Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 306
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chem Rev ; 123(5): 2112-2154, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35772093

RESUMEN

For each kilogram of food protein wasted, between 15 and 750 kg of CO2 end up in the atmosphere. With this alarming carbon footprint, food protein waste not only contributes to climate change but also significantly impacts other environmental boundaries, such as nitrogen and phosphorus cycles, global freshwater use, change in land composition, chemical pollution, and biodiversity loss. This contrasts sharply with both the high nutritional value of proteins, as well as their unique chemical and physical versatility, which enable their use in new materials and innovative technologies. In this review, we discuss how food protein waste can be efficiently valorized not only by reintroduction into the food chain supply but also as a template for the development of sustainable technologies by allowing it to exit the food-value chain, thus alleviating some of the most urgent global challenges. We showcase three technologies of immediate significance and environmental impact: biodegradable plastics, water purification, and renewable energy. We discuss, by carefully reviewing the current state of the art, how proteins extracted from food waste can be valorized into key players to facilitate these technologies. We furthermore support analysis of the extant literature by original life cycle assessment (LCA) examples run ad hoc on both plant and animal waste proteins in the context of the technologies considered, and against realistic benchmarks, to quantitatively demonstrate their efficacy and potential. We finally conclude the review with an outlook on how such a comprehensive management of food protein waste is anticipated to transform its carbon footprint from positive to negative and, more generally, have a favorable impact on several other important planetary boundaries.


Asunto(s)
Eliminación de Residuos , Animales , Alimentos , Contaminación Ambiental/análisis , Nitrógeno , Tecnología
2.
Chem Soc Rev ; 53(9): 4333-4348, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38597321

RESUMEN

Water is our most valuable and precious resource, yet it is only available in a limited amount. Sustainable use of water can therefore only operate in a circular way; nonetheless, still today depletion of water resources proceeds at an accelerated pace. Here, we quantitatively assess the water circular economy and the status of water management across 132 countries distributed over six continents by introducing the water circular economy index, WCEI, based on the three pillars of water circular economy, i.e., decreasing, optimising, and retaining. This index relies on eight indicators such as water stress, tap water price, water use efficiency, the degree of water resource management, proportion of safely treated wastewater, population with access to safe drinking water, drinking water quality, and surface water changes in hydrological basins. It allows ranking 132 countries, and most importantly to identify criticalities and bottlenecks in the sustainable use of water resources across the six continents, pointing at possible directions and actions towards a fully circular economy of water.

3.
Nano Lett ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598498

RESUMEN

Metal ions play a dual role in biological systems. Although they actively participate in vital life processes, they may contribute to protein aggregation and misfolding and thus contribute to development of diseases and other pathologies. In nanofabrication, metal ions mediate the formation of nanostructures with diverse properties. Here, we investigated the self-assembly of α-lactalbumin into nanotubes induced by coordination with metal ions, screened among the series Mn2+, Co2+, Ni2+, Zn2+, Cd2+, and Au3+. Our results revealed that the affinity of metal ions toward hydrolyzed α-lactalbumin peptides not only impacts the kinetics of nanotube formation but also influences their length and rigidity. These findings expand our understanding of supramolecular assembly processes in protein-based materials and pave the way for designing novel materials such as metallogels in biochip and biosensor applications.

4.
Small ; 20(27): e2305839, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38312104

RESUMEN

Amyloid fibrils are biological rod-like particles showing liquid-liquid crystalline phase separation into cholesteric phases through a complex behavior of nucleation, growth, and order-order transitions. Yet, controlling the self-assembly of amyloids into liquid crystals, and particularly the resulting helical periodicity, remains challenging. Here, a novel cholesteric system is introduced and characterized based on hen egg white lysozyme (HEWL) amyloid fibrils and the results rationalized via a combination of experiments and theoretical scaling arguments. Specifically, the transition behaviors are elucidated from homogenous nematic, bipolar nematic to cholesteric tactoids following the classic Onsager model and the free energy functional model from Frank-Oseen elasticity theory. Additionally, the critical effects of pH and ionic strength on these order-order-transitions, as well as on the shape and helical pitch of the cholesteric tactoids are demonstrated. It is found that a small increase in pH from 2.0 to 2.8 results in a 34% decrease in pitch, while, on the contrary, increasing ionic strength from 0 to 10 mm leads to a 39% increase in pitch. The present study provides an approach to obtain controllable chiral nematic structures from HEWL amyloid fibrils, and may contribute further to the application of protein-based liquid crystals in pitch-sensitive biosensors or biomimetic architectures.


Asunto(s)
Amiloide , Muramidasa , Muramidasa/química , Amiloide/química , Concentración de Iones de Hidrógeno , Cristales Líquidos/química , Concentración Osmolar , Animales
5.
Biomacromolecules ; 25(3): 2033-2040, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38327086

RESUMEN

The global plastic waste problem is pushing for the development of sustainable alternatives, encouraged by stringent regulations combined with increased environmental consciousness. In response, this study presents an industrial-scale proof of concept to produce self-standing, transparent, and flexible bioplastic films, offering a possible solution to plastic pollution and resource valorization. We achieve this by combining amyloid fibrils self-assembled from food waste with methylcellulose and glycerol. Specifically, soy whey and okara, two pivotal protein-rich byproducts of tofu manufacturing, emerge as sustainable and versatile precursors for amyloid fibril formation and bioplastic development. An exhaustive industrial-scale feasibility study involving the transformation of 500 L of soy whey into ∼1 km (27 kg) of bioplastic films underscores the potential of this technology. To extend the practicality of our approach, we further processed a running kilometer of film at the industrial scale into transparent windows for paper-based packaging. The mechanical properties and the water interactions of the novel film are tested and compared with those of commercially used plastic films. By pioneering the large-scale production of biodegradable bioplastics sourced from food byproducts, this work not only simultaneously addresses the dual challenges of plastic pollution and food waste but also practically demonstrates the feasibility of biopolymeric building block valorization for the development of sustainable materials in real-world scenarios.


Asunto(s)
Alimentos , Eliminación de Residuos , Biopolímeros , Embalaje de Productos , Plásticos
6.
Faraday Discuss ; 249(0): 469-484, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-37786338

RESUMEN

This study investigates the influence of excess water on the lipidic mesophase during the phase transition from diamond cubic phase (Pn3̄m) to reverse hexagonal phase (HII). Using a combination of small angle X-ray scattering (SAXS), broadband dielectric spectroscopy (BDS), and Fourier transform infrared (FTIR) techniques, we explore the dynamics of lipids and their interaction with water during phase transition. Our BDS results reveal three relaxation processes originating from lipids, all of which exhibit a kink during the phase transition. With the excess water, these processes accelerate due to the plasticizing effect of water. Additionally, our results demonstrate that the headgroups in the HII phase are more densely packed than those in the Pn3̄m phase, which agrees with the FTIR results. Meanwhile, we investigate the influence of excess water on the lipid headgroups, the H-bond network of water, the lipid tail, and the interface carbonyl group between the head and tail of the lipid molecule. The results indicate that excess water permeates the lipid interface and forms additional hydrogen bonds with the carbonyl groups. As a result, the headgroups are more flexible in a lipidic mesophase with excess water than those in mesophases without excess water.

7.
Nano Lett ; 23(21): 9912-9919, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37856435

RESUMEN

Neurodegenerative diseases are characterized by the presence of cross-ß-sheet amyloid fibrils and a rich mesoscopic polymorphism, requiring noninvasive detection with high fidelity. Here, we introduce a methodology that can probe via a sensitive synthetic nanopore the complex polymorphism of amyloid fibrils by an automated and fast screening protocol. Statistically analyzing the translocation events on two model amyloid systems derived from ß-lactoglobulin and lysozyme allows extracting the cross-sectional configuration of hydrated amyloid fibrils from current block amplitude and correlating dwell time with fibril length. These findings are consistent with the amyloid polymorphs observed in solution by atomic force microscopy. Furthermore, the ionic current signal of a single translocation event can reveal abnormally aggregated conformations of amyloid fibrils without potential artifacts associated with microscopy methods. This study introduces an effective approach to physically discriminating and separating amyloid and may serve in the rapid diagnosis of early aggregating pathological amyloidosis.


Asunto(s)
Nanoporos , Estudios Transversales , Amiloide , Microscopía de Fuerza Atómica
8.
Angew Chem Int Ed Engl ; 63(1): e202312880, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37962302

RESUMEN

Soft nanoconfinement can increase chemical reactivity in nature and has therefore led to considerable interest in transferring this universal feature to artificial biological systems. However, little is known about the underlying principles of soft nanoconfinement responsible for the enhancement of biochemical reactions. Herein we demonstrate how enzymatic polymerization can be expanded, optimized, and engineered when carried out under soft nanoconfinement mediated by lipidic mesophases. By systematically varying the water content in the mesophase and thus the diameter of the confined water nanochannels, we show higher efficiency, turnover rate, and degrees of polymerization as compared to the bulk aqueous solution, all controlled by soft nanoconfinement effects. Furthermore, we exploit the unique properties of unfreezing soft nanoconfined water to perform the first enzymatic polymerization at -20 °C in pure aqueous media. These results underpin lipidic mesophases as a versatile host system for chemical reactions and promote them as an original and unexplored platform for enzymatic polymerization.


Asunto(s)
Lípidos , Agua , Polimerizacion , Agua/química , Lípidos/química
9.
J Am Chem Soc ; 145(6): 3382-3393, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36730942

RESUMEN

The occurrence of modular peptide repeats in load-bearing (structural) proteins is common in nature, with distinctive peptide sequences that often remain conserved across different phylogenetic lineages. These highly conserved peptide sequences endow specific mechanical properties to the material, such as toughness or elasticity. Here, using bioinformatic tools and phylogenetic analysis, we have identified the GX8 peptide with the sequence GLYGGYGX (where X can be any residue) in a wide range of organisms. By simple mutation of the X residue, we demonstrate that GX8 can be self-assembled into various supramolecular structures, exhibiting vastly different physicochemical and viscoelastic properties, from liquid-like coacervate microdroplets to hydrogels to stiff solid materials. A combination of spectroscopic, electron microscopy, mechanical, and molecular dynamics studies is employed to obtain insights into molecular scale interactions driving self-assembly of GX8 peptides, underscoring that π-π stacking and hydrophobic interactions are the drivers of peptide self-assembly, whereas the X residue determines the extent of hydrogen bonding that regulates the macroscopic mechanical response. This study highlights the ability of single amino-acid polymorphism to tune the supramolecular assembly and bulk material properties of GX8 peptides, enabling us to cover a broad range of potential biomedical applications such as hydrogels for tissue engineering or coacervates for drug delivery.


Asunto(s)
Aminoácidos , Péptidos , Filogenia , Péptidos/química , Hidrogeles/química , Mutación
10.
Nat Chem Biol ; 17(6): 732-738, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33737758

RESUMEN

Petrochemical-based plastics have not only contaminated all parts of the globe, but are also causing potentially irreversible damage to our ecosystem because of their non-biodegradability. As bioplastics are limited in number, there is an urgent need to design and develop more biodegradable alternatives to mitigate the plastic menace. In this regard, we report aquaplastic, a new class of microbial biofilm-based biodegradable bioplastic that is water-processable, robust, templatable and coatable. Here, Escherichia coli was genetically engineered to produce protein-based hydrogels, which are cast and dried under ambient conditions to produce aquaplastic, which can withstand strong acid/base and organic solvents. In addition, aquaplastic can be healed and welded to form three-dimensional architectures using water. The combination of straightforward microbial fabrication, water processability and biodegradability makes aquaplastic a unique material worthy of further exploration for packaging and coating applications.


Asunto(s)
Biopelículas , Plásticos/química , Agua/química , Biodegradación Ambiental , Bioingeniería , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas/química , Solventes , Resistencia a la Tracción
11.
Biomacromolecules ; 24(1): 471-480, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36548941

RESUMEN

Rationally designing microstructures of soft hydrogels for specific biological functionalization is a challenge in tissue engineering applications. A novel and affordable soft hydrogel scaffold is constructed here by incorporating polyphenol modules with lysozyme amyloid fibrils (Lys AFs) via non-covalent self-assembly. Embedded polyphenols not only trigger hydrogel formation but also determine gel behavior by regulating the polyphenol gallol density and complex ratio. The feasibility of using a polyphenol-Lys AF hydrogel as a biocompatible cell scaffold, which is conducive to cell proliferation and spreading, is also shown. Notably, introducing polyphenols imparts the corresponding hydrogels a superior cell bioadhesive efficiency without further biofunctional decoration and thus may be successfully employed in both healthy and cancer cell lines. Confocal laser scanning microscopy also reveals that the highly expressed integrin-mediated focal adhesions form due to stimulation of the polyphenol-AF composite hydrogel, direct cell adhesion, proliferation, and spreading. Overall, this work constitutes a significant step forward in creating highly adhesive tissue culture platforms for in vitro culture of different cell types and may greatly expand prospects for future biomaterial design and development.


Asunto(s)
Adhesivos , Hidrogeles , Hidrogeles/farmacología , Hidrogeles/química , Polifenoles/farmacología , Polifenoles/química , Materiales Biocompatibles/farmacología , Ingeniería de Tejidos , Amiloide/química , Proteínas Amiloidogénicas
12.
Soft Matter ; 19(10): 1873-1881, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36806460

RESUMEN

We compare the process of Liquid-Liquid Phase Separation (LLPS) of flexible macromolecular solutions, with the Liquid-Liquid Crystalline Phase Separation (LLCPS) of semiflexible polymers and rigid filamentous colloids, which involves the formation of a liquid phase that possesses a directional alignment. Although the observed phase separation follows a similar dynamic path, namely nucleation and growth or spinodal decomposition separating two phases of dilute and concentrated compositions, the underlying physics that defines the theoretical framework of LLCPS is completely different from the one of LLPS. We review the main theories that describe the phase separation processes and relying on thermodynamics and dynamical arguments, we highlight the differences and analogies between these two phase separation phenomena, attempting to clarify the inner mechanisms that regulate those two processes. A particular focus is given to metastable phases, as these intermediate states represent a key element in understanding how phase separation works.

13.
Soft Matter ; 19(27): 5044-5049, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37395483

RESUMEN

We report a computational model for amyloid fibrils and discuss its main features and ability to match different experimental morphological characteristics. The model captures the liquid crystalline and cholesteric behaviours in short and rigid amyloid fibrils and shows promising extendibility to more complex colloidal liquid crystals.


Asunto(s)
Amiloide , Cristales Líquidos , Amiloide/química , Modelos Moleculares , Cristales Líquidos/química
14.
Proc Natl Acad Sci U S A ; 117(18): 9832-9839, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32317383

RESUMEN

G-quadruplex, assembled from a square array of guanine (G) molecules, is an important structure with crucial biological roles in vivo but also a versatile template for ordered functional materials. Although the understanding of G-quadruplex structures is the focus of numerous studies, little is known regarding the control of G-quartet stacking modes and the spontaneous orientation of G-quadruplex fibrils. Here, the effects of different metal ions and their concentrations on stacking modes of G-quartets are elucidated. Monovalent cations (typically K+) facilitate the formation of G-quadruplex hydrogels with both heteropolar and homopolar stacking modes, showing weak mechanical strength. In contrast, divalent metal ions (Ca2+, Sr2+, and Ba2+) at given concentrations can control G-quartet stacking modes and increase the mechanical rigidity of the resulting hydrogels through ionic bridge effects between divalent ions and borate. We show that for Ca2+ and Ba2+ at suitable concentrations, the assembly of G-quadruplexes results in the establishment of a mesoscopic chirality of the fibrils with a regular left-handed twist. Finally, we report the discovery of nematic tactoids self-assembled from G-quadruplex fibrils characterized by homeotropic fibril alignment with respect to the interface. We use the Frank-Oseen elastic energy and the Rapini-Papoular anisotropic surface energy to rationalize two different configurations of the tactoids. These results deepen our understanding of G-quadruplex structures and G-quadruplex fibrils, paving the way for their use in self-assembly and biomaterials.


Asunto(s)
ADN/química , G-Cuádruplex , Guanina/química , Hidrogeles/química , Anisotropía , Cationes Bivalentes/química , Cationes Monovalentes/química , ADN/ultraestructura , Metabolismo Energético/efectos de los fármacos , Líquidos Iónicos/química , Iones/química , Metales/química , Conformación de Ácido Nucleico/efectos de los fármacos , Propiedades de Superficie
15.
J Biol Chem ; 296: 100584, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33771558

RESUMEN

Physical interactions between vascular endothelial growth factor (VEGF), a central player in blood endothelial cell biology, and fibronectin, a major fibrillar protein of the extracellular matrix, are important determinants of angiogenic activity in health and disease. Conditions signaling the need for new blood vessel growth, such as hypoxia and low extracellular pH, increase VEGF-fibronectin interactions. These interactions can be further fine-tuned through changes in the availability of the VEGF-binding sites on fibronectin, regulated by conformational changes induced by heparin and heparan sulfate chains within the extracellular matrix. These interactions may alter VEGF bioavailability, generate gradients, or alter the way VEGF is recognized by and activates its cell-surface receptors. Here, using equilibrium and kinetic studies, we discovered that fibronectin can also interact with the extracellular domain of the VEGF receptor 2 (VEGFR2). The VEGFR2-binding sites on fibronectin show great similarity to the VEGF-binding sites, as they were also exposed upon heparin-induced conformational changes in fibronectin, and the interaction was enhanced at acidic pH. Kinetic parameters and affinities for VEGF and VEGFR2 binding to fibronectin were determined by surface plasmon resonance measurements, revealing two populations of fibronectin-binding sites for each molecule. Our data also suggest that a VEGF/VEGFR2/fibronectin triple complex may be formed by VEGF or VEGFR2 first binding to fibronectin and subsequently recruiting the third binding partner. The formation of such a complex may lead to the activation of distinct angiogenic signaling pathways, offering new possibilities for clinical applications that target angiogenesis.


Asunto(s)
Fibronectinas/química , Fibronectinas/metabolismo , Heparina/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Sitios de Unión , Biología Computacional , Humanos , Concentración de Iones de Hidrógeno , Cinética , Unión Proteica , Dominios Proteicos/efectos de los fármacos
16.
Small ; 18(4): e2105502, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34816591

RESUMEN

Design and fabrication of versatile adsorbents for universal water purification following green chemistry principles remain challenging. Here, it is shown that amyloid fibrils from protein waste can be used as a functional scaffold for metal organic framework (MOF) biomimetic mineralization. The resulting amyloid fibrils/ZIF-8 hybrid aerogels can effectively remove nine different heavy metal ions from water due to their hierarchical porous structure. Importantly, amyloid fibrils/ZIF-8 hybrid aerogels can efficiently remove Hg2+ and Pb2+ from water over five consecutive adsorption-regeneration cycles. Furthermore, a dual removal pathway of adsorption and catalytic degradation is observed in the synthetic dyes, indicating that the aerogel preserves its porous nature and maintains the integrity of versatile functional ligands within ZIF-8. Finally, it is shown that these hybrid aerogels can also perform successfully in oil-water separation. Considering the facile synthesis procedure, high removal efficiency, affordable cost, and regeneration possibilities, the amyloid fibrils/ZIF-8 hybrid aerogel stands as an ideal candidate for addressing open challenges in wastewater treatment and water purification.


Asunto(s)
Estructuras Metalorgánicas , Metales Pesados , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Amiloide/química , Metales Pesados/química , Purificación del Agua/métodos
17.
Soft Matter ; 18(30): 5632-5644, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35861104

RESUMEN

The fundamental understanding of the gelation kinetics, stress relaxation and temporal evolution in colloidal filamentous gels is central to many aspects of soft and biological matter, yet a complete description of the inherent complex dynamics of these systems is still missing. By means of photon correlation imaging (PCI), we studied the gelation of amyloid fibril solutions, chosen as a model filamentous colloid with immediate significance to biology and nanotechnology, upon passage of ions through a semi-permeable membrane. We observed a linear-in-time evolution of the gelation front and rich rearrangement dynamics of the gels, the magnitude and the spatial propagation of which depend on how effectively electrostatic interactions are screened by different ionic strengths. Our analysis confirms the pivotal role of salt concentration in tuning the properties of amyloid gels, and suggests potential routes for explaining the physical mechanisms behind the linear advance of the salt ions.


Asunto(s)
Coloides , Geles , Iones , Cinética , Electricidad Estática
18.
Proc Natl Acad Sci U S A ; 116(10): 4012-4017, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30782823

RESUMEN

Amyloid fibrils have evolved from purely pathological materials implicated in neurodegenerative diseases to efficient templates for last-generation functional materials and nanotechnologies. Due to their high intrinsic stiffness and extreme aspect ratio, amyloid fibril hydrogels can serve as ideal building blocks for material design and synthesis. Yet, in these gels, stiffness is generally not paired by toughness, and their fragile nature hinders significantly their widespread application. Here we introduce an amyloid-assisted biosilicification process, which leads to the formation of silicified nanofibrils (fibril-silica core-shell nanofilaments) with stiffness up to and beyond ∼20 GPa, approaching the Young's moduli of many metal alloys and inorganic materials. The silica shell endows the silicified fibrils with large bending rigidity, reflected in hydrogels with elasticity three orders of magnitude beyond conventional amyloid fibril hydrogels. A constitutive theoretical model is proposed that, despite its simplicity, quantitatively interprets the nonmonotonic dependence of the gel elasticity upon the filaments bundling promoted by shear stresses. The application of these hybrid silica-amyloid hydrogels is demonstrated on the fabrication of mechanically stable aerogels generated via sequential solvent exchange, supercritical [Formula: see text] removal, and calcination of the amyloid core, leading to aerogels of specific surface area as high as 993 [Formula: see text]/g, among the highest values ever reported for aerogels. We finally show that the scope of amyloid hydrogels can be expanded considerably by generating double networks of amyloid and hydrophilic polymers, which combine excellent stiffness and toughness beyond those of each of the constitutive individual networks.


Asunto(s)
Amiloide/química , Hidrogeles/química , Nanofibras/química , Dióxido de Silicio/química
19.
Angew Chem Int Ed Engl ; 61(11): e202116634, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35040240

RESUMEN

Electrocatalysis offers great promise for water purification but is limited by low active area and high uncontrollability of electrocatalysts. To overcome these constraints, we propose hybrid bulk electrodes by synthesizing and binding a Pd nanocatalyst (nano-Pd) to the electrodes via amyloid fibrils (AFs). The AFs template is effective for controlling the nucleation, growth, and assembly of nano-Pd on the electrode. In addition, the three-dimensional hierarchically porous nanostructure of AFs is beneficial for loading high-density nano-Pd with a large active area. The novel hybrid cathodes exhibit superior electroreduction performance for the detoxification of hexavalent chromium (Cr6+ ), 4-chlorophenol, and trichloroacetic acid in wastewater and drinking water. This study provides a proof-of-concept design of an AFs-templated nano-Pd-based hybrid electrode, which constitutes a paradigm shift in electrocatalytic water purification, and broadens the horizon of its potential engineered applications.


Asunto(s)
Amiloide/química , Nanopartículas del Metal/química , Paladio/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua , Catálisis , Clorofenoles/química , Clorofenoles/aislamiento & purificación , Cromo/química , Cromo/aislamiento & purificación , Electricidad , Electrodos , Ácido Tricloroacético/química , Ácido Tricloroacético/aislamiento & purificación , Contaminantes Químicos del Agua/química
20.
Angew Chem Int Ed Engl ; 61(8): e202113424, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35014134

RESUMEN

Controlled polymerizations have enabled the production of nanostructured materials with different shapes, each exhibiting distinct properties. Despite the importance of shape, current morphological transformation strategies are limited in polymer scope, alter the chemical structure, require high temperatures, and are fairly tedious. Herein we present a rapid and versatile morphological transformation strategy that operates at room temperature and does not impair the chemical structure of the constituent polymers. By simply adding a molecular transformer to an aqueous dispersion of polymeric nanoparticles, a rapid evolution to the next higher-order morphology was observed, yielding a range of morphologies from a single starting material. Significantly, this approach can be applied to nanoparticles produced by disparate block copolymers obtained by various synthetic techniques including emulsion polymerization, polymerization-induced self-assembly and traditional solution self-assembly.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA