Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 90(2): 552-568, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37036033

RESUMEN

PURPOSE: To develop 2D turbo spin-echo (TSE) imaging using annular spiral rings (abbreviated "SPRING-RIO TSE") with compensation of concomitant gradient fields and B0 inhomogeneity at both 0.55T and 1.5T for fast T2 -weighted imaging. METHODS: Strategies of gradient waveform modifications were implemented in SPRING-RIO TSE for compensation of self-squared concomitant gradient terms at the TE and across echo spacings, along with reconstruction-based corrections to simultaneously compensate for the residual concomitant gradient and B0 field induced phase accruals along the readout. The signal pathway disturbance caused by time-varying and spatially dependent concomitant fields was simulated, and echo-to-echo phase variations before and after sequence-based compensation were compared. Images from SPRING-RIO TSE with no compensation, with compensation, and Cartesian TSE were also compared via phantom and in vivo acquisitions. RESULTS: Simulation showed how concomitant fields affected the signal evolution with no compensation, and both simulation and phantom studies demonstrated the performance of the proposed sequence modifications, as well as the readout off-resonance corrections. Volunteer data showed that after full correction, the SPRING-RIO TSE sequence achieved high image quality with improved SNR efficiency (15%-20% increase), and reduced RF SAR (˜50% reduction), compared to the standard Cartesian TSE, presenting potential benefits, especially in regaining SNR at low-field (0.55T). CONCLUSION: Implementation of SPRING-RIO TSE with concomitant field compensation was tested at 0.55T and 1.5T. The compensation principles can be extended to correct for other trajectory types that are time-varying along the echo train and temporally asymmetric in TSE-based imaging.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Aumento de la Imagen/métodos , Fantasmas de Imagen , Fenómenos Magnéticos
2.
Magn Reson Med ; 89(6): 2255-2263, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36669874

RESUMEN

PURPOSE: To develop and test compressed sensing-based multiframe 3D MRI of grid-tagged hyperpolarized gas in the lung. THEORY AND METHODS: Applying grid-tagging RF pulses to inhaled hyperpolarized gas results in images in which signal intensity is predictably and sparsely distributed. In the present work, this phenomenon was used to produce a sampling pattern in which k-space is undersampled by a factor of approximately seven, yet regions of high k-space energy remain densely sampled. Three healthy subjects received multiframe 3D 3 He tagging MRI using this undersampling method. Images were collected during a single exhalation at eight timepoints spanning the breathing cycle from end-of-inhalation to end-of-exhalation. Grid-tagged images were used to generate 3D displacement maps of the lung during exhalation, and time-resolved maps of principal strains and fractional volume change were generated from these displacement maps using finite-element analysis. RESULTS: Tags remained clearly resolvable for 4-6 timepoints (5-8 s) in each subject. Displacement maps revealed noteworthy temporal and spatial nonlinearities in lung motion during exhalation. Compressive normal strains occurred along all three principal directions but were primarily oriented in the head-foot direction. Fractional volume changes displayed clear bilateral symmetry, but with the lower lobes displaying slightly higher change than the upper lobes in 2 of the 3 subjects. CONCLUSION: We developed a compressed sensing-based method for multiframe 3D MRI of grid-tagged hyperpolarized gas in the lung during exhalation. This method successfully overcomes previous challenges for 3D dynamic grid-tagging, allowing time-resolved biomechanical readouts of lung function to be generated.


Asunto(s)
Compresión de Datos , Pulmón , Masculino , Humanos , Pulmón/diagnóstico por imagen , Respiración , Imagen por Resonancia Magnética/métodos
3.
Vasc Med ; 28(4): 282-289, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37093712

RESUMEN

BACKGROUND: The distal superficial femoral artery (SFA) is most commonly affected in peripheral artery disease (PAD). The effects of the proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor alirocumab added to statin therapy on SFA atherosclerosis, downstream flow, and walking performance are unknown. METHODS: Thirty-five patients with PAD on maximally tolerated statin therapy were recruited. Patients were randomized to alirocumab 150 mg subcutaneously (n = 18) or matching placebo (n = 17) therapy every 2 weeks for 1 year. The primary outcome was change in SFA plaque volume by black blood magnetic resonance imaging (MRI). Secondary outcomes were changes in calf muscle perfusion by cuff/occlusion hyperemia arterial spin labeling MRI, 6-minute walk distance (6MWD), low-density lipoprotein (LDL) cholesterol, and other biomarkers. RESULTS: Age (mean ± SD) was 64 ± 8 years, 20 (57%) patients were women, 17 (49%) were Black individuals, LDL was 107 ± 36 mg/dL, and the ankle-brachial index 0.71 ± 0.20. The LDL fell more with alirocumab than placebo (mean [95% CI]) (-49.8 [-66.1 to -33.6] vs -7.7 [-19.7 to 4.3] mg/dL; p < 0.0001). Changes in SFA plaque volume and calf perfusion showed no difference between groups when adjusted for baseline (+0.25 [-0.29 to 0.79] vs -0.04 [-0.47 to 0.38] cm3; p = 0.37 and 0.22 [-8.67 to 9.11] vs 3.81 [-1.45 to 9.08] mL/min/100 g; p = 0.46, respectively), nor did 6MWD. CONCLUSION: In this exploratory study, the addition of alirocumab therapy to statins did not alter SFA plaque volume, calf perfusion or 6MWD despite significant LDL lowering. Larger studies with longer follow up that include plaque characterization may improve understanding of the effects of intensive LDL-lowering therapy in PAD (ClinicalTrials.gov Identifier: NCT02959047).


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Enfermedad Arterial Periférica , Placa Aterosclerótica , Humanos , Femenino , Persona de Mediana Edad , Anciano , Masculino , Proproteína Convertasa 9/uso terapéutico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Anticuerpos Monoclonales/efectos adversos , LDL-Colesterol/uso terapéutico , Placa Aterosclerótica/inducido químicamente , Placa Aterosclerótica/tratamiento farmacológico , Enfermedad Arterial Periférica/diagnóstico por imagen , Enfermedad Arterial Periférica/tratamiento farmacológico , Músculos , Resultado del Tratamiento , Método Doble Ciego
4.
MAGMA ; 36(6): 857-867, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37665502

RESUMEN

OBJECTIVE: To develop two spiral-based bSSFP pulse sequences combined with L + S reconstruction for accelerated ungated, free-breathing dynamic cardiac imaging at 1.5 T. MATERIALS AND METHODS: Tiny golden angle rotated spiral-out and spiral-in/out bSSFP sequences combined with view-sharing (VS), compressed sensing (CS), and low-rank plus sparse (L + S) reconstruction were evaluated and compared via simulation and in vivo dynamic cardiac imaging studies. The proposed methods were then validated against the standard cine, in terms of quantitative image assessment and qualitative quality rating. RESULTS: The L + S method yielded the least residual artifacts and the best image sharpness among the three methods. Both spiral cine techniques showed clinically diagnostic images (score > 3). Compared to standard cine, there were significant differences in global image quality and edge sharpness for spiral cine techniques, while there was significant difference in image contrast for the spiral-out cine but no significant difference for the spiral-in/out cine. There was good agreement in left ventricular ejection fraction for both the spiral-out cine (- 1.6 [Formula: see text] 3.1%) and spiral-in/out cine (- 1.5 [Formula: see text] 2.8%) against standard cine. DISCUSSION: Compared to the time-consuming standard cine (~ 5 min) which requires ECG-gating and breath-holds, the proposed spiral bSSFP sequences achieved ungated, free-breathing cardiac movies at a similar spatial (1.5 × 1.5 × 8 mm3) and temporal resolution (36 ms) per slice for whole heart coverage (10-15 slices) within 45 s, suggesting the clinical potential for improved patient comfort or for imaging patients with arrhythmias or who cannot hold their breath.


Asunto(s)
Corazón , Imagen por Resonancia Cinemagnética , Función Ventricular Izquierda , Humanos , Contencion de la Respiración , Corazón/diagnóstico por imagen , Imagen por Resonancia Magnética , Imagen por Resonancia Cinemagnética/métodos , Reproducibilidad de los Resultados , Volumen Sistólico
5.
MAGMA ; 36(3): 465-475, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37306784

RESUMEN

OBJECTIVE: Diagnostic-quality neuroimaging methods are vital for widespread clinical adoption of low field MRI. Spiral imaging is an efficient acquisition method that can mitigate the reduced signal-to-noise ratio at lower field strengths. As concomitant field artifacts are worse at lower field, we propose a generalizable quadratic gradient-field nulling as an echo-to-echo compensation and apply it to spiral TSE at 0.55 T. MATERIALS AND METHODS: A spiral in-out TSE acquisition was developed with a compensation for concomitant field variation between spiral interleaves, by adding bipolar gradients around each readout to minimize phase differences at each refocusing pulse. Simulations were performed to characterize concomitant field compensation approaches. We demonstrate our proposed compensation method in phantoms and (n = 8) healthy volunteers at 0.55 T. RESULTS: Spiral read-outs with integrated spoiling demonstrated strong concomitant field artifacts but were mitigated using the echo-to-echo compensation. Simulations predicted a decrease of concomitant field phase RMSE between echoes of 42% using the proposed compensation. Spiral TSE improved SNR by 17.2 ± 2.3% compared to reference Cartesian acquisition. DISCUSSION: We demonstrated a generalizable approach to mitigate concomitant field artifacts for spiral TSE acquisitions via the addition of quadratic-nulling gradients, which can potentially improve neuroimaging at low-field through increased acquisition efficiency.


Asunto(s)
Encéfalo , Aumento de la Imagen , Humanos , Aumento de la Imagen/métodos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Relación Señal-Ruido , Artefactos
6.
Magn Reson Med ; 88(2): 601-616, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35394088

RESUMEN

PURPOSE: To develop a new approach to 2D turbo spin -echo (TSE) imaging using annular spiral rings with a retraced in/out trajectory, dubbed "SPRING-RIO TSE", for fast T2 -weighted brain imaging at 3T. METHODS: A long spiral trajectory was split into annular segmentations that were then incorporated into a 2D TSE acquisition module to fully exploit the sampling efficiency of spiral rings. A retraced in/out trajectory strategy coupled with spiral-ring TSE was introduced to increase SNR, mitigate T2 -decay induced artifacts, and self-correct moderate off-resonance while maintaining the target TE and causing no scan time penalty. Model-based k-space estimation and semiautomatic off-resonance correction algorithms were implemented to minimize effects of k-space trajectory infidelity and B0 inhomogeneity, respectively. The resulting SPRING-RIO TSE method was compared to the original spiral-ring (abbreviated "SPRING") TSE and Cartesian TSE using simulations, and phantom and in vivo acquisitions. RESULTS: Simulation and phantom studies demonstrated the performance of the proposed SPRING-RIO TSE pulses sequence, as well as that of trajectory correction and off-resonance correction. Volunteer data showed that the proposed method achieves high-quality 2D T2 -weighted brain imaging with a higher scan efficiency (0:45 min/14 slices versus 1:31 min/14 slices), improved image contrast, and reduced specific absorption rate compared to conventional 2D Cartesian TSE. CONCLUSION: 2D T2 -weighted brain imaging using spiral-ring TSE was implemented and tested, providing several potential advantages over conventional 2D Cartesian TSE imaging.


Asunto(s)
Aumento de la Imagen , Imagen por Resonancia Magnética , Artefactos , Encéfalo/diagnóstico por imagen , Humanos , Aumento de la Imagen/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos
7.
Magn Reson Med ; 86(4): 2095-2104, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34021628

RESUMEN

PURPOSE: To use deep learning for suppression of the artifact-generating T1 -relaxation echo in cine displacement encoding with stimulated echoes (DENSE) for the purpose of reducing the scan time. METHODS: A U-Net was trained to suppress the artifact-generating T1 -relaxation echo using complementary phase-cycled data as the ground truth. A data-augmentation method was developed that generates synthetic DENSE images with arbitrary displacement-encoding frequencies to suppress the T1 -relaxation echo modulated for a range of frequencies. The resulting U-Net (DAS-Net) was compared with k-space zero-filling as an alternative method. Non-phase-cycled DENSE images acquired in shorter breath-holds were processed by DAS-Net and compared with DENSE images acquired with phase cycling for the quantification of myocardial strain. RESULTS: The DAS-Net method effectively suppressed the T1 -relaxation echo and its artifacts, and achieved root Mean Square(RMS) error = 5.5 ± 0.8 and structural similarity index = 0.85 ± 0.02 for DENSE images acquired with a displacement encoding frequency of 0.10 cycles/mm. The DAS-Net method outperformed zero-filling (root Mean Square error = 5.8 ± 1.5 vs 13.5 ± 1.5, DAS-Net vs zero-filling, P < .01; and structural similarity index = 0.83 ± 0.04 vs 0.66 ± 0.03, DAS-Net vs zero-filling, P < .01). Strain data for non-phase-cycled DENSE images with DAS-Net showed close agreement with strain from phase-cycled DENSE. CONCLUSION: The DAS-Net method provides an effective alternative approach for suppression of the artifact-generating T1 -relaxation echo in DENSE MRI, enabling a 42% reduction in scan time compared to DENSE with phase-cycling.


Asunto(s)
Artefactos , Aprendizaje Profundo , Contencion de la Respiración , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Imagen por Resonancia Cinemagnética
8.
Magn Reson Med ; 85(5): 2686-2695, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33349950

RESUMEN

PURPOSE: Magnetization transfer ratio (MTR) histograms are used widely for the assessment of diffuse pathological changes in the brain. For broad clinical application, MTR scans should not only be fast, but confounding factors should also be minimized for high reproducibility. To this end, a 1-minute whole-brain spiral MTR method with intrinsic B1 -field correction is introduced. METHODS: A spiral multislice spoiled gradient-echo sequence with adaptable magnetization-transfer saturation pulses (angle ß) is proposed. After a low-resolution single-shot spiral readout and a dummy preparation period, high-resolution images are acquired using an interleaved spiral readout. For whole-brain MTR imaging, 50 interleaved slices with three different magnetization-transfer contrasts (ß = 0°, 350°, and 550°) together with an intrinsic B1 -field map are recorded in 58.5 seconds on a clinical 3T system. From the three contrasts, two sets of MTR images are derived and used for subsequent B1 correction, assuming a linear dependency on ß. For validation, a binary spin bath model is used. RESULTS: For the proposed B1 -correction scheme, numerical simulations indicate for brain tissue a decrease of about a factor of 10 for the B1 -related bias on MTR. As a result, following B1 correction, MTR differences in gray and white matter become markedly accentuated, and the reproducibility of MTR histograms from scan-rescan experiments is improved. Furthermore, B1 -corrected MTR histograms show a lower variability for age-matched normal-appearing brain tissue. CONCLUSION: From its speed and offering intrinsic B1 correction, the proposed method shows excellent prospects for clinical studies that explore magnetization-transfer effects based on MTR histogram analysis.


Asunto(s)
Encéfalo , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Imagen por Resonancia Magnética , Reproducibilidad de los Resultados
9.
Magn Reson Med ; 85(4): 2145-2159, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33174639

RESUMEN

PURPOSE: Intraoperative T2 -weighted (T2-w) imaging unreliably captures image contrast specific to thermal ablation after transcranial MR-guided focused ultrasound surgery, impeding dynamic imaging feedback. Using a porcine thalamotomy model, we test the unproven hypothesis that intraoperative DWI can improve dynamic feedback by detecting lesioning within 30 minutes of transcranial MR-guided focused ultrasound surgery. METHODS: Twenty-five thermal lesions were formed in six porcine models using a clinical transcranial MR-guided focused ultrasound surgery system. A novel diffusion-weighted pulse sequence monitored the formation of T2-w and diffusion-weighted lesion contrast after ablation. Using postoperative T2-w contrast to indicate lesioning, apparent intraoperative image contrasts and diffusion coefficients at each lesion site were computed as a function of time after ablation, observed peak temperature, and observed thermal dose. Lesion sizes segmented from imaging and thermometry were compared. Image reviewers estimated the time to emergence of lesion contrast. Intraoperative image contrasts were analyzed using receiver operator curves. RESULTS: On average, the apparent diffusion coefficient at lesioned sites decreased within 5 minutes after ablation relative to control sites. In-plane lesion areas on intraoperative DWI varied from postoperative T2-w MRI and MR thermometry by 9.6±9.7 mm2 and -4.0±7.1 mm2 , respectively. The 0.25, 0.5, and 0.75 quantiles of the earliest times of observed T2-w and diffusion-weighted lesion contrast were 10.7, 21.0, and 27.8 minutes and 3.7, 8.6, and 11.8 minutes, respectively. The T2-w and diffusion-weighted contrasts and apparent diffusion coefficient values produced areas under the receiver operator curve of 0.66, 0.80, and 0.74, respectively. CONCLUSION: Intraoperative DWI can detect MR-guided focused ultrasound surgery lesion formation in the brain within several minutes after treatment.


Asunto(s)
Hipertermia Inducida , Cirugía Asistida por Computador , Animales , Imagen de Difusión por Resonancia Magnética , Imagen por Resonancia Magnética , Porcinos , Tálamo
10.
Magn Reson Med ; 86(2): 648-662, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33709415

RESUMEN

PURPOSE: To develop and evaluate a high spatial resolution (1.25 × 1.25 mm2 ) spiral first-pass myocardial perfusion imaging technique with whole-heart coverage at 3T, to better assess transmural differences in perfusion between the endocardium and epicardium, to quantify the myocardial ischemic burden, and to improve the detection of obstructive coronary artery disease. METHODS: Whole-heart high-resolution spiral perfusion pulse sequences and corresponding motion-compensated reconstruction techniques for both interleaved single-slice (SS) and simultaneous multi-slice (SMS) acquisition with or without outer-volume suppression (OVS) were developed. The proposed techniques were evaluated in 34 healthy volunteers and 8 patients (55 data sets). SS and SMS images were reconstructed using motion-compensated L1-SPIRiT and SMS-Slice-L1-SPIRiT, respectively. Images were blindly graded by 2 experienced cardiologists on a 5-point scale (5, excellent; 1, poor). RESULTS: High-quality perfusion imaging was achieved for both SS and SMS acquisitions with or without OVS. The SS technique without OVS had the highest scores (4.5 [4, 5]), which were greater than scores for SS with OVS (3.5 [3.25, 3.75], P < .05), MB = 2 without OVS (3.75 [3.25, 4], P < .05), and MB = 2 with OVS (3.75 [2.75, 4], P < .05), but significantly higher than those for MB = 3 without OVS (4 [4, 4], P = .95). SMS image quality was improved using SMS-Slice-L1-SPIRiT as compared to SMS-L1-SPIRiT (P < .05 for both reviewers). CONCLUSION: We demonstrated the successful implementation of whole-heart spiral perfusion imaging with high resolution at 3T. Good image quality was achieved, and the SS without OVS showed the best image quality. Evaluation in patients with expected ischemic heart disease is warranted.


Asunto(s)
Imagen de Perfusión Miocárdica , Humanos , Procesamiento de Imagen Asistido por Computador , Movimiento (Física) , Imagen de Perfusión , Pericardio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA