Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Xray Sci Technol ; 29(1): 1-17, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33164982

RESUMEN

BACKGROUND: Accurate and rapid diagnosis of coronavirus disease (COVID-19) is crucial for timely quarantine and treatment. PURPOSE: In this study, a deep learning algorithm-based AI model using ResUNet network was developed to evaluate the performance of radiologists with and without AI assistance in distinguishing COVID-19 infected pneumonia patients from other pulmonary infections on CT scans. METHODS: For model development and validation, a total number of 694 cases with 111,066 CT slides were retrospectively collected as training data and independent test data in the study. Among them, 118 are confirmed COVID-19 infected pneumonia cases and 576 are other pulmonary infection cases (e.g. tuberculosis cases, common pneumonia cases and non-COVID-19 viral pneumonia cases). The cases were divided into training and testing datasets. The independent test was performed by evaluating and comparing the performance of three radiologists with different years of practice experience in distinguishing COVID-19 infected pneumonia cases with and without the AI assistance. RESULTS: Our final model achieved an overall test accuracy of 0.914 with an area of the receiver operating characteristic (ROC) curve (AUC) of 0.903 in which the sensitivity and specificity are 0.918 and 0.909, respectively. The deep learning-based model then achieved a comparable performance by improving the radiologists' performance in distinguish COVOD-19 from other pulmonary infections, yielding better average accuracy and sensitivity, from 0.941 to 0.951 and from 0.895 to 0.942, respectively, when compared to radiologists without using AI assistance. CONCLUSION: A deep learning algorithm-based AI model developed in this study successfully improved radiologists' performance in distinguishing COVID-19 from other pulmonary infections using chest CT images.


Asunto(s)
Inteligencia Artificial , COVID-19/diagnóstico por imagen , Radiólogos , Tomografía Computarizada por Rayos X/métodos , Adulto , Anciano , Algoritmos , Competencia Clínica/estadística & datos numéricos , Aprendizaje Profundo , Diagnóstico Diferencial , Femenino , Humanos , Pulmón/diagnóstico por imagen , Pulmón/patología , Masculino , Persona de Mediana Edad , Radiólogos/estadística & datos numéricos , Infecciones del Sistema Respiratorio/diagnóstico por imagen , SARS-CoV-2 , Sensibilidad y Especificidad , Adulto Joven
2.
J Xray Sci Technol ; 29(5): 785-796, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34219703

RESUMEN

Tuberculosis (TB) is a major health issue with high mortality rates worldwide. Recently, tremendous researches of artificial intelligence (AI) have been conducted targeting at TB to reduce the diagnostic burden. However, most researches are conducted in the developed urban areas. The feasibility of applying AI in low-resource settings remains unexplored. In this study, we apply an automated detection (AI) system to screen a large population in an underdeveloped area and evaluate feasibility and contribution of applying AI to help local radiologists detect and diagnose TB using chest X-ray (CXR) images. First, we divide image data into one training dataset including 2627 TB-positive cases and 7375 TB-negative cases and one testing dataset containing 276 TB-positive cases and 619 TB-negative cases, respectively. Next, in building AI system, the experiment includes image labeling and preprocessing, model training and testing. A segmentation model named TB-UNet is also built to detect diseased regions, which uses ResNeXt as the encoder of U-Net. We use AI-generated confidence score to predict the likelihood of each testing case being TB-positive. Then, we conduct two experiments to compare results between the AI system and radiologists with and without AI assistance. Study results show that AI system yields TB detection accuracy of 85%, which is much higher than detection accuracy of radiologists (62%) without AI assistance. In addition, with AI assistance, the TB diagnostic sensitivity of local radiologists is improved by 11.8%. Therefore, this study demonstrates that AI has great potential to help detection, prevention, and control of TB in low-resource settings, particularly in areas with more scant doctors and higher rates of the infected population.


Asunto(s)
Aprendizaje Profundo , Tuberculosis , Inteligencia Artificial , Humanos , Radiografía , Radiólogos , Tuberculosis/diagnóstico por imagen
3.
J Xray Sci Technol ; 29(5): 741-762, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34397444

RESUMEN

BACKGROUND AND OBJECTIVE: Monitoring recovery process of coronavirus disease 2019 (COVID-19) patients released from hospital is crucial for exploring residual effects of COVID-19 and beneficial for clinical care. In this study, a comprehensive analysis was carried out to clarify residual effects of COVID-19 on hospital discharged patients. METHODS: Two hundred sixty-eight cases with laboratory measured data at hospital discharge record and five follow-up visits were retrospectively collected to carry out statistical data analysis comprehensively, which includes multiple statistical methods (e.g., chi-square, T-test and regression) used in this study. RESULTS: Study found that 13 of 21 hematologic parameters in laboratory measured dataset and volume ratio of right lung lesions on CT images highly associated with COVID-19. Moderate patients had statistically significant lower neutrophils than mild and severe patients after hospital discharge, which is probably caused by more efforts on severe patients and slightly neglection of moderate patients. COVID-19 has residual effects on neutrophil-to-lymphocyte ratio (NLR) of patients who have hypertension or chronic obstructive pulmonary disease (COPD). After released from hospital, female showed better performance in T lymphocytes subset cells, especially T helper lymphocyte% (16% higher than male). According to this sex-based differentiation of COVID-19, male should be recommended to take clinical test more frequently to monitor recovery of immune system. Patients over 60 years old showed unstable recovery process of immune cells (e.g., CD45 + lymphocyte) within 75 days after discharge requiring longer clinical care. Additionally, right lung was vulnerable to COVID-19 and required more time to recover than left lung. CONCLUSIONS: Criterion of hospital discharge and strategy of clinical care should be flexible in different cases due to residual effects of COVID-19, which depend on several impact factors. Revealing remaining effects of COVID-19 is an effective way to eliminate disorder of mental health caused by COVID-19 infection.


Asunto(s)
COVID-19/diagnóstico , Alta del Paciente/estadística & datos numéricos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , China , Femenino , Humanos , Estudios Longitudinales , Pulmón/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , SARS-CoV-2 , Tomografía Computarizada por Rayos X , Adulto Joven
4.
Comput Biol Chem ; 106: 107922, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37499435

RESUMEN

Advances in sequencing technology assisted biologists in revealing signatures of DNA cancer mutation process and in demonstrating the mutagenesis behind. However, most of these signatures proposed by majority of work focus only on the type and frequency of mutations, without considering spatial information which is non-negligible in exploring mechanisms of mutation occurrence, e.g., Kataegis. Statistical characterization of the distance between consecutive mutations can give us relative spatial information; however, it ignores location information which is as important as distance information. In this work, we assume that DNA cancer mutations are location-dependent and that integrating the two variables, location and inter-distance, is beneficial to study DNA cancer mutation processes more accurately. Particularly, instead of following a specific distribution over the whole DNA sequence, we found out that the distribution of distance between successive mutations alternates between exponential and power-law distributions. Apart from this, the parameters of either of the two distributions vary with DNA locations. The cancers with kataegis phenomenon, a specific mutation pattern caused by abnormal activity of APOBEC protein family, are more likely to be accompanied by higher parameter values of distance distribution, implying higher occurrence rate of mutation. Therefore, we propose non-homogeneous Poisson and Renewal processes to spatially model DNA cancer mutations and to describe mutation patterns quantitatively and more accurately through a statistical perspective.


Asunto(s)
Neoplasias , Humanos , Mutación , Neoplasias/genética , Mutagénesis , Proteínas/genética , ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA