Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Arch Toxicol ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38740588

RESUMEN

Parenteral nutrition (PN) is typically administered to individuals with gastrointestinal dysfunction, a contraindication for enteral feeding, and a need for nutritional therapy. When PN is the only energy source in patients, it is defined as total parenteral nutrition (TPN). TPN is a life-saving approach for different patient populations, both in infants and adults. However, despite numerous benefits, TPN can cause adverse effects, including metabolic disorders and liver injury. TPN-associated liver injury, known as intestinal failure-associated liver disease (IFALD), represents a significant problem affecting up to 90% of individuals receiving TPN. IFALD pathogenesis is complex, depending on the TPN components as well as on the patient's medical conditions. Despite numerous animal studies and clinical observations, the molecular mechanisms driving IFALD remain largely unknown. The present study was set up to elucidate the mechanisms underlying IFALD. For this purpose, human liver spheroid co-cultures were treated with a TPN mixture, followed by RNA sequencing analysis. Subsequently, following exposure to TPN and its single nutritional components, several key events of liver injury, including mitochondrial dysfunction, endoplasmic reticulum stress, oxidative stress, apoptosis, and lipid accumulation (steatosis), were studied using various techniques. It was found that prolonged exposure to TPN substantially changes the transcriptome profile of liver spheroids and affects multiple metabolic and signaling pathways contributing to liver injury. Moreover, TPN and its main components, especially lipid emulsion, induce changes in all key events measured and trigger steatosis.

2.
J Biomed Inform ; 145: 104465, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37541407

RESUMEN

BACKGROUND: Adverse outcome pathway (AOP) networks are versatile tools in toxicology and risk assessment that capture and visualize mechanisms driving toxicity originating from various data sources. They share a common structure consisting of a set of molecular initiating events and key events, connected by key event relationships, leading to the actual adverse outcome. AOP networks are to be considered living documents that should be frequently updated by feeding in new data. Such iterative optimization exercises are typically done manually, which not only is a time-consuming effort, but also bears the risk of overlooking critical data. The present study introduces a novel approach for AOP network optimization of a previously published AOP network on chemical-induced cholestasis using artificial intelligence to facilitate automated data collection followed by subsequent quantitative confidence assessment of molecular initiating events, key events, and key event relationships. METHODS: Artificial intelligence-assisted data collection was performed by means of the free web platform Sysrev. Confidence levels of the tailored Bradford-Hill criteria were quantified for the purpose of weight-of-evidence assessment of the optimized AOP network. Scores were calculated for biological plausibility, empirical evidence, and essentiality, and were integrated into a total key event relationship confidence value. The optimized AOP network was visualized using Cytoscape with the node size representing the incidence of the key event and the edge size indicating the total confidence in the key event relationship. RESULTS: This resulted in the identification of 38 and 135 unique key events and key event relationships, respectively. Transporter changes was the key event with the highest incidence, and formed the most confident key event relationship with the adverse outcome, cholestasis. Other important key events present in the AOP network include: nuclear receptor changes, intracellular bile acid accumulation, bile acid synthesis changes, oxidative stress, inflammation and apoptosis. CONCLUSIONS: This process led to the creation of an extensively informative AOP network focused on chemical-induced cholestasis. This optimized AOP network may serve as a mechanistic compass for the development of a battery of in vitro assays to reliably predict chemical-induced cholestatic injury.


Asunto(s)
Rutas de Resultados Adversos , Colestasis , Humanos , Inteligencia Artificial , Colestasis/inducido químicamente , Medición de Riesgo , Recolección de Datos
3.
Arch Toxicol ; 97(6): 1739-1751, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36941454

RESUMEN

Validated in vitro assays for testing non-genotoxic carcinogenic potential of chemicals are currently not available. Consequently, the two-year rodent bioassay remains the gold standard method for the identification of these chemicals. Transcriptomic and proteomic analyses have provided a comprehensive understanding of the non-genotoxic carcinogenic processes, however, functional changes induced by effects at transcriptional and translational levels have not been addressed. The present study was set up to test a number of proposed in vitro biomarkers of non-genotoxic hepatocarcinogenicity at the functional level using a translational 3-dimensional model. Spheroid cultures of human hepatocytes and stellate cells were exposed to 5 genotoxic carcinogenic, 5 non-genotoxic carcinogenic, and 5 non-carcinogenic chemical compounds and assessed for oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, apoptosis, and inflammation. The spheroid model could capture many of these events triggered by the genotoxic carcinogenic chemicals, particularly aflatoxin B1 and hydroquinone. Nonetheless, no clear distinction could be made between genotoxic and non-genotoxic hepatocarcinogenicity. Therefore, spheroid cultures of human liver cells may be appropriate in vitro tools for mechanistic investigation of chemical-induced hepatocarcinogenicity, however, these mechanisms and their read-outs do not seem to be eligible biomarkers for detecting non-genotoxic carcinogenic chemicals.


Asunto(s)
Carcinógenos , Proteómica , Humanos , Técnicas de Cocultivo , Carcinógenos/toxicidad , Hígado , Hepatocitos , Pruebas de Carcinogenicidad/métodos
4.
Biomacromolecules ; 23(3): 1350-1365, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35195399

RESUMEN

Viscoelastic hydrogels are gaining interest as they possess necessary requirements for bioprinting and injectability. By means of reversible, dynamic covalent bonds, it is possible to achieve features that recapitulate the dynamic character of the extracellular matrix. Dually cross-linked and double-network (DN) hydrogels seem to be ideal for the design of novel biomaterials and bioinks, as a wide range of properties required for mimicking advanced and complex tissues can be achieved. In this study, we investigated the fabrication of chondroitin sulfate/hyaluronic acid (CS/HA)-based DN hydrogels, in which two networks are interpenetrated and cross-linked with the dynamic covalent bonds of very different lifetimes. Namely, Diels-Alder adducts (between methylfuran and maleimide) and hydrazone bonds (between aldehyde and hydrazide) were chosen as cross-links, leading to viscoelastic hydrogels. Furthermore, we show that viscoelasticity and the dynamic character of the resulting hydrogels could be tuned by changing the composition, that is, the ratio between the two types of cross-links. Also, due to a very dynamic nature and short lifetime of hydrazone cross-links (∼800 s), the DN hydrogel is easily processable (e.g., injectable) in the first stages of gelation, allowing the material to be used in extrusion-based 3D printing. The more long-lasting and robust Diels-Alder cross-links are responsible for giving the network enhanced mechanical strength and structural stability. Being highly charged and hydrophilic, the cross-linked CS and HA enable a high swelling capacity (maximum swelling ratio ranging from 6 to 12), which upon confinement results in osmotically stiffened constructs, able to mimic the mechanical properties of cartilage tissue, with the equilibrium moduli ranging from 0.3 to 0.5 MPa. Moreover, the mesenchymal stromal cells were viable in the presence of the hydrogels, and the effect of the degradation products on the macrophages suggests their safe use for further translational applications. The DN hydrogels with dynamic covalent cross-links hold great potential for the development of novel smart and tunable viscoelastic materials to be used as biomaterial inks or bioinks in bioprinting and regenerative medicine.


Asunto(s)
Bioimpresión , Hidrogeles , Materiales Biocompatibles , Sulfatos de Condroitina/química , Ácido Hialurónico/química , Hidrazonas , Hidrogeles/química , Ingeniería de Tejidos
5.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35328737

RESUMEN

One of the major mechanisms of drug-induced liver injury includes mitochondrial perturbation and dysfunction. This is not a surprise, given that mitochondria are essential organelles in most cells, which are responsible for energy homeostasis and the regulation of cellular metabolism. Drug-induced mitochondrial dysfunction can be influenced by various factors and conditions, such as genetic predisposition, the presence of metabolic disorders and obesity, viral infections, as well as drugs. Despite the fact that many methods have been developed for studying mitochondrial function, there is still a need for advanced and integrative models and approaches more closely resembling liver physiology, which would take into account predisposing factors. This could reduce the costs of drug development by the early prediction of potential mitochondrial toxicity during pre-clinical tests and, especially, prevent serious complications observed in clinical settings.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/metabolismo , Humanos , Hígado/metabolismo , Mitocondrias/metabolismo , Mitocondrias Hepáticas/metabolismo
6.
Int J Mol Sci ; 18(12)2017 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-29186865

RESUMEN

As current kidney replacement therapies are not efficient enough for end-stage renal disease (ESRD) treatment, a bioartificial kidney (BAK) device, based on conditionally immortalized human proximal tubule epithelial cells (ciPTEC), could represent an attractive solution. The active transport activity of such a system was recently demonstrated. In addition, endocrine functions of the cells, such as vitamin D activation, are relevant. The organic anion transporter 1 (OAT-1) overexpressing ciPTEC line presented 1α-hydroxylase (CYP27B1), 24-hydroxylase (CYP24A1) and vitamin D receptor (VDR), responsible for vitamin D activation, degradation and function, respectively. The ability to produce and secrete 1α,25-dihydroxy-vitamin D3, was shown after incubation with the precursor, 25-hydroxy-vitamin D3. The beneficial effect of vitamin D on cell function and behavior in uremic conditions was studied in the presence of an anionic uremic toxins mixture. Vitamin D could restore cell viability, and inflammatory and oxidative status, as shown by cell metabolic activity, interleukin-6 (IL-6) levels and reactive oxygen species (ROS) production, respectively. Finally, vitamin D restored transepithelial barrier function, as evidenced by decreased inulin-FITC leakage in biofunctionalized hollow fiber membranes (HFM) carrying ciPTEC-OAT1. In conclusion, the protective effects of vitamin D in uremic conditions and proven ciPTEC-OAT1 endocrine function encourage the use of these cells for BAK application.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Toxinas Biológicas/toxicidad , Vitamina D/farmacología , Vitaminas/farmacología , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/metabolismo , Línea Celular , Supervivencia Celular , Citoprotección , Células Epiteliales/metabolismo , Humanos , Interleucina-6/metabolismo , Túbulos Renales Proximales/citología , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Estrés Oxidativo , Receptores de Calcitriol/metabolismo , Vitamina D3 24-Hidroxilasa/metabolismo
7.
J BUON ; 22(1): 58-63, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28365936

RESUMEN

PURPOSE: The purpose of this study was to present the Screening Registry and the results of organized cervical cancer screening program (OCCSP) in the Republic of Serbia using a database made as an output model, linked with the Screening Registry. METHODS: Data were respectively collected over a onemonth period from 3 state primary health care centers (and related hospitals/clinical center) in central Serbia in which OCCSP was conducted. The sample consisted of women of the target population (25 to 64 years old) who responded the call for Pap test. RESULTS: The most frequent abnormal cytological diagnosis was in the 38-50 years age group, and consisted of atypical squamous cells of undetermined significance - ASCUS (7.5%) and low grade squamous intraepithelial lesions - L-SIL (7.3%). The most frequent abnormal colposcopic finding in the youngest age group of women (25-37 years) was iodine negative epithelium (35.7%) and in the group of women aged 38-50 and 51-64 years acid-white epithelium. The most common histopathological diagnosis was L-SIL. Positive predictive value of colposcopy in relation to the Pap test was 0.64 (95% CI=0.56-0.70). Interrater agreement (between cytotechnicians and supervisors) measured by the Cohen's coefficient was 0.94 (95% CI=0.91 to 0.97), but between cytology (supervisors) and pathology findings it was 0.83 (95% CI = 0.67 to 0.99). CONCLUSION: The existence of a screening registry contributes to a better epidemiological surveillance of a screening program, and to a possibility for development of various epidemiological researches.


Asunto(s)
Recolección de Datos , Detección Precoz del Cáncer , Programas Informáticos , Neoplasias del Cuello Uterino/diagnóstico , Adulto , Femenino , Humanos , Persona de Mediana Edad , Prueba de Papanicolaou , Sistema de Registros
8.
Data Brief ; 55: 110653, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39040552

RESUMEN

The provided dataset describes the transcriptomic profile of human liver spheroid co-cultures consisting of a human hepatoma cell line (C3A/HepG2 cells) and an immortalized activated human hepatic stellate cell line (LX-2 cells) upon exposure to total parenteral nutrition. High-throughput RNA sequencing was performed using DNBSEQTM sequencing technology. Following the quality check and filtering of raw sequence reads, the clean reads were aligned to the reference human genome and used to determine differential gene expression. Raw and processed data are deposited in the Gene Expression Omnibus with accession number GSE264357. These data could serve further mechanistic studies on parenteral nutrition-induced liver injury and support translational research on intestinal failure-associated liver disease occurring in individuals receiving total parenteral nutrition.

9.
Toxicol Sci ; 199(1): 1-11, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38383052

RESUMEN

Intestinal failure-associated liver disease (IFALD) is a relatively common complication in individuals receiving parenteral nutrition (PN). IFALD can be manifested as different types of liver injury, including steatosis, cholestasis, and fibrosis, and could result in liver failure in some cases. The onset and progression of IFALD are highly dependent on various patient and PN-related risk factors. Despite still being under investigation, several mechanisms have been proposed. Liver injury can originate due to caloric overload, nutrient deficiency, and toxicity, as well as phytosterol content, and omega-6 to omega-3 fatty acids ratio contained in lipid emulsions. Additional mechanisms include immature or defective bile acid metabolism, acute heart failure, infections, and sepsis exerting negative effects via Toll-like receptor 4 and nuclear factor κB inflammatory signaling. Furthermore, lack of enteral feeding, gut dysbiosis, and altered enterohepatic circulation that affect the farnesoid x receptor-fibroblast growth factor 19 axis can also contribute to IFALD. Various best practices can be adopted to minimize the risk of developing IFALD, such as prevention and management of central line infections and sepsis, preservation of intestine's length, a switch to oral and enteral feeding, cyclic PN, avoidance of overfeeding and soybean oil-based lipid formulations, and avoiding hepatotoxic substances. The present review thus provides a comprehensive overview of all relevant aspects inherent to IFALD. Further research focused on clinical observations, translational models, and advanced toxicological knowledge frameworks is needed to gain more insight into the molecular pathogenesis of hepatotoxicity, reduce IFALD incidence, and encourage the safe use of PN.


Asunto(s)
Hepatopatías , Nutrición Parenteral , Humanos , Nutrición Parenteral/efectos adversos , Hepatopatías/etiología , Animales , Insuficiencia Intestinal/terapia , Insuficiencia Intestinal/etiología , Factores de Riesgo , Hígado/metabolismo , Hígado/efectos de los fármacos , Relevancia Clínica
10.
Ann Gastroenterol ; 37(1): 109-116, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38223249

RESUMEN

Background: Hypertriglyceridemia is a common cause of acute pancreatitis (AP). This literature review compared the effectiveness and adverse events of insulin therapy, with or without heparin, and plasmapheresis, in reducing triglyceride levels in patients with hypertriglyceridemia-induced AP. Methods: Systematic reviews, meta-analyses, evidence syntheses, editorials, commentaries, protocols, abstracts, theses and preprints were excluded. Review Manager was used to conduct the meta-analysis. The literature search yielded 2765 articles, but only 5 were included in the systematic review and meta-analysis and the total number of participants in the review was 269. Results: From this study's analysis, insulin ± heparin was more successful in reducing triglyceride levels than plasmapheresis (standardized mean difference -0.37, 95% confidence interval [CI] 0.99 to 0.25; P=0.25). Insulin ± heparin therapy had a lower mortality rate than plasmapheresis (risk ratio [RR] 0.70, 95%CI 0.25-1.95). Hypotension, hypoglycemia, and acute renal failure were less common in the plasmapheresis therapy group than in insulin ± heparin therapy (RR 1.13, 95%CI 0.46-2.81, RR 3.90, 95%CI 0.45-33.78, and RR 0.48, 95%CI 0.02-13.98 for hypotension, hypoglycemia, and acute renal failure, respectively). Conclusions: This study found no significant difference in mortality between insulin ± heparin therapy and plasmapheresis used for the reduction in triglyceride levels. It is notable that no substantial differences were observed in the most common side-effects encountered during these therapies, thus indicating non-inferiority.

11.
Eur J Oral Sci ; 121(5): 421-6, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24028589

RESUMEN

The aim of this study was to assess whether polymorphisms in toll-like receptor (TLR) and cluster of differentiation 14 (CD14) genes are associated with oral lichen planus (OLP) risk and clinical course of the disease. The study group consisted of 101 patients with confirmed OLP and 104 healthy blood donors without systemic or oral mucosal diseases. Single nucleotide polymorphisms of TLR2 (rs3804099), TLR3 (rs3775291 and rs5743312), TLR4 (rs4986790 and rs4986791), and CD14 (rs2569190) genes were genotyped using real-time PCR or PCR-restriction fragment length polymorphism (PCR-RFLP). The rs5743312 TLR3 gene polymorphism was associated with increased OLP risk in comparison with the wild type genotype (OR = 15.984, P = 0.011). No association with OLP risk was observed for the polymorphisms studied in TLR2, TLR4 and CD14 genes or for the rs3775291 polymorphism of the TLR3 gene. The polymorphisms of the TLR3 gene were in linkage disequilibrium (D' = 1, r(2) = 0.1). Identified haplotypes were not associated with the risk of OLP. The findings of the current study suggest that the TT genotype of the rs5743312 TLR3 gene polymorphism may play a significant role in the aetiology of OLP.


Asunto(s)
Liquen Plano Oral/genética , Receptores de Lipopolisacáridos/genética , Polimorfismo de Nucleótido Simple , Receptores Toll-Like/genética , Adulto , Biomarcadores , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Haplotipos , Humanos , Desequilibrio de Ligamiento , Modelos Logísticos , Masculino , Persona de Mediana Edad , Polimorfismo de Longitud del Fragmento de Restricción , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
Biomedicines ; 11(9)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37760849

RESUMEN

Chronic kidney disease (CKD) is a progressive condition of kidney dysfunction due to diverse causes of injury. In healthy kidneys, protein-bound uremic toxins (PBUTs) are cleared from the systemic circulation by proximal tubule cells through the concerted action of plasma membrane transporters that facilitate their urinary excretion, but the endogenous metabolites are hardly removed with kidney dysfunction and may contribute to CKD progression. Accumulating evidence suggests that senescence of kidney tubule cells influences kidney fibrosis, the common endpoint for CKD with an excessive accumulation of extracellular matrix (ECM). Senescence is a special state of cells characterized by permanent cell cycle arrest and limitation of proliferation, which promotes fibrosis by releasing senescence-associated secretory phenotype (SASP) factors. The accumulation of PBUTs in CKD causes oxidative stress and increases the production of inflammatory (SASP) factors that could trigger fibrosis. Recent studies gave some clues that PBUTs may also promote senescence in kidney tubular cells. This review provides an overview on how senescence contributes to CKD, the involvement of PBUTs in this process, and how kidney senescence can be studied. Finally, some suggestions for future therapeutic options for CKD while targeting senescence are given.

13.
Toxins (Basel) ; 15(4)2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-37104179

RESUMEN

Kidney fibrosis is the common final pathway of nearly all chronic and progressive nephropathies. One cause may be the accumulation of senescent cells that secrete factors (senescence associated secretory phenotype, SASP) promoting fibrosis and inflammation. It has been suggested that uremic toxins, such as indoxyl sulfate (IS), play a role in this. Here, we investigated whether IS accelerates senescence in conditionally immortalized proximal tubule epithelial cells overexpressing the organic anion transporter 1 (ciPTEC-OAT1), thereby promoting kidney fibrosis. Cell viability results suggested that the tolerance of ciPTEC-OAT1 against IS increased in a time-dependent manner at the same dose of IS. This was accompanied by SA-ß-gal staining, confirming the accumulation of senescent cells, as well as an upregulation of p21 and downregulation of laminB1 at different time points, accompanied by an upregulation in the SASP factors IL-1ß, IL-6 and IL-8. RNA-sequencing and transcriptome analysis revealed that IS accelerates senescence, and that cell cycle appears to be the most relevant factor during the process. IS accelerates senescence via TNF-α and NF-ĸB signalling early on, and the epithelial-mesenchymal transition process at later time points. In conclusion, our results suggest that IS accelerates cellular senescence in proximal tubule epithelial cells.


Asunto(s)
Indicán , Tóxinas Urémicas , Humanos , Indicán/toxicidad , Indicán/metabolismo , Células Epiteliales/metabolismo , Túbulos Renales Proximales/metabolismo , Fibrosis
14.
Front Pharmacol ; 13: 791612, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35422705

RESUMEN

Accumulating evidence suggests that senescence of kidney tubule epithelial cells leads to fibrosis. These cells secrete senescence-associated secretory phenotype (SASP) factors that are involved in diverse signaling pathways, influencing kidney fibrosis. Here, we investigated whether our previously established conditionally immortalized proximal tubule epithelial cell line overexpressing the organic anion transporter 1 (ciPTEC-OAT1) can be used as a valid in vitro model to study kidney senescence and senolytics response. CiPTEC-OAT1 proliferates rapidly at 33°C and exhibits a "senescence-like" arrest at 37°C, most likely due to suppression of SV40T expression and subsequent reactivation of the p53 and Rb pathways. To understand how permissive (33°C) and non-permissive (37°C) temperatures of the cell culture affect the senescence phenotype, we cultured ciPTEC-OAT1 for up to 12 days and evaluated the apoptosis and SASP markers. Day 0 in both groups is considered as the non-senescence group (control). Further, the potential of navitoclax, dasatinib, quercetin, and the combination of the latter two to clear senescent cells was evaluated. Maturation of ciPTEC-OAT1 at non-permissive temperature affected mRNA and protein levels of senescence markers. A remarkable upregulation in p21 gene expression was found in the non-permissive temperature group, whereas expression of Lamin B1 decreased significantly. SASP factors, including PAI-1A, IL-1ß, CTGF, and IL-6 were upregulated, but no significant difference in Bcl-2 and Bcl-xl were found in the non-permissive temperature group. After culturing ciPTEC-OAT1 up to 12 days, cells in the non-permissive temperature group showed an upregulation in the apoptosis-associated proteins Bcl-2, BID, and Bax, and a downregulation in Mcl-1, Bad, Bak, and Bim at various time points. Further, Bcl-xl, Puma, Caspase 3, Caspase 7, and Caspase 9 showed initial upregulations followed by downregulations at later time points. The loss of Lamin B1, upregulation of SA-ß-gal expression and increase in its activity, upregulation of p21 levels and downregulation of p53, along with the upregulation of SASP factors, confirmed that maturation at 37°C promotes senescence features. Finally, the senolytics response was evaluated by testing cell viability following exposure to senolytics, to which cells appeared dose-dependently sensitive. Navitoclax was most effective in eliminating senescent cells. In conclusion, culturing ciPTEC-OAT1 at 37°C induces a senescence phenotype characterized by increased expression of cell cycle arrest and anti-apoptosis markers, SASP factors, and responsiveness to senolytics treatment. Therefore, ciPTEC-OAT1 represents a valid model for studying kidney senescence by simply adjusting culture conditions.

15.
ACS Infect Dis ; 7(9): 2746-2754, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34387988

RESUMEN

Vancomycin functions by binding to lipid II, the penultimate bacterial cell wall building block used by both Gram-positive and Gram-negative species. However, vancomycin is generally only able to exert its antimicrobial effect against Gram-positive strains as it cannot pass the outer membrane (OM) of Gram-negative bacteria. To address this challenge, we here describe efforts to conjugate vancomycin to the OM disrupting polymyxin E nonapeptide (PMEN) to yield the hybrid "vancomyxins". In designing these hybrid antibiotics, different spacers and conjugation sites were explored for connecting vancomycin and PMEN. The vancomyxins show improved activity against Gram-negative strains compared with the activity of vancomycin or vancomycin supplemented with PMEN separately. In addition, the vancomyxins maintain the antimicrobial effect of vancomycin against Gram-positive strains and, in some cases, show enhanced activity against vancomycin-resistant strains. The hybrid antibiotics described here have reduced nephrotoxicity when compared with clinically used polymyxin antibiotics. This study demonstrates that covalent conjugation to an OM disruptor contributes to sensitizing Gram-negative strains to vancomycin while retaining anti-Gram-positive activity.


Asunto(s)
Polimixinas , Vancomicina , Antibacterianos/farmacología , Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana , Vancomicina/farmacología
16.
Biomedicines ; 9(10)2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34680443

RESUMEN

Protein bound-uremic toxins (PBUTs) are not efficiently removed by hemodialysis in chronic kidney disease (CKD) patients and their accumulation leads to various co-morbidities via cellular dysfunction, inflammation and oxidative stress. Moreover, it has been shown that increased intrarenal expression of the NLRP3 receptor and IL-1ß are associated with reduced kidney function, suggesting a critical role for the NLRP3 inflammasome in CKD progression. Here, we evaluated the effect of PBUTs on inflammasome-mediated IL-1ß production in vitro and in vivo. Exposure of human conditionally immortalized proximal tubule epithelial cells to indoxyl sulfate (IS) and a mixture of anionic PBUTs (UT mix) increased expression levels of NLRP3, caspase-1 and IL-1ß, accompanied by a significant increase in IL-1ß secretion and caspase-1 activity. Furthermore, IS and UT mix induced the production of intracellular reactive oxygen species, and caspase-1 activity and IL-1ß secretion were reduced in the presence of antioxidant N-acetylcysteine. IS and UT mix also induced NF-κB activation as evidenced by p65 nuclear translocation and IL-1ß production, which was counteracted by an IKK inhibitor. In vivo, using subtotal nephrectomy CKD rats, a significant increase in total plasma levels of IS and the PBUTs, kynurenic acid and hippuric acid, was found, as well as enhanced urinary malondialdehyde levels. CKD kidney tissue showed an increasing trend in expression of NLRP3 inflammasome components, and a decreasing trend in superoxide dismutase-1 levels. In conclusion, we showed that PBUTs induce inflammasome-mediated IL-1ß production in proximal tubule cells via oxidative stress and NF-κB signaling, suggesting their involvement in disease-associated inflammatory processes.

17.
Macromol Biosci ; 19(1): e1800173, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30085403

RESUMEN

Nanocomposite hydrogels based on carbon nanotubes (CNTs) are known to possess remarkable stiffness, electrical, and thermal conductivity. However, they often make use of CNTs as fillers in covalently cross-linked hydrogel networks or involve direct cross-linking between CNTs and polymer chains, limiting processability properties. Herein, nanocomposite hydrogels are developed, in which CNTs are fillers in a physically cross-linked hydrogel. Supramolecular nanocomposites are prepared at various CNT concentrations, ranging from 0.5 to 6 wt%. Incorporation of 3 wt% of CNTs leads to an increase of the material's toughness by over 80%, and it enhances electrical conductivity by 358%, compared to CNT-free hydrogel. Meanwhile, the nanocomposite hydrogels maintain thixotropy and processability, typical of the parent hydrogel. The study also demonstrates that these materials display remarkable cytocompatibility and support cell growth and proliferation, while preserving their functional activities. These supramolecular nanocomposite hydrogels are therefore promising candidates for biomedical applications, in which both toughness and electrical conductivity are important parameters.


Asunto(s)
Conductividad Eléctrica , Hidrogeles/química , Nanocompuestos/química , Nanotubos de Carbono/química , Línea Celular , Humanos
18.
Pharmacol Ther ; 197: 191-211, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30677474

RESUMEN

The number of individuals affected by acute kidney injury (AKI) and chronic kidney disease (CKD) is constantly rising. In light of the limited availability of treatment options and their relative inefficacy, cell based therapeutic modalities have been studied. However, not many efforts are put into safety evaluation of such applications. The aim of this study was to review the existing published literature on adverse events reported in studies with genetically modified cells for treatment of kidney disease. A systematic review was conducted by searching PubMed and EMBASE for relevant articles published until June 2018. The search results were screened and relevant articles selected using pre-defined criteria, by two researchers independently. After initial screening of 6894 abstracts, a total number of 97 preclinical studies was finally included for full assessment. Of these, 61 (63%) presented an inappropriate study design for the evaluation of safety parameters. Only 4 studies (4%) had the optimal study design, while 32 (33%) showed sub-optimal study design with either direct or indirect evidence of adverse events. The high heterogeneity of studies included regarding cell type and number, genetic modification, administration route, and kidney disease model applied, combined with the consistent lack of appropriate control groups, makes a reliable safety evaluation of kidney cell-based therapies impossible. Only a limited number of relevant studies included looked into essential safety-related outcomes, such as inflammatory (48%), tumorigenic and teratogenic potential (12%), cell biodistribution (82%), microbiological safety with respect to microorganism contamination and latent viruses' reactivation (1%), as well as overall well-being and animal survival (19%). In conclusion, for benign cell-based therapies, well-designed pre-clinical studies, including all control groups required and good manufacturing processes securing safety, need to be done early in development. Preferably, this should be performed side by side with efficacy evaluation and according to the official guidelines of leading health organizations.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Enfermedades Renales/terapia , Animales , Humanos
19.
Oncotarget ; 10(51): 5332-5348, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31523392

RESUMEN

End-stage kidney disease represents irreversible kidney failure. Dialysis and transplantation, two main treatment options currently available, present various drawbacks and complications. Innovative cell-based therapies, such as a bioartificial kidney, have not reached the clinic yet, mostly due to safety and/or functional issues. Here, we assessed the safety of conditionally immortalized proximal tubule epithelial cells (ciPTECs) for bioartificial kidney application, by using in vitro assays and athymic nude rats. We demonstrate that these cells do not possess key properties of oncogenically transformed cells, including anchorage-independent growth, lack of contact inhibition and apoptosis-resistance. In late-passage cells we did observe complex chromosomal abnormalities favoring near-tetraploidy, indicating chromosomal instability. However, time-lapse imaging of ciPTEC-OAT1, confined to a 3D extracellular matrix (ECM)-based environment, revealed that the cells were largely non-invasive. Furthermore, we determined the viral integration sites of SV40 Large T antigen (SV40T), human telomerase (hTERT) and OAT1 (SLC22A6), the transgenes used for immortalization and cell function enhancement. All integrations sites were found to be located in the intronic regions of endogenous genes. Among these genes, early endosome antigen 1 (EEA1) involved in endocytosis, and BCL2 Like 1 (BCL2L1) known for its role in regulating apoptosis, were identified. Nevertheless, both gene products appeared to be functionally intact. Finally, after subcutaneous injection in athymic nude rats we show that ciPTEC-OAT1 lack tumorigenic and oncogenic effects in vivo, confirming the in vitro findings. Taken together, this study lays an important foundation towards bioartificial kidney (BAK) development by confirming the safety of the cell line intended for incorporation.

20.
J Tissue Eng Regen Med ; 12(2): e817-e827, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-27977906

RESUMEN

Increasing incidence of renal pathology in the western world calls for innovative research for the development of cell-based therapies such as a bioartificial kidney (BAK) device. To fulfil the multitude of kidney functions, the core component of the BAK is a living membrane consisting of a tight kidney cell monolayer with preserved functional organic ion transporters cultured on a polymeric membrane surface. This membrane, on one side, is in contact with blood and therefore should have excellent blood compatibility, whereas the other side should facilitate functional monolayer formation. This work investigated the effect of membrane chemistry and surface topography on kidney epithelial cells to improve the formation of a functional monolayer. To achieve this, microtopographies were fabricated with high resolution and reproducibility on polystyrene films and on polyethersulfone-polyvinyl pyrrolidone (PES-PVP) porous membranes. A conditionally immortalized proximal tubule epithelial cell line (ciPTEC) was cultured on both, and subsequently, the cell morphology and monolayer formation were assessed. Our results showed that L-dopamine coating of the PES-PVP was sufficient to support ciPTEC monolayer formation. The polystyrene topographies with large features were able to align the cells in various patterns without significantly disruption of monolayer formation; however, the PES-PVP topographies with large features disrupted the monolayer. In contrast, the PES-PVP membranes with small features and with large spacing supported well the ciPTEC monolayer formation. In addition, the topographical PES-PVP membranes were compatible as a substrate membrane to measure organic cation transporter activity in Transwell® systems. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Materiales Biocompatibles/farmacología , Células Epiteliales/citología , Riñón/citología , Animales , Transporte Biológico/efectos de los fármacos , Línea Celular , Creatinina/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/ultraestructura , Humanos , Membranas Artificiales , Polímeros/farmacología , Porosidad , Povidona/farmacología , Sulfonas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA