Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
FASEB J ; 38(2): e23425, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38226852

RESUMEN

Postprandial hyperglycemia is an early indicator of impaired glucose tolerance that leads to type 2 diabetes mellitus (T2DM). Alterations in the fatty acid composition of phospholipids have been implicated in diseases such as T2DM and nonalcoholic fatty liver disease. Lysophospholipid acyltransferase 10 (LPLAT10, also called LPCAT4 and LPEAT2) plays a role in remodeling fatty acyl chains of phospholipids; however, its relationship with metabolic diseases has not been fully elucidated. LPLAT10 expression is low in the liver, the main organ that regulates metabolism, under normal conditions. Here, we investigated whether overexpression of LPLAT10 in the liver leads to improved glucose metabolism. For overexpression, we generated an LPLAT10-expressing adenovirus (Ad) vector (Ad-LPLAT10) using an improved Ad vector. Postprandial hyperglycemia was suppressed by the induction of glucose-stimulated insulin secretion in Ad-LPLAT10-treated mice compared with that in control Ad vector-treated mice. Hepatic and serum levels of phosphatidylcholine 40:7, containing C18:1 and C22:6, were increased in Ad-LPLAT10-treated mice. Serum from Ad-LPLAT10-treated mice showed increased glucose-stimulated insulin secretion in mouse insulinoma MIN6 cells. These results indicate that changes in hepatic phosphatidylcholine species due to liver-specific LPLAT10 overexpression affect the pancreas and increase glucose-stimulated insulin secretion. Our findings highlight LPLAT10 as a potential novel therapeutic target for T2DM.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa , Diabetes Mellitus Tipo 2 , Intolerancia a la Glucosa , Animales , Ratones , 1-Acilglicerofosfocolina O-Aciltransferasa/genética , Glucosa/farmacología , Secreción de Insulina , Hígado , Fosfatidilcolinas , Fosfolípidos
2.
Glia ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39166289

RESUMEN

Na+-K+-2Cl- cotransporter-1 (NKCC1) is present in brain cells, including astrocytes. The expression of astrocytic NKCC1 increases in the acute phase of traumatic brain injury (TBI), which induces brain edema. Endothelin-1 (ET-1) is a factor that induces brain edema and regulates the expression of several pathology-related genes in astrocytes. In the present study, we investigated the effect of ET-1 on NKCC1 expression in astrocytes. ET-1 (100 nM)-treated cultured astrocytes showed increased NKCC1 mRNA and protein levels. The effect of ET-1 on NKCC1 expression in cultured astrocytes was reduced by BQ788 (1 µM), an ETB antagonist, but not by FR139317 (1 µM), an ETA antagonist. The involvement of ET-1 in NKCC1 expression in TBI was examined using a fluid percussion injury (FPI) mouse model that replicates the pathology of TBI with high reproducibility. Administration of BQ788 (15 nmol/day) decreased FPI-induced expressions of NKCC1 mRNA and protein, accompanied with a reduction of astrocytic activation. FPI-induced brain edema was attenuated by BQ788 and NKCC1 inhibitors (azosemide and bumetanide). ET-1-treated cultured astrocytes showed increased mRNA and protein expression of hypoxia-inducible factor-1α (HIF1α). Immunohistochemical observations of mouse cerebrum after FPI showed co-localization of HIF1α with GFAP-positive astrocytes. Increased HIF1α expression in the TBI model was reversed by BQ788. FM19G11 (an HIF inhibitor, 1 µM) and HIF1α siRNA suppressed ET-induced increase in NKCC1 expression in cultured astrocytes. These results indicate that ET-1 increases NKCC1 expression in astrocytes through the activation of HIF1α.

3.
Biol Pharm Bull ; 47(2): 350-360, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38296549

RESUMEN

Traumatic brain injury (TBI) is severe damage to the head caused by traffic accidents, falls, and sports. Because TBI-induced disruption of the blood-brain barrier (BBB) causes brain edema and neuroinflammation, which are major causes of death or serious disabilities, protection and recovery of BBB function may be beneficial therapeutic strategies for TBI. Astrocytes are key components of BBB integrity, and astrocyte-derived bioactive factors promote and suppress BBB disruption in TBI. Therefore, the regulation of astrocyte function is essential for BBB protection. In the injured cerebrum of TBI model mice, we found that the endothelin ETB receptor, histamine H2 receptor, and transient receptor potential vanilloid 4 (TRPV4) were predominantly expressed in reactive astrocytes. We also showed that repeated administration of an ETB receptor antagonist, H2 receptor agonist, and TRPV4 antagonist alleviated BBB disruption and brain edema in a TBI mouse model. Furthermore, these drugs decreased the expression levels of astrocyte-derived factors promoting BBB disruption and increased the expression levels of astrocyte-derived protective factors in the injured cerebrum after TBI. These results suggest that the ETB receptor, H2 receptor, and TRPV4 are molecules that regulate astrocyte function, and might be attractive candidates for the development of therapeutic drugs for TBI.


Asunto(s)
Edema Encefálico , Lesiones Traumáticas del Encéfalo , Ratones , Animales , Astrocitos/metabolismo , Edema Encefálico/etiología , Canales Catiónicos TRPV/metabolismo , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Barrera Hematoencefálica/metabolismo
4.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38542369

RESUMEN

Arrestins are known to be involved not only in the desensitization and internalization of G protein-coupled receptors but also in the G protein-independent activation of mitogen-activated protein (MAP) kinases, such as extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), to regulate cell proliferation and inflammation. Our previous study revealed that the histamine H1 receptor-mediated activation of ERK is dually regulated by Gq proteins and arrestins. In this study, we investigated the roles of Gq proteins and arrestins in the H1 receptor-mediated activation of JNK in Chinese hamster ovary (CHO) cells expressing wild-type (WT) human H1 receptors, the Gq protein-biased mutant S487TR, and the arrestin-biased mutant S487A. In these mutants, the Ser487 residue in the C-terminus region of the WT was truncated (S487TR) or mutated to alanine (S487A). Histamine significantly stimulated JNK phosphorylation in CHO cells expressing WT and S487TR but not S487A. Histamine-induced JNK phosphorylation in CHO cells expressing WT and S487TR was suppressed by inhibitors against H1 receptors (ketotifen and diphenhydramine), Gq proteins (YM-254890), and protein kinase C (PKC) (GF109203X) as well as an intracellular Ca2+ chelator (BAPTA-AM) but not by inhibitors against G protein-coupled receptor kinases (GRK2/3) (cmpd101), ß-arrestin2 (ß-arrestin2 siRNA), and clathrin (hypertonic sucrose). These results suggest that the H1 receptor-mediated phosphorylation of JNK is regulated by Gq-protein/Ca2+/PKC-dependent but GRK/arrestin/clathrin-independent pathways.


Asunto(s)
Arrestina , Histamina , Animales , Cricetinae , Humanos , Arrestina/metabolismo , Arrestinas/metabolismo , beta-Arrestinas/metabolismo , Células CHO , Clatrina/metabolismo , Cricetulus , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Proteínas de Unión al GTP/metabolismo , Histamina/farmacología , Histamina/metabolismo , Fosforilación , Proteína Quinasa C/metabolismo , Receptores Histamínicos H1/genética , Receptores Histamínicos H1/metabolismo , Transducción de Señal
5.
J Pharmacol Sci ; 150(3): 135-145, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36184118

RESUMEN

Histamine is a major neurotransmitter and alleviates neuronal damage after ischemic injury via H2 receptors. Herein, we investigated the effects of H2 receptor agonists on the blood-brain barrier (BBB) disruption after traumatic brain injury (TBI). Male ddY mice were used to generate the TBI model, in which a fluid percussion injury (FPI) was induced by a hydraulic impact. The BBB disruption was evaluated using Evans blue extravasation. H2 receptor agonists, amthamine and dimaprit, were administered into the lateral cerebroventricle (i.c.v.) or tail vein (i.v.) from 3 hours to 3 days after FPI. The i.c.v. or i.v. administration of amthamine and dimaprit reduced FPI-induced Evans blue extravasation and promoted mRNA expression of vascular protective factors, including angiopoietin-1 and sonic hedgehog. The co-administration of ranitidine, a H2 receptor antagonist, inhibited these effects. Expression of the H2 receptor was observed in astrocytes and brain microvascular endothelial cells (BMECs) in the injured cortex. Treatment with amthamine and dimaprit promoted mRNA expression of vascular protective factors in astrocytes and BMECs. These results suggest that H2 receptor agonists alleviate TBI-induced BBB disruption by increasing the expression of vascular protective factors in astrocytes and BMECs.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Agonistas de los Receptores Histamínicos , Angiopoyetina 1/metabolismo , Angiopoyetina 1/farmacología , Animales , Barrera Hematoencefálica/metabolismo , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Dimaprit/metabolismo , Dimaprit/farmacología , Células Endoteliales/metabolismo , Azul de Evans/metabolismo , Azul de Evans/farmacología , Proteínas Hedgehog , Histamina/farmacología , Agonistas de los Receptores Histamínicos/metabolismo , Agonistas de los Receptores Histamínicos/farmacología , Masculino , Ratones , Factores Protectores , ARN Mensajero/metabolismo , Ranitidina/metabolismo , Ranitidina/farmacología , Receptores Histamínicos H2/genética , Receptores Histamínicos H2/metabolismo , Tiazoles
6.
Biol Pharm Bull ; 44(11): 1759-1766, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34719652

RESUMEN

Vasogenic edema results from blood-brain barrier (BBB) disruption after traumatic brain injury (TBI), and although it can be fatal, no promising therapeutic drugs have been developed as yet. Transient receptor potential vanilloid 4 (TRPV4) is a calcium-permeable channel that is sensitive to temperature and osmotic pressure. As TRPV4 is known to be responsible for various pathological conditions following brain injury, we investigated the effects of pharmacological TRPV4 antagonists on TBI-induced vasogenic edema in this study. A TBI model was established by inflicting fluid percussion injury (FPI) in the mouse cerebrum and cultured astrocytes. Vasogenic brain edema and BBB disruption were assessed based on brain water content and Evans blue (EB) extravasation into brain tissue, respectively. After FPI, brain water content and EB extravasation increased. Repeated intracerebroventricular administration of the specific TRPV4 antagonists HC-067047 and RN-1734 dose-dependently reduced brain water content and alleviated EB extravasation in FPI mice. Additionally, real-time PCR analysis indicated that administration of HC-067047 and RN-1734 reversed the FPI-induced increase in mRNA levels of endogenous causal factors for BBB disruption, including matrix metalloproteinase-9 (MMP-9), vascular endothelial growth factor-A (VEGF-A), and endothelin-1 (ET-1). In astrocytes, TRPV4 level was observed to be higher than that in brain microvascular endothelial cells. Treatment with HC-067047 and RN-1734 inhibited the increase in mRNA levels of MMP-9, VEGF-A, and ET-1 in cultured astrocytes subjected to in vitro FPI. These results suggest that pharmacological inhibition of TRPV4 is expected to be a promising therapeutic strategy for treating TBI-induced vasogenic edema.


Asunto(s)
Edema Encefálico/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Canales Catiónicos TRPV/antagonistas & inhibidores , Animales , Astrocitos/efectos de los fármacos , Barrera Hematoencefálica/efectos de los fármacos , Edema Encefálico/etiología , Lesiones Traumáticas del Encéfalo/patología , Modelos Animales de Enfermedad , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Morfolinas/farmacología , Pirroles/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Sulfonamidas/farmacología , Canales Catiónicos TRPV/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203960

RESUMEN

Traumatic brain injury (TBI) is immediate damage caused by a blow to the head resulting from traffic accidents, falls, and sporting activity, which causes death or serious disabilities in survivors. TBI induces multiple secondary injuries, including neuroinflammation, disruption of the blood-brain barrier (BBB), and brain edema. Despite these emergent conditions, current therapies for TBI are limited or insufficient in some cases. Although several candidate drugs exerted beneficial effects in TBI animal models, most of them failed to show significant effects in clinical trials. Multiple studies have suggested that astrocytes play a key role in the pathogenesis of TBI. Increased reactive astrocytes and astrocyte-derived factors are commonly observed in both TBI patients and experimental animal models. Astrocytes have beneficial and detrimental effects on TBI, including promotion and restriction of neurogenesis and synaptogenesis, acceleration and suppression of neuroinflammation, and disruption and repair of the BBB via multiple bioactive factors. Additionally, astrocytic aquaporin-4 is involved in the formation of cytotoxic edema. Thus, astrocytes are attractive targets for novel therapeutic drugs for TBI, although astrocyte-targeting drugs have not yet been developed. This article reviews recent observations of the roles of astrocytes and expected astrocyte-targeting drugs in TBI.


Asunto(s)
Astrocitos/patología , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/fisiopatología , Animales , Barrera Hematoencefálica/patología , Humanos , Neovascularización Fisiológica , Neurogénesis , Transducción de Señal
8.
J Biol Chem ; 294(11): 3920-3933, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30670587

RESUMEN

Brain injury-mediated induction of reactive astrocytes often leads to glial scar formation in damaged brain regions. Activation of signal transducer and activator of transcription 3 (STAT3), a member of the STAT family of transcription factors, plays a pivotal role in inducing reactive astrocytes and glial scar formation. Endothelin-1 (ET-1) is a vasoconstrictor peptide, and its levels increase in brain disorders and promote astrocytic proliferation through ETB receptors. To clarify the mechanisms underlying ET-1-mediated astrocytic proliferation, here we examined its effects on STAT3 in cultured rat astrocytes. ET-1 treatment stimulated Ser-727 phosphorylation of STAT3 in the astrocytes, but Tyr-705 phosphorylation was unaffected, and ET-induced STAT3 Ser-727 phosphorylation was reduced by the ETB antagonist BQ788. ET-1 stimulated STAT3 binding to its consensus DNA-binding motifs. Monitoring G1/S phase cell cycle transition through bromodeoxyuridine (BrdU) incorporation, we found that ET-1 increases BrdU incorporation into the astrocytic nucleus, indicating cell cycle progression. Of note, STAT3 chemical inhibition (with stattic or 5,15-diphenyl-porphine (5,15-DPP)) or siRNA-mediated STAT3 silencing reduced ET-induced BrdU incorporation. Moreover, ET-1 increased astrocytic expression levels of cyclin D1 and S-phase kinase-associated protein 2 (SKP2), which were reduced by stattic, 5,15-DPP, and STAT3 siRNA. ChIP-based PCR analysis revealed that ET-1 promotes the binding of SAT3 to the 5'-flanking regions of rat cyclin D1 and SKP2 genes. Our results suggest that STAT3-mediated regulation of cyclin D1 and SKP2 expression underlies ET-induced astrocytic proliferation.


Asunto(s)
Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Ciclina D1/metabolismo , Endotelina-1/farmacología , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Astrocitos/citología , Astrocitos/enzimología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Ciclina D1/genética , Relación Dosis-Respuesta a Droga , Fosforilación/efectos de los fármacos , ARN Interferente Pequeño/farmacología , Ratas , Ratas Wistar , Proteínas Quinasas Asociadas a Fase-S/genética , Factor de Transcripción STAT3/antagonistas & inhibidores , Relación Estructura-Actividad
9.
J Neurochem ; 154(3): 330-348, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31957020

RESUMEN

Angiopoietin-1, an angiogenic factor, stabilizes brain microvessels through Tie-2 receptor tyrosine kinase. In traumatic brain injury, blood-brain barrier (BBB) disruption is an aggravating factor that induces brain edema and neuroinflammation. We previously showed that BQ788, an endothelin ETB receptor antagonist, promoted recovery of BBB function after lateral fluid percussion injury (FPI) in mice. To clarify the mechanisms underlying BBB recovery mediated by BQ788, we examined the involvements of the angiopoietin-1/Tie-2 signal. When angiopoietin-1 production and Tie-2 phosphorylation were assayed by quantitative reverse transcription polymerase chain reaction and western blotting, increased angiopoietin-1 production and Tie-2 phosphorylation were observed in 7-10 days after FPI in the mouse cerebrum, whereas no significant effects were obtained at 5 days. When BQ788 (15 nmol/day, i.c.v.) were administered in 2-5 days after FPI, increased angiopoietin-1 production and Tie-2 phosphorylation were observed. Immunohistochemical observations showed that brain microvessels and astrocytes contained angiopoietin-1 after FPI, and brain microvessels also contained phosphorylated Tie-2. Treatment with endothelin-1 (100 nM) decreased angiopoietin-1 production in cultured astrocytes and the effect was inhibited by BQ788 (1 µM). Five days after FPI, increased extravasation of Evans blue dye accompanied by reduction in claudin-5, occludin, and zonula occludens-1 proteins were observed in mouse cerebrum while these effects of FPI were reduced by BQ788 and exogenous angiopoietin-1 (1 µg/day, i.c.v.). The effects of BQ788 were inhibited by co-administration of a Tie-2 kinase inhibitor (40 nmol/day, i.c.v.). These results suggest that BQ788 administration after traumatic brain injury promotes recovery of BBB function through activation of the angiopoietin-1/Tie-2 signal.


Asunto(s)
Angiopoyetina 1/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Lesiones Traumáticas del Encéfalo/metabolismo , Antagonistas de los Receptores de la Endotelina B/farmacología , Oligopéptidos/farmacología , Piperidinas/farmacología , Receptor TIE-2/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Cerebro/efectos de los fármacos , Cerebro/lesiones , Cerebro/metabolismo , Masculino , Ratones
10.
Int J Mol Sci ; 20(3)2019 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-30699952

RESUMEN

The blood-brain barrier (BBB) is a major functional barrier in the central nervous system (CNS), and inhibits the extravasation of intravascular contents and transports various essential nutrients between the blood and the brain. After brain damage by traumatic brain injury, cerebral ischemia and several other CNS disorders, the functions of the BBB are disrupted, resulting in severe secondary damage including brain edema and inflammatory injury. Therefore, BBB protection and recovery are considered novel therapeutic strategies for reducing brain damage. Emerging evidence suggests key roles of astrocyte-derived factors in BBB disruption and recovery after brain damage. The astrocyte-derived vascular permeability factors include vascular endothelial growth factors, matrix metalloproteinases, nitric oxide, glutamate and endothelin-1, which enhance BBB permeability leading to BBB disruption. By contrast, the astrocyte-derived protective factors include angiopoietin-1, sonic hedgehog, glial-derived neurotrophic factor, retinoic acid and insulin-like growth factor-1 and apolipoprotein E which attenuate BBB permeability resulting in recovery of BBB function. In this review, the roles of these astrocyte-derived factors in BBB function are summarized, and their significance as therapeutic targets for BBB protection and recovery after brain damage are discussed.


Asunto(s)
Astrocitos/metabolismo , Barrera Hematoencefálica/metabolismo , Lesiones Encefálicas/metabolismo , Animales , Humanos , Uniones Estrechas/metabolismo
11.
J Pharmacol Sci ; 138(1): 54-62, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30301597

RESUMEN

Narrowband-ultraviolet B (NB-UVB) phototherapy is used for the treatment of atopic dermatitis. Previously, we reported that irradiation with 200 mJ/cm2 of 310 nm NB-UVB suppressed phorbol-12-myristate-13-acetate (PMA)-induced up-regulation of histamine H1 receptor (H1R) gene expression without induction of apoptosis in HeLa cells. However, the effect of NB-UVB irradiation on nasal symptoms is still unclear. Here, we show that low dose irradiation with 310 nm NB-UVB alleviates nasal symptoms in toluene 2,4-diisocyanate (TDI)-sensitized allergy model rats. Irradiation with 310 nm NB-UVB suppressed PMA-induced H1R mRNA up-regulation in HeLa cells dose-dependently at doses of 75-200 mJ/cm2 and reversibly at a dose of 150 mJ/cm2 without induction of apoptosis. While, at doses of more than 200 mJ/cm2, irradiation with 310 nm NB-UVB induced apoptosis. Western blot analysis showed that the suppressive effect of NB-UVB irradiation on H1R gene expression was through the inhibition of ERK phosphorylation. In TDI-sensitized rat, intranasal irradiation with 310 nm NB-UVB at an estimated dose of 100 mJ/cm2 once a day for three days suppressed TDI-induced sneezes and up-regulation of H1R mRNA in nasal mucosa without induction of apoptosis. These findings suggest that repeated intranasal irradiation with low dose of NB-UVB could be clinically used as phototherapy of AR.


Asunto(s)
Apoptosis/efectos de la radiación , Expresión Génica/efectos de la radiación , Mucosa Nasal/patología , Mucosa Nasal/efectos de la radiación , ARN Mensajero/metabolismo , Receptores Histamínicos H1/genética , Receptores Histamínicos H1/metabolismo , Rayos Ultravioleta , Regulación hacia Arriba/efectos de la radiación , Animales , Relación Dosis-Respuesta en la Radiación , Células HeLa , Humanos , Masculino , Fototerapia , Ratas , Rinitis Alérgica/terapia
12.
Biol Pharm Bull ; 40(5): 569-575, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28458343

RESUMEN

Severe brain damage by trauma, ischemia, and hemorrhage lead to fatal conditions including sudden death, subsequent complications of the extremities and cognitive dysfunctions. Despite the urgent need for treatments for these complications, currently available therapeutic drugs are limited. Blood-brain barrier (BBB) disruption is a common pathogenic feature in many types of brain damage. The characteristic pathophysiological conditions caused by BBB disruption are brain edema resulting from an excessive increase of brain water content, inflammatory damage caused by infiltrating immune cells, and hemorrhage caused by the breakdown of microvessel structures. Because these pathogenic features induced by BBB disruption cause fatal conditions, their improvement is a desirable strategy. Many studies using experimental animal models have focused on molecules involved in BBB disruption, including vascular endothelial growth factors (VEGFs), matrix metalloproteinases (MMPs) and endothelins (ETs). The inhibition of these factors in several experimental animals was protective against BBB disruption caused by several types of brain damage, and ameliorated brain edema, inflammatory damage, and hemorrhagic transformation. In patients with brain damage, the up-regulation of these factors was observed and was related to brain damage severity. Thus, BBB protection by targeting VEGFs, MMPs, and ETs might be a novel strategy for the treatment of brain damage.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Daño Encefálico Crónico/tratamiento farmacológico , Animales , Barrera Hematoencefálica/fisiopatología , Daño Encefálico Crónico/fisiopatología , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/fisiopatología , Humanos , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/metabolismo
13.
Eur J Neurosci ; 42(6): 2356-70, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26174228

RESUMEN

Brain edema is a potentially fatal pathological state that often occurs after brain injuries such as ischemia and trauma. However, therapeutic agents that fundamentally treat brain edema have not yet been established. We previously found that endothelin ETB receptor antagonists attenuate the formation and maintenance of vasogenic brain edema after cold injury in mice. In this study, the effects of ETB antagonists on matrixmetalloproteinase (MMP)9 and vascular endothelial growth factor (VEGF)-A expression were examined in the cold injury model. Cold injury was performed in the left brain of male ddY mice (5-6 weeks old) for the induction of vasogenic edema. Expression of MMP9 and VEGF-A mRNA in the mouse cerebrum was increased by cold injury. Immunohistochemical observations showed that the MMP9 and VEGF-A were mainly produced in reactive astrocytes in the damaged cerebrum. Intracerebroventricular administration of BQ788 (10 µg) or IRL-2500 (10 µg) (selective ETB antagonists) attenuated brain edema and disruption of the blood-brain barrier after cold injury. BQ788 and IRL-2500 reversed the cold injury-induced increases in MMP9 and VEGF-A expression. The induction of reactive astrocytes producing MMP9 and VEGF-A in the damaged cerebrum was attenuated by BQ788 and IRL-2500. These results suggest that attenuations of astrocytic MMP9 and VEGF-A expression by ETB antagonists may be involved in the amelioration of vasogenic brain edema.


Asunto(s)
Edema Encefálico/metabolismo , Cerebro/metabolismo , Lesión por Frío/metabolismo , Antagonistas de los Receptores de la Endotelina B/administración & dosificación , Metaloproteinasa 9 de la Matriz/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Astrocitos/metabolismo , Compuestos de Bifenilo/administración & dosificación , Edema Encefálico/prevención & control , Cerebro/lesiones , Lesión por Frío/prevención & control , Dipéptidos/administración & dosificación , Inyecciones Intraventriculares , Masculino , Ratones , Oligopéptidos/administración & dosificación , Piperidinas/administración & dosificación
14.
Int J Mol Sci ; 16(5): 9949-75, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25941935

RESUMEN

Brain edema is a potentially fatal pathological state that occurs after brain injuries such as stroke and head trauma. In the edematous brain, excess accumulation of extracellular fluid results in elevation of intracranial pressure, leading to impaired nerve function. Despite the seriousness of brain edema, only symptomatic treatments to remove edema fluid are currently available. Thus, the development of novel anti-edema drugs is required. The pathogenesis of brain edema is classified as vasogenic or cytotoxic edema. Vasogenic edema is defined as extracellular accumulation of fluid resulting from disruption of the blood-brain barrier (BBB) and extravasations of serum proteins, while cytotoxic edema is characterized by cell swelling caused by intracellular accumulation of fluid. Various experimental animal models are often used to investigate mechanisms underlying brain edema. Many soluble factors and functional molecules have been confirmed to induce BBB disruption or cell swelling and drugs targeted to these factors are expected to have anti-edema effects. In this review, we discuss the mechanisms and involvement of factors that induce brain edema formation, and the possibility of anti-edema drugs targeting them.


Asunto(s)
Edema Encefálico/metabolismo , Glucocorticoides/uso terapéutico , Inhibidores de la Metaloproteinasa de la Matriz/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/uso terapéutico , Animales , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/patología , Glucocorticoides/farmacología , Humanos , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Fármacos Neuroprotectores/farmacología , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores
15.
Vitam Horm ; 126: 97-111, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39029978

RESUMEN

Sonic hedgehog (Shh) is a secreted glycopeptide belonging to the hedgehog family that is essential for morphogenesis during embryonic development. The Shh signal is mediated by two membrane proteins, Patched-1 (Ptch-1) and Smoothened (Smo), following the activation of transcription factors such as Gli. Shh decreases the permeability of the blood-brain barrier (BBB) and plays a key role in its function. In the damaged brain, BBB function is remarkably disrupted. The BBB disruption causes brain edema and neuroinflammation resulting from the extravasation of serum components and the infiltration of inflammatory cells into the cerebral parenchyma. Multiple studies have suggested that astrocyte is a source of Shh and that astrocytic Shh production is increased in the damaged brain. In various experimental animal models of acute brain injury, Shh or Shh signal activators alleviate BBB disruption by increasing tight junction proteins in endothelial cells. Furthermore, activation of astrocytic Shh signaling reduces reactive astrogliosis, neuroinflammation, and increases the production of vascular protective factors, which alleviates BBB disruption in the damaged brain. These findings suggest that astrocytic Shh and Shh signaling protect BBB function in the damaged brain and that target drugs for Shh signaling are expected to be novel therapeutic drugs for acute brain injuries.


Asunto(s)
Astrocitos , Barrera Hematoencefálica , Proteínas Hedgehog , Transducción de Señal , Proteínas Hedgehog/metabolismo , Barrera Hematoencefálica/metabolismo , Astrocitos/metabolismo , Animales , Humanos , Transducción de Señal/fisiología
16.
J Neuroinflammation ; 10: 51, 2013 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-23627909

RESUMEN

BACKGROUND: Chemokines are involved in many pathological responses of the brain. Astrocytes produce various chemokines in brain disorders, but little is known about the factors that regulate astrocytic chemokine production. Endothelins (ETs) have been shown to regulate astrocytic functions through ETB receptors. In this study, the effects of ETs on chemokine production were examined in rat cerebral cultured astrocytes. METHODS: Astrocytes were prepared from the cerebra of one- to two-day-old Wistar rats and cultured in serum-containing medium. After serum-starvation for 48 hours, astrocytes were treated with ETs. Total RNA was extracted using an acid-phenol method and expression of chemokine mRNAs was determined by quantitative RT-PCR. The release of chemokines was measured by ELISA. RESULTS: Treatment of cultured astrocytes with ET-1 and Ala(1,3,11,15)-ET-1, an ET(B) agonist, increased mRNA levels of CCL2/MCP1 and CXCL1/CINC-1. In contrast, CX3CL1/fractalkine mRNA expression decreased in the presence of ET-1 and Ala(1,3,11,15)-ET-1. The effect of ET-1 on chemokine mRNA expression was inhibited by BQ788, an ET(B) antagonist. ET-1 increased CCL2 and CXCL1 release from cultured astrocytes, but decreased that of CX3CL1. The increase in CCL2 and CXCL1 expression by ET-1 was inhibited by actinomycin D, pyrrolidine dithiocarbamate, SN50, mithramycin, SB203580 and SP600125. The decrease in CX3CL1 expression by ET-1 was inhibited by cycloheximide, Ca(2+) chelation and staurosporine. CONCLUSION: These findings suggest that ETs are one of the factors regulating astrocytic chemokine production. Astrocyte-derived chemokines are involved in pathophysiological responses of neurons and microglia. Therefore, the ET-induced alterations of astrocytic chemokine production are of pathophysiological significance in damaged brains.


Asunto(s)
Astrocitos/metabolismo , Quimiocina CCL2/metabolismo , Quimiocina CX3CL1/metabolismo , Quimiocina CXCL1/metabolismo , Quimiocinas/biosíntesis , Endotelina-1/farmacología , Animales , Astrocitos/efectos de los fármacos , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Dosificación de Gen , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor de Endotelina B/agonistas , Receptor de Endotelina B/metabolismo , Transducción de Señal/efectos de los fármacos
17.
Cells ; 12(5)2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36899860

RESUMEN

Traumatic brain injury (TBI) is an intracranial injury caused by accidents, falls, or sports. The production of endothelins (ETs) is increased in the injured brain. ET receptors are classified into distinct types, including ETA receptor (ETA-R) and ETB receptor (ETB-R). ETB-R is highly expressed in reactive astrocytes and upregulated by TBI. Activation of astrocytic ETB-R promotes conversion to reactive astrocytes and the production of astrocyte-derived bioactive factors, including vascular permeability regulators and cytokines, which cause blood-brain barrier (BBB) disruption, brain edema, and neuroinflammation in the acute phase of TBI. ETB-R antagonists alleviate BBB disruption and brain edema in animal models of TBI. The activation of astrocytic ETB receptors also enhances the production of various neurotrophic factors. These astrocyte-derived neurotrophic factors promote the repair of the damaged nervous system in the recovery phase of patients with TBI. Thus, astrocytic ETB-R is expected to be a promising drug target for TBI in both the acute and recovery phases. This article reviews recent observations on the role of astrocytic ETB receptors in TBI.


Asunto(s)
Edema Encefálico , Lesiones Traumáticas del Encéfalo , Animales , Astrocitos/metabolismo , Encéfalo/metabolismo , Edema Encefálico/etiología , Lesiones Traumáticas del Encéfalo/complicaciones , Endotelinas/metabolismo , Humanos
18.
Biochem Pharmacol ; 213: 115595, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37201878

RESUMEN

Gq protein-coupled histamine H1 receptors play crucial roles in allergic and inflammatory reactions, in which the phosphorylation of extracellular signal-regulated kinase (ERK) appears to mediate the production of inflammatory cytokines. ERK phosphorylation is regulated by G protein- and arrestin-mediated signal transduction pathways. Here, we aimed to explore how H1 receptor-mediated processes of ERK phosphorylation might be differentially regulated by Gq proteins and arrestins. For this purpose, we evaluated the regulatory mechanism(s) of H1 receptor-mediated ERK phosphorylation in Chinese hamster ovary cells expressing Gq protein- and arrestin-biased mutants of human H1 receptors, S487TR and S487A, in which the Ser487 residue in the C-terminal was truncated and mutated to alanine, respectively. Immunoblotting analysis indicated that histamine-induced ERK phosphorylation was prompt and transient in cells expressing Gq protein-biased S487TR, whereas it was slow and sustained in cells expressing arrestin-biased S487A. Inhibitors of Gq proteins (YM-254890) and protein kinase C (PKC) (GF109203X), and an intracellular Ca2+ chelator (BAPTA-AM) suppressed histamine-induced ERK phosphorylation in cells expressing S487TR, but not those expressing S487A. Conversely, inhibitors of G protein-coupled receptor kinases (GRK2/3) (cmpd101), ß-arrestin2 (ß-arrestin2 siRNA), clathrin (hypertonic sucrose), Raf (LY3009120), and MEK (U0126) suppressed histamine-induced ERK phosphorylation in cells expressing S487A, but not those expressing S487TR. These results suggest that H1 receptor-mediated ERK phosphorylation might be differentially regulated by the Gq protein/Ca2+/PKC and GRK/arrestin/clathrin/Raf/MEK pathways to potentially determine the early and late phases of histamine-induced allergic and inflammatory responses, respectively.


Asunto(s)
Arrestinas , Quinasas MAP Reguladas por Señal Extracelular , Animales , Cricetinae , Humanos , Arrestina/metabolismo , Arrestinas/genética , Arrestinas/metabolismo , Células CHO , Clatrina/metabolismo , Cricetulus , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas de Unión al GTP/metabolismo , Histamina/farmacología , Histamina/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fosforilación , Proteína Quinasa C/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
19.
Glia ; 60(12): 1954-63, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22927341

RESUMEN

Vascular endothelial growth factors (VEGFs) and angiopoietins (ANGs) are involved in pathophysiological responses in damaged nerve tissues. Astrocytes produce VEGFs and ANGs upon brain ischemia and traumatic injury. To clarify the extracellular signals regulating VEGF and ANG production, effects of endothelins (ETs), a family of endothelium-derived peptides, were examined in cultured rat astrocytes. ET-1 (100 nM) and Ala(1,3,11,15)-ET-1 (100 nM), an ET(B) receptor agonist, increased VEGF-A mRNA levels in cultured astrocytes, while ANG-1 mRNA was decreased by ETs. ET-1 did not affect astrocytic VEGF-B, placental growth factor (PLGF), and ANG-2 mRNA levels. The effects of ET-1 on VEGF-A and ANG-1 mRNAs were inhibited by BQ788, an ET(B) antagonist. Release of VEGF-A proteins from cultured astrocytes was increased by ET-1. In contrast, ET-1 reduced release of astrocytic ANG-1. Exogenous ET-1 (100 nM) and VEGF(165) (100 ng/mL), an isopeptide of VEGF-A, stimulated bromodeoxyuridine (BrdU) incorporation into cultured astrocytes. Treatment with ET-1 and VEGF(165) increased the numbers of cyclin D1-positive astrocytes. Exogenous ANG-1 (250 ng/mL) did not stimulate the BrdU incorporation. Increases in BrdU incorporation by ET-1 and VEGF(165) were not affected by ANG-1. In 60-70% confluent cultures, SU4312 (10 µM), a VEGF receptor tyrosine kinase inhibitor, partially reduced the effects of ET-1 on BrdU incorporation and cyclin D1 expression. ET-induced BrdU incorporation and cyclin D1 expression were reduced by a neutralizing antibody against VEGF-A. Our findings suggest that ET-1 is a factor regulating astrocytic VEGF-A and ANG-1, and that increased VEGF-A production potentiates ET-induced astrocytic proliferation by an autocrine mechanism.


Asunto(s)
Angiopoyetina 1/biosíntesis , Astrocitos/metabolismo , Proliferación Celular , Endotelina-1/fisiología , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Angiopoyetina 1/antagonistas & inhibidores , Angiopoyetina 1/genética , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Comunicación Autocrina/efectos de los fármacos , Comunicación Autocrina/fisiología , Bromodesoxiuridina/antagonistas & inhibidores , Bromodesoxiuridina/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Endotelina-1/antagonistas & inhibidores , Endotelina-1/metabolismo , Oligopéptidos/farmacología , Piperidinas/farmacología , ARN Mensajero/biosíntesis , Ratas , Ratas Wistar , Regulación hacia Arriba/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/genética
20.
J Pharmacol Sci ; 118(4): 401-7, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22447302

RESUMEN

The receptors for endothelins (ETs) are classified into the ET(A) and ET(B) types. ET(B) receptors are highly expressed in astrocytes, but pharmacological usages of this receptor are not clarified. In this article, recent studies on the pathophysiological roles of astrocytic ET(B) receptors in the brain are reviewed. The administration of ET(B) agonists and antagonists in nerve injury models showed that several astrocytic functions are regulated by ET(B) receptors. The activation of ET(B) receptors causes morphological alterations and proliferation of cultured astrocytes. Astrocytes produce various bio-active substances that can affect damage to nerve tissues. ETs stimulate the production of neurotrophic factors by astrocytes. This action improves impaired brain functions. On the other hand, the production of matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF), which induce brain edema, also are stimulated by ETs. These findings indicate that astrocytic functions are effectively regulated by modulations of ET(B) receptors. In brain insults and neurodegenerative diseases, these functions of astrocytes affect the protection and repair of damaged nerve tissues. Thus, astrocytic ET(B) receptors could be a target for novel types of neuroprotective drugs.


Asunto(s)
Astrocitos/patología , Astrocitos/fisiología , Lesiones Encefálicas/patología , Lesiones Encefálicas/fisiopatología , Endotelinas/fisiología , Receptor de Endotelina B/fisiología , Animales , Astrocitos/efectos de los fármacos , Lesiones Encefálicas/tratamiento farmacológico , Endotelinas/agonistas , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Receptor de Endotelina B/agonistas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA