did not induce serious adverse events and did not appear to induce deleterious side-effects in participants administered anti-PD medications.


Asunto(s)
Enfermedad de Parkinson , Anciano , Humanos , Área Bajo la Curva , Voluntarios Sanos , Enfermedad de Parkinson/tratamiento farmacológico
13.
ACS Cent Sci ; 10(5): 1105-1114, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38799654

RESUMEN

Cyclooxygenase-2 (COX-2) is an enzyme that plays a pivotal role in peripheral inflammation and pain via the prostaglandin pathway. In the central nervous system (CNS), COX-2 is implicated in neurodegenerative and psychiatric disorders as a potential therapeutic target and biomarker. However, clinical studies with COX-2 have yielded inconsistent results, partly due to limited mechanistic understanding of how COX-2 activity relates to CNS pathology. Therefore, developing COX-2 positron emission tomography (PET) radiotracers for human neuroimaging is of interest. This study introduces [11C]BRD1158, which is a potent and uniquely fast-binding, selective COX-2 PET radiotracer. [11C]BRD1158 was developed by prioritizing potency at COX-2, isoform selectivity over COX-1, fast binding kinetics, and free fraction in the brain. Evaluated through in vivo PET neuroimaging in rodent models with human COX-2 overexpression, [11C]BRD1158 demonstrated high brain uptake, fast target-engagement, functional reversibility, and excellent specific binding, which is advantageous for human imaging applications. Lastly, post-mortem samples from Huntington's disease (HD) patients and preclinical HD mouse models showed that COX-2 levels were elevated specifically in disease-affected brain regions, primarily from increased expression in microglia. These findings indicate that COX-2 holds promise as a novel clinical marker of HD onset and progression, one of many potential applications of [11C]BRD1158 human PET.

14.
Front Zool ; 10: 34, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23767809

RESUMEN

INTRODUCTION: The PCR-based analysis of homologous genes has become one of the most powerful approaches for species detection and identification, particularly with the recent availability of Next Generation Sequencing platforms (NGS) making it possible to identify species composition from a broad range of environmental samples. Identifying species from these samples relies on the ability to match sequences with reference barcodes for taxonomic identification. Unfortunately, most studies of environmental samples have targeted ribosomal markers, despite the fact that the mitochondrial Cytochrome c Oxidase subunit I gene (COI) is by far the most widely available sequence region in public reference libraries. This is largely because the available versatile ("universal") COI primers target the 658 barcoding region, whose size is considered too large for many NGS applications. Moreover, traditional barcoding primers are known to be poorly conserved across some taxonomic groups. RESULTS: We first design a new PCR primer within the highly variable mitochondrial COI region, the "mlCOIintF" primer. We then show that this newly designed forward primer combined with the "jgHCO2198" reverse primer to target a 313 bp fragment performs well across metazoan diversity, with higher success rates than versatile primer sets traditionally used for DNA barcoding (i.e. LCO1490/HCO2198). Finally, we demonstrate how the shorter COI fragment coupled with an efficient bioinformatics pipeline can be used to characterize species diversity from environmental samples by pyrosequencing. We examine the gut contents of three species of planktivorous and benthivorous coral reef fish (family: Apogonidae and Holocentridae). After the removal of dubious COI sequences, we obtained a total of 334 prey Operational Taxonomic Units (OTUs) belonging to 14 phyla from 16 fish guts. Of these, 52.5% matched a reference barcode (>98% sequence similarity) and an additional 32% could be assigned to a higher taxonomic level using Bayesian assignment. CONCLUSIONS: The molecular analysis of gut contents targeting the 313 COI fragment using the newly designed mlCOIintF primer in combination with the jgHCO2198 primer offers enormous promise for metazoan metabarcoding studies. We believe that this primer set will be a valuable asset for a range of applications from large-scale biodiversity assessments to food web studies.

15.
J Mol Diagn ; 25(3): 143-155, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36828596

RESUMEN

The Blood Profiling Atlas in Cancer (BLOODPAC) Consortium is a collaborative effort involving stakeholders from the public, industry, academia, and regulatory agencies focused on developing shared best practices on liquid biopsy. This report describes the results from the JFDI (Just Freaking Do It) study, a BLOODPAC initiative to develop standards on the use of contrived materials mimicking cell-free circulating tumor DNA, to comparatively evaluate clinical laboratory testing procedures. Nine independent laboratories tested the concordance, sensitivity, and specificity of commercially available contrived materials with known variant-allele frequencies (VAFs) ranging from 0.1% to 5.0%. Each participating laboratory utilized its own proprietary evaluation procedures. The results demonstrated high levels of concordance and sensitivity at VAFs of >0.1%, but reduced concordance and sensitivity at a VAF of 0.1%; these findings were similar to those from previous studies, suggesting that commercially available contrived materials can support the evaluation of testing procedures across multiple technologies. Such materials may enable more objective comparisons of results on materials formulated in-house at each center in multicenter trials. A unique goal of the collaborative effort was to develop a data resource, the BLOODPAC Data Commons, now available to the liquid-biopsy community for further study. This resource can be used to support independent evaluations of results, data extension through data integration and new studies, and retrospective evaluation of data collection.


Asunto(s)
ADN Tumoral Circulante , Neoplasias Hematológicas , Neoplasias , Humanos , Estudios Retrospectivos , Neoplasias/genética , Biopsia Líquida/métodos
16.
Kans J Med ; 15: 202-204, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35761999

RESUMEN

Introduction: The COVID-19 pandemic forced most Kansas schools to adopt remote or hybrid learning in 2020-2021. Wichita Collegiate School proceeded with an in-person teaching model. The purpose of this study was to determine if in-person learning can be done safely during the COVID-19 pandemic prior to vaccine use. Methods: Wichita Collegiate is a private school located in Sedgwick County, Kansas. The study population included 671 students (grades 1 - 12) and 130 staff. The procedures implemented during the school year (August 19, 2020 - May 21, 2021) included: mandatory face coverings, six feet physical distancing, and daily temperature checks. A registered nurse performed contact tracing and executed quarantine requirements per the U.S. Centers for Disease Control and Prevention guidelines. Results: Over the study period, 487 students and staff were tested for COVID-19 and 18.5% (n = 90) were positive. Overall, students and staff rate of COVID-19 infection was lower than the expected rate when compared to the surrounding community of Sedgwick County. Thorough contract tracing of positive cases revealed that 2.2% (n = 2) individuals were likely exposed to COVID-19 at school. Conclusions: This study suggested that transmission of COVID-19 was infrequent in a school setting with in-person attendance, even before widespread vaccine availability. By following public health guidelines and utilizing contact tracing, it was possible to limit the spread of COVID-19 during in-person learning. This has immediate implications for how schools safely returned to in-person learning in the post-vaccine era.

17.
J Dent Hyg ; 96(6): 43-49, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36539288

RESUMEN

Purpose: Access to adequate dental services is limited for children in rural communities in the United States.The purpose of this paper was to describe how two school-based teledentistry programs increased access to oral health services for children and adolescents living in rural areas.Methods: The School-Based Telehealth Network Grant Program (SB TNGP) was designed to expand access to, and improve the quality of health care services in schools through telehealth. Data were collected from July 1 to December 31, 2019 on 164 students at 7 preschool sites by Marshfield Clinic Health System (MCHS) and on 1,467 students at 57 school sites by Children's Dental Services (CDS).Results: Both MCHS and CDS reported that over 99 percent of encounters were successfully completed using telehealth technology. Both grantees reported that 99.4 percent of students received an oral health evaluation/screening, primarily through a dental hygienist traveling to the school site connected to a dentist or advanced dental therapist through telehealth. One half of the students had dental caries (50.6 % MCHS; 48.6% CDS). Both grantees referred all students with dental caries for oral health follow-up care.Conclusions: By utilizing dental hygienists traveling to school sites and connecting with centrally located dental professionals through telehealth, both grantees increased access to needed oral health care services for rural children. Oral health screening in school settings using dental hygienists with teledentistry can provide an efficient way to identify students at high risk for dental caries and offer a valuable strategy for oral disease prevention and control.


Asunto(s)
Caries Dental , Telemedicina , Niño , Adolescente , Preescolar , Humanos , Estados Unidos , Caries Dental/prevención & control , Caries Dental/diagnóstico , Población Rural , Atención a la Salud , Salud Bucal
18.
PeerJ ; 10: e13790, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35959477

RESUMEN

DNA barcoding is critical to conservation and biodiversity research, yet public reference databases are incomplete. Existing barcode databases are biased toward cytochrome oxidase subunit I (COI) and frequently lack associated voucher specimens or geospatial metadata, which can hinder reliable species assignments. The emergence of metabarcoding approaches such as environmental DNA (eDNA) has necessitated multiple marker techniques combined with barcode reference databases backed by voucher specimens. Reference barcodes have traditionally been generated by Sanger sequencing, however sequencing multiple markers is costly for large numbers of specimens, requires multiple separate PCR reactions, and limits resulting sequences to targeted regions. High-throughput sequencing techniques such as genome skimming enable assembly of complete mitogenomes, which contain the most commonly used barcoding loci (e.g., COI, 12S, 16S), as well as nuclear ribosomal repeat regions (e.g., ITS1&2, 18S). We evaluated the feasibility of genome skimming to generate barcode references databases for marine fishes by assembling complete mitogenomes and nuclear ribosomal repeats. We tested genome skimming across a taxonomically diverse selection of 12 marine fish species from the collections of the National Museum of Natural History, Smithsonian Institution. We generated two sequencing libraries per species to test the impact of shearing method (enzymatic or mechanical), extraction method (kit-based or automated), and input DNA concentration. We produced complete mitogenomes for all non-chondrichthyans (11/12 species) and assembled nuclear ribosomal repeats (18S-ITS1-5.8S-ITS2-28S) for all taxa. The quality and completeness of mitogenome assemblies was not impacted by shearing method, extraction method or input DNA concentration. Our results reaffirm that genome skimming is an efficient and (at scale) cost-effective method to generate all mitochondrial and common nuclear DNA barcoding loci for multiple species simultaneously, which has great potential to scale for future projects and facilitate completing barcode reference databases for marine fishes.


Asunto(s)
Genoma Mitocondrial , Animales , Genoma Mitocondrial/genética , Código de Barras del ADN Taxonómico/métodos , Peces , Biodiversidad , ADN
19.
Tuberculosis (Edinb) ; 132: 102157, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34894561

RESUMEN

The peptide binding protein DppA is an ABC transporter found in prokaryotes that has the potential to be used as drug delivery tool for hybrid antibiotic compounds. Understanding the motifs and structures that bind to DppA is critical to the development of these bivalent compounds. This study focused on the biophysical analysis of the MtDppA from M. tuberculosis. Analysis of the crystal structure revealed a SVA tripeptide was co-crystallized with the protein. Further peptide analysis demonstrated MtDppA shows very little affinity for dipeptides but rather preferentially binds to peptides that are 3-4 amino acids in length. The structure-activity relationships (SAR) between MtDppA and tripeptides with varied amino acid substitutions were evaluated using thermal shift, SPR, and molecular dynamics simulations. Efforts to identify novel ligands for use as alternative scaffolds through the thermal shift screening of 35,000 compounds against MtDppA were unsuccessful, indicating that the MtDppA binding pocket is highly specialized for uptake of peptides. Future development of compounds that seek to utilize MtDppA as a drug delivery mechanism, will likely require a tri- or tetrapeptide component with a hydrophobic -non-acidic peptide sequence.


Asunto(s)
Proteínas Portadoras/genética , Mycobacterium tuberculosis/genética , Péptidos/genética , Proteínas Portadoras/biosíntesis , Humanos , Mycobacterium tuberculosis/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/estadística & datos numéricos
20.
Nat Med ; 28(3): 528-534, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35165451

RESUMEN

Autism spectrum disorder (ASD) is defined by hallmark behaviors involving reduced communication and social interaction as well as repetitive activities and restricted interests. ASD represents a broad spectrum, from minimally affected individuals to those requiring intense support, with additional manifestations often including anxiety, irritability/aggression and altered sensory processing. Gastrointestinal (GI) issues are also common in ASD, and studies have identified changes in the gut microbiome of individuals with ASD compared to control populations, complementing recent findings of differences in gut-derived metabolites in feces and circulation. However, a role for the GI tract or microbiome in ASD remains controversial. Here we report that an oral GI-restricted adsorbent (AB-2004) that has affinity for small aromatic or phenolic molecules relieves anxiety-like behaviors that are driven by a gut microbial metabolite in mice. Accordingly, a pilot human study was designed and completed to evaluate the safety of AB-2004 in an open-label, single-cohort, multiple-ascending-dose clinical trial that enrolled 30 adolescents with ASD and GI symptoms in New Zealand and Australia. AB-2004 was shown to have good safety and tolerability across all dose levels, and no drug-related serious adverse events were identified. Significant reductions in specific urinary and plasma levels of gut bacterial metabolites were observed between baseline and end of AB-2004 treatment, demonstrating likely target engagement. Furthermore, we observed improvements in multiple exploratory behavioral endpoints, most significantly in post hoc analysis of anxiety and irritability, as well as GI health, after 8 weeks of treatment. These results from an open-label study (trial registration no. ACTRN12618001956291) suggest that targeting gut-derived metabolites with an oral adsorbent is a safe and well-tolerated approach to improving symptoms associated with ASD, thereby emboldening larger placebo-controlled trials.


Asunto(s)
Trastorno del Espectro Autista , Microbioma Gastrointestinal , Microbiota , Adolescente , Animales , Trastorno del Espectro Autista/tratamiento farmacológico , Heces , Tracto Gastrointestinal/metabolismo , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA