Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Omega ; 5(36): 23009-23020, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32954151

RESUMEN

Inexpensive and sustainable methods are needed to reclaim nutrients from agricultural waste solutions for use as a fertilizer while decreasing nutrient runoff. Fe(III)-polysaccharide hydrogels are able to flocculate solids and absorb nutrients in liquid animal waste from Confined Animal Feeding Operations (CAFOs). Fe(III)-alginate beads absorbed 0.05 mg g-1 NH4 + and NO3 - from 100 ppm solutions at pH = 7, with > 80% phosphate uptake and ∼30% uptake of ammonium and nitrate. Ammonium uptake from a raw manure solution (1420 ppm NH4 +) showed a significant 0.7 mg g-1 uptake. Tomato plant trials carried out with Fe(III)-alginate hydrogel beads in greenhouse conditions showed controlled nutrient delivery for the plants compared to fertilizer solution with the same nutrient content. Plants showed an uptake of Fe from the gel beads, and Fe(III)-alginate hydrogel beads promoted root growth of the plants. The plants treated with nutrient-loaded Fe(III)-alginate hydrogels yielded comparable tomato harvest to plants treated with the conventional fertilizer solution.

2.
J Agric Food Chem ; 67(44): 12155-12163, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31415171

RESUMEN

Photoresponsive hydrogels from polysaccharides and Fe(III) were used as a new system to capture and release PO43- from waste solutions. Uptake of 0.6-1.5 mg of phosphate per gram of hydrogels was determined from 800 ppm phosphate solutions (pH 4.8-9.0). These beads also captured 1.2 mg g-1 of phosphate from animal waste (raw manure, 727 ppm phosphate, pH 7.6), which accounted for above 80% phosphate uptake. Irradiation of phosphate-loaded hydrogels degraded the gels due to the photochemistry of the Fe(III)-carboxylates, giving controlled phosphate release (∼81% after 7 days). No release (<2% after 7 days) was seen in the dark. Kale plant trials showed complete degradation of the hydrogels in ∼2 weeks under greenhouse conditions. Biomass analysis of kale treated with phosphate-loaded beads compared to controls indicated no signs of toxicity. These results show that Fe(III)-polysaccharide hydrogels were able to reclaim phosphates from waste solutions and can be used as a controlled-release fertilizer.


Asunto(s)
Preparaciones de Acción Retardada/química , Compuestos Férricos/química , Fertilizantes/análisis , Hidrogeles/química , Fosfatos/química , Polisacáridos/química , Aguas Residuales/química , Adsorción , Animales , Brassica/crecimiento & desarrollo , Brassica/metabolismo , Preparaciones de Acción Retardada/metabolismo , Estiércol/análisis , Fosfatos/metabolismo , Fotoquímica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA