RESUMEN
Endogenous and exogenous factors can severely affect the integrity of genetic information by inducing DNA damage and impairing genome stability. The protection of genome integrity is ensured by the so-called "DNA damage response" (DDR), a set of evolutionary-conserved events that, triggered upon DNA damage detection, arrests the cell cycle, and attempts DNA repair. Here, we review the role of the DDR proteins as post-transcriptional regulators of gene expression, in addition to their roles in DNA damage recognition, signaling, and repair. At the same time, we discuss recent insights into how pre-mRNA splicing factors go beyond their splicing activities and play direct functions in detecting, signaling, and repairing DNA damage. The importance of extensive two-way crosstalk and interaction between the RNA processing and the DDR stems from growing evidence that the defects of their communication lead to genomic instability.